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IDEAS BÁSICAS Y EJEMPLOS SOBRE

ESTIMACIÓN PUNTUAL
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vergencia en distribución, Convergencia en probabilidad, Comportamiento
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Este trabajo trrata sobre el problema de estimación puntual

en modelos estad́ısticos paramétricos. Los principales objetivos

que se persiguen son los siguientes: (i) Analizar dos métodos de

construcción de estimadores, a saber, la técnica de verosimilitud
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This work concerns the problem of point estimation in para-

metric statistical models, and the three main objectives of this ex-

position are as follows: (i) To analyze two methods of construct-

ing estimators, namely, the maximum likelihood technique and the

method of moments, and (ii) To provide detailed illustrations of ba-

sic notion in the theory, as unbiasedness, consistency and asymp-

totic normality, The main contribution of this note concerns the

second objective, presenting complete illustrations of the estimation

techniques studied in the thesis in a rigorous and formal manner.
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Chapter 1

Presentation

This chapter presents a general perspective of the material presented in

the subsequent development. The main goals, contributions and the moti-

vation behind this work are clearly stated, and the organization and content

of the following chapters is briefly described.

1.1. Introduction

This work deals with the problem of parametric point estimation, which is

pervasive and plays a central role in the theory and applications of statistics.

Certainly, point estimation lays in the core of the statistical methodology,

and a major step in every analysis is the determination of estimates (i.e.,

approximations) to some unknown quantities in terms of the observed data,

and every treatise on theoretical or applied statistics dedicates a good amount

of space to the analysis of diverse methods to construct estimators and to

study its properties; see, for instance, Dudewicz and Mishra (1988), Wackerly

et al. (2009), Lehmann and Casella (1999), or Graybill (2000).

The topics topics presented in the following chapters are mainly concen-

trated on three aspects of the estimation problem:

(i) The construction of estimators via the maximum likelihood technique and

the method of moments, and

1
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(ii) The study of particular models to illustrate the estimation procedures,

and to point out the technical difficulties to obtain explicit formulas.

The basic estimation problem is briefly described below.

1.2. The Estimation Problem

In general, the purpose of a statistical analysis is to use the observed data

to gain knowledge about some unknown aspect of the process generating

the observations. The observable data X = (X1, X2, . . . , Xn) is thought of

as a random vector whose distribution is not completely known. Rather,

theoretical or modeling considerations lead to assume that the distribution

of X, say PX, belongs to a certain family F of probability measures defined

on (the Borel class of) IRn:

PX ∈ F . (1.2.1)

This is a statistical model, and in any practical instance it is necessary to

include a precise definition of the family F . In this work, the main interest

concentrates on parametric models, for which the family F can be indexed

by a k-dimensional vector θ whose components are real numbers; in such a

case the set of possible values of θ, which is referred to as the parameter

space, will be denoted be Θ and F can be written as

F = {Pθ | θ ∈ Θ}.

In this context the model (1.2.1) ensures that there exists some parameter

θ∗ ∈ Θ such that PX = Pθ∗ , that is, for every (Borel) subset A of IRn

P [X ∈ A] = PX[A] = Pθ∗ [A]. (1.2.2)

The parameter θ∗ satisfying this relation for every (Borel) subset of IRn is the

true parameter value. Notice that the model prescribes the existence of θ∗ ∈
Θ such that the above equality always holds, but does not specify which is

the parameter θ∗; it is only supposed that θ∗ belongs to the parameter space

Θ, and the main objective of the analyst is to determine θ∗ using the value

attained by the vector X, say X = x. Indeed, the lack of exact knowledge

of θ∗ represents ‘the aspects that are unknown ’ to the analyst about the

real process generating the observation vector X. On the other hand, in

any practical situation, θ∗ can not be determined exactly after observing the
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value of X, so that the real goal of the analyst is to make an ‘educated guess’

about the true parameter value using the observed value of X; this means

that a function T (X) must be constructed so that, after observing X = x,

the value T (x) will represent ‘the guesse’ (approximation) of the analyst to

the true parameter value θ∗. More generally, the interest may be to obtain

an ‘approximation’ to the value g(θ∗) attained by some function g(θ) at the

true parameter value θ∗. The estimation problem consists in constructing a

function T (X) whose values will be used as approximations to g(θ∗) such that

the estimator T (X) has good statistical properties. As already mentioned,

this work analyzes methods to construct estimators.

1.3. Main Goals and Contribution

The main goals of this work can be described as follows:

(i) To present a formal description of two important methods to construct

estimators, namely, the maximum likelihood technique, and the method of

moments;

(ii) To use selected examples to illustrate the construction of estimators in

models involving distributions frequently used in applications,

The main contribution of the presentation consists in presenting a rigor-

ous and formal analysis of diverse examples involving common distribution

araising in applications.

1.4. The Origin of This Work

This work was developed as part of the project Mathematical Statistics: El-

ements of Theory and Examples, started on July 2011 by the Graduate Pro-

gram in Statistics at the Universidad Autónoma Agraria Antonio Narro.

The author and Mary Carmen Ruiz Moreno were the initial students in the

project, and it is a pleasure to thank Mary Carmen for a lot of interesting

and stimulating discussions.

The basic aims of the project are:

(i) To be a framework were statistical problems can be freely and fruitfully

discussed;

(ii) To promote the understanding of basic statistical and analytical tools

through the analysis and detailed solution of exercises.
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(iii) To develop the writing skills of the participants, generating an orga-

nized set of neatly solved examples, which can used by other members of the

program, as well as by the statistical communities in other institutions and

countries.

(iv) To develop the communication skills of the students and faculty through

the regular participation in seminars, were the results of their activities are

discussed with the members of the program.

The work of the project has been concerned with fundamental statis-

tical theory at an intermediate (non-measure theoretical) level, as in the

book Mathematical Statistics by Dudewicz and Mishra (1998). When neces-

sary, other more advanced references that have been useful are Lehmann and

Casella (1998), Borobkov (1999) and Shao (2002), whereas deeper probabilis-

tic aspects have been studied in the classical text by Loève (1984). On the

other hand, statistical analysis requires algebraic and analytical tools, and

ne in these directions the basic references in the project are Apostol (1980),

Fulks (1980), Khuri (2002) and Royden (2003), which concern mathematical

analysis, whereas the algebraic aspects are covered in Graybill (2001) and

Harville (2008).

The examples presented in the following chapters reflect the work de-

veloped in the project, and it is a pleasure to thank to Mary Carmen Ruiz

Moreno by clever discussions, and to and to the Statistics Program promot-

ing the project, by the opportunity to collaborate in the project.

1.5. The Organization

The material presented below has been organized as follows: In Chapter 2

some basic concepts in the theory of point estimation are introduced, present-

ing a description of the idea of parametric statistical model, and discussing

the estimation problem of an unknown parametric function. The presenta-

tion continues with the notions of unbiased estimator and consistency of a

sequence of estimators, and the related concept of asymptotically unbiased

sequence is also analyzed.

Next, in Chapter 3 the method of maximum likelihood estimation is

introduced, which is based on the intuitive idea that, after observing the

data, the estimate of the unknown parameter θ is the value θ̂ in the parameter

space that assigns highest probability to the observation and, finally, Chapter
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4 is concerned with the method of moments; as already mentioned, all of

the notions introduced in this work are illustrated by carefully analyzed

examples.



Chapter 2

Point Estimation

This chapter introduces fundamental concepts in the theory of Point Es-

timation. The notion of estimator is introduced and the ideas of unbiasedness

and consistency are discussed and illustated.

2.1. Statistical Point Estimation: Concepts

A parametric statistical model for an observable vector

X = (X1, X2, . . . , Xn)

prescribes a family {Pθ}θ∈Θ of possible probability distributions for X. The

set of indices Θ is referred to as the parameter space and is a subset of an

Euclidean space IRk. The essence of a statistical model is that the distri-

bution of X is supposed to be Pθ for some parameter θ ∈ Θ, but the ‘true’

parameter value—the one which corresponds to the distribution of X—is

unknown. The statistical model is briefly described by writing

X ∼ Pθ, θ ∈ Θ.

The main objective of the analyst is to determine, at least approximately,

the value of the true parameter or, more generally, the value of a function

6
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g(θ) at the true parameter. To achieve this goal the components of X are

combined in some way to obtain a function

Tn ≡ Tn(X) = Tn(X1, X2, . . . , Xn),

and after observing X = x = (x1, x2, . . . , xn), the value

Tn(x) = Tn(x1, x2, . . . , xn)

is used as an ‘approximation’ of the unknown quantity g(θ). The random

variable Tn is called an estimator of g(θ) and Tn(x) is the estimate corre-

sponding to the observation X = x.

An estimator of g(θ) is unbiased if

Eθ[Tn] = g(θ)

for every θ ∈ Θ; notice that the subindex θ in the expectation operator is

used to indicate that the expected value is computed under the condition

that θ is the true parameter value. In general, the value attained by an

estimator Tn = Tn(X1, X2, . . . , Xn), does not coincide with the quantity g(θ).

However, if the estimator Tn is unbiased, and the experiment generating X

is repeated, obtaining the estimators Tn 1, Tn 2, Tn 3, . . . at each repetition, it

follows from the law of large numbers that the average

Tn 1 + Tn 2 + Tn 3 + · · ·+ Tnk

k

converges to g(θ) as the number k of repetitions increases. Thus, on the av-

erage, the estimator Tn ‘points to the correct quantity’ g(θ. It must be noted

that not all of the parametric quantities g(θ) admit an unbiased estimator.

For instance, suppose that X1, X2, . . . , Xn is a sample from the Bernoulli (θ)

distribution, where θ ∈ Θ = [0, 1], and assume that Tn = Tn(X1, X2, . . . , Xn)

is an unbiased estimator for g(θ). Observing that

Pθ[X1 = x1, X2 = x2, . . . , Xn = xn] = θ
�

i
xi(1− θ)n−

�
i
xi

when xis are zero or one for all i, it follows that

Eθ[Tn] =
�

x1,...,xk=0,1

T (x1, x2, . . . , xn)θ
�

i
xi(1− θ)n−

�
i
xi
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is a polynomial of degree less than or equal to n, so that Eθ[Tn] = g(θ)

for all θ ∈ Θ can not be satisfied for functions that are not polynomials,

as g(θ) = eθ or g(θ) = sin(θ), or even for polynomial functions with degree

larger that n, as g(θ) = θn+1. Thus, the unbiasdness property may be too

restrictive, and it is possible to have that an unbiased estimator does not

exists in some cases of interest.

The bias function of an estimator Tn of g(θ) is defined by

bTn,g(θ) ≡ bTn(θ): = Eθ[Tn]− g(θ), θ ∈ Θ,

so that Tn is unbiased if bTn(θ) = 0 for every θ ∈ Θ. To evaluate the bias

function of an estimator Tn it is necessary to determine the expected value

Eθ[Tn], and usually this task requires to know the density or probability func-

tion of Tn; however, occasionally symmetry conditions may help to simplify

the computation.

A sequence {Tn}n=1,2,... of estimators of g(θ) is asymptotically unbiased if

lim
n→∞

bTn
(θ) = 0, θ ∈ Θ,

a condition that is equivalent to requiring that, for each parameter θ ∈ Θ,

Eθ[Tn] → g(θ) as n → ∞.

On the other hand, a sequence {Tn}n=1,2,... of estimators of g(θ) is consistent

if for each ε > 0,

lim
n→∞

Pθ[|Tn − g(θ)| > ε] = 0, θ ∈ Θ,

that is, the sequence {Tn} always converges in probability to g(θ) with re-

spect to the distribution Pθ. The above convergence will be alternatively

written as

Tn
Pθ−→ g(θ).

There are three main tools to show consistency of a sequence of estimators,

which are briefly discussed in the following points (i)–(iii):

(i) The strong law of large numbers: Assume that the quantity g(θ) is the

expectation of a random variable Y = Y (X1), that is,

g(θ) = Eθ[Y (X1)]
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In this case, if the variables X1, X2, . . . , Xn, . . . are independent and identi-

cally distributed, setting

Tn =
Y (X1) + Y (X2) + · · ·+ Y (Xn)

n
,

the law of large numbers ensures that Tn
Pθ−→ g(θ), i.e., that the sequence

{Tn} of estimators of g(θ) is consistent.

(ii) The continuity theorem. Roughly, this result establishes that the consis-

tency property is preserved under the application of a continuous function,

a conclusion that is formally stated as follows:

Suppose that the parametric functions g1(θ), g2(θ), . . . , gr(θ) are estimated

consistently by the sequences {T1n}, {T2n}, . . . , {Tr n}, that is

Ti n
Pθ−→ gi(θ), i = 1, 2, . . . , r.

Additionally, let the function G(x1, x2, . . . , xr) be a function that is con-

tinuous at each point (g1(θ), . . . , gr(θ)), where θ ∈ Θ. In this context, the

sequence {G(T1n, T2n, . . . , Tr n)} of estimators of the parametric function

G(g1(θ), g2(θ), . . . , gr(θ)) is consistent, i.e.,

G(T1n, T2n, . . . , Tr n)
Pθ−→G(g1(θ), g2(θ), . . . , gr(θ)).

(iii) The idea of convergence in the mean. If p is a positive number, a

sequence of random variables {Tn} converges in the mean of order p to g(θ)

if

lim
n→∞

Eθ[|Tn − g(θ)|p] = 0, θ ∈ Θ;

the notation Tn
Lp

−→ g(θ) will be used to indicate that the above condition

holds. The most common instance in applications arises when p = 2, so that

Tn
L2

−→ g(θ) is equivalent to the statement that, for each θ ∈ Θ, Eθ[(Tn −
g(θ))2] → 0 as n → ∞. When Tn

Lp

−→ g(θ) the sequence {Tn} of estimators

of g(θ) is referred to as consistent in the mean of order p. Suppose now that

Tn
Lp

−→ g(θ), and notice that Markov’s inequality yields that, for each ε > 0,

Pθ[|Tn − g(θ)| > ε] ≤ Eθ[|Tn − g(θ)|p]
εp

→ 0 as n → ∞,

so that

Tn
Lp

−→ g(θ) ⇒ Tn
P−→ g(θ);
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in words, if the sequence {Tn} of estimators of g(θ) is consistent in the mean

of order p, then {Tn} is consistent (in probability). This implication is useful,

since it is frequently easier to establish consistency in the mean of some order

p > 0, than to prove consistency directly. When considering consistency in

the mean of order 2, it is useful to keep in mind that the mean square error

Eθ[(Tn − g(θ))2], the variance and the bias function of Tn are related by

Eθ[(Tn − g(θ))2] = bTn
(θ)2 +Varθ(Tn).

2.2. Examples and Factorial Moments

The following examples illustrate the ideas recently introduced.

Exercise 2.2.1. Let X1, X2, . . . , Xn be independent and identically distri-

buted Bernoulli random variables with common probability of success p, and

denote Tn = X1 +X2 + · · · +Xn, whereas Xn = Tn/n is the sample mean

of the sample. Show that

(a) Tn(Tn − 1)/cn with cn = n(n− 1) is an unbiased estimator of p2.

(b) Tn(Tn−1)(Tn−2)/dn with dn = n(n−1)(n−2) is an unbiased estimator

of p3.

(c) Investigate the consistency of the estimators in parts (a) and (b).

(d) Find an unbiased estimator of p− q where, as usual, q = 1− p.

Solution. (a) It must be shown that Ep[Tn(Tn − 1)/[n(n− 1)]] = p for every

p ∈ [0, 1]. To compute the expectation, first notice that Tn ∼ Binomial (n, p),

so that Ep[Tn(Tn−1)] =
�n

t=0 t(t−1)
�
n
t

�
ptqn−t. To evaluate this summation,

recall the identity
�
n

t

�
=

n

t

�
n− 1

t− 1

�
, t ≥ 1, (2.2.1)

to obtain, after two successive applications of this relation, that

�
n

t

�
=

n

t

�
n− 1

t− 1

�
=

n

t
· n− 1

t− 1

�
n− 2

t− 2

�
, t ≥ 2. (2.2.2)
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Therefore,

Ep[Tn(Tn − 1)] =
n�

t=0

t(t− 1)

�
n

t

�
ptqn−t

=
n�

t=2

t(t− 1)
n

t
· n− 1

t− 1

�
n− 2

t− 2

�
ptqn−t

= n(n− 1)
n�

t=2

�
n− 2

t− 2

�
ptqn−t,

where (2.2.2) was used to set the last equality. Changing the variable t in

the last summation to r = t− 2, it follows that

Ep[Tn(Tn − 1)] = n(n− 1)
n−2�

r=0

�
n− 2

r

�
pr+2qn−2−r

= n(n− 1)p2
n−2�

r=0

�
n− 2

r

�
prqn−2−r

= n(n− 1)p2,

where to set the third equality it was used that
�n−2

r=0

�
n−2
r

�
prqn−2−r is the

sum of all no-null probabilities in the Binomial (n− 2, p) distribution, so

that the summation equals to 1. Consequently, for n ≥ 2, cn = n(n− 1) > 0

and Ep[Tn(Tn − 1)/cn] = p2; since the parameter p ∈ [0, 1] is arbitrary,

Tn(Tn − 1)/cn is an unbiased estimator of p2.

(b) The argument parallels the one used in part (a). It is necessary to

evaluate

Ep[Tn(Tn − 1)(Tn − 2)] =
n�

t=0

t(t− 1)(t− 2)

�
n

t

�
ptqn−t

=

n�

t=3

t(t− 1)(t− 2)

�
n

t

�
ptqn−t.

Applying (2.2.1) three times, it follows that

�
n

t

�
=

n

t
· n− 1

t− 1
· n− 2

t− 2

�
n− 3

t− 3

�
, t ≥ 3,
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and these two last displays together yield that

Ep[Tn(Tn − 1)(Tn − 2)]

=
n�

t=3

t(t− 1)(t− 2)
n

t
· n− 1

t− 1
· n− 2

t− 2

�
n− 3

t− 3

�
ptqn−t

= n(n− 1)(n− 2)

n�

t=3

�
n− 3

t− 3

�
ptqn−t

= n(n− 1)(n− 2)
n−3�

r=0

�
n− 3

r

�
pr+3qn−3−r

= n(n− 1(n− 2))p3
n−3�

r=0

�
n− 3

r

�
prqn−3−r

= n(n− 1)(n− 2)p3

where the change of variable r = t−3 was used to set the third equality. Thus,

for n ≥ 3, dn = n(n − 1)(n − 2) �= 0 and Ep[Tn(Tn − 1)(Tn − 2)/dn] = p3

for every parameter value p ∈ [0, 1], that is, Tn(Tn − 1)(Tn − 2)/dn is an

unbiased estimator of p3.

(c) By the strong law of large numbers, Tn/n = Xn
Pp−→Ep[X1] = p. Conse-

quently, by the continuity theorem,

Tn(Tn − 1)

cn
=

Tn(Tn − 1)

n(n− 1)
=

Xn(Xn − 1/n)

1(1− 1/n)

Pp−→ p · p
1 · 1 = p2

and, similarly,

Tn(Tn − 1)(Tn − 2)

dn
=

Tn(Tn − 1)(Tn − 2)

n(n− 1(n− 2))

=
Xn(Xn − 1/n)(Xn − 2/n)

1(1− 1/n)(1− 2/n)

Pp−→ p · p · p
1 · 1 · 1 = p3.

Thus, the sequences {Tn(Tn − 1)/cn} and {Tn(Tn − 1)(Tn − 2)/dn} are con-

sistent for p2 and p3, respectively.

(d) Notice that g(p) = p − q = p − (1 − p) = 2p − 1; since Ep[Xn] = p, it

follows that Ep[2Xn − 1] = 2p − 1 = g(p), that is, 2Xn − 1 is an unbiased

estimator of g(p) = 2p− 1. ��

Remark 2.2.1. For a ∈ IR and a positive integer k, set

(a)k: = a(a− 1) · · · (a− k + 1).
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If k is a positive integer, for each random variableW the kth factorial moment

is given by

E[(W )k] = E[W (W − 1) · · · (W − k + 1)]

whenever the expectation exists. With this notation, the core of the solution

to Exercise 2.2.1 was the computation of Ep[(Tn)2] and Ep[(Tn)3], the second

and third factorial moments of Tn. In some cases, computation of a factorial

moment of W can be simplified by using the following factorial moments

generating function:

FactMW (t) = E[tW ], t > 0. (2.2.3)

If this function is finite in a neighborhood of 1, then the derivatives of all

orders exist about 1, and are given by

d

dt
FactMW (t) = E[WtW−1] = E[(W )1 tW−1]

d2

dt2
FactMW (t) = E[W (W − 1)tW−2] = E[(W )2 tW−2]

d3

dt3
FactMW (t) = E[W (W − 1)(W − 2)tW−3] = E[(W )3 tW−3]

...

dk

dtk
FactMW (t) = E[W (W − 1)(W − 2) · · · (W − k + 1) tW−k]

= E[(W )k tW−k], k ≥ 1.

Evaluating at t = 1, it follows that

dk

dtk
FactMW (t)

����
t=1

= E[(W )k] = E[W (W − 1)(W − 2) · · · (W − k + 1)],

(2.2.4)

so that the factorial moments of W can be evaluated from the knowledge of

FactMW (t) and its derivatives. For the random variable Tn in the previous

exercise, Tn ∼ Binomial (n, p), so that

FactMTn
(t) =

n�

k=0

tk
�
n

k

�
pkqn−k =

n�

k=0

�
n

k

�
(pt)kqn−k = (q + tp)n,

and then
d

dt
FactMTm(t) = np(q + tp)n−1

d2

dt2
FactMTn

(t) = n(n− 1)p2(q + tp)n−2

d3

dt3
FactMTn

(t) = n(n− 1)(n− 2)p3(q + tp)n−3;
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evaluating the second and third derivatives at t = 1, it follows that

Ep[(Tn)2] = Ep[Tn(Tn − 1)] =
d2

dt2
FactMTn

(t)

����
t=1

= n(n− 1)p2,

and

Ep[(Tn)3] = Ep[Tn(Tn−1)(Tn−2)] =
d3

dt3
FactMTn

(t)

����
t=1

= n(n−1)(n−2)p3,

providing an alternative way to compute the relevant expectations in Exercise

2.2.1. ��

2.3. Unbiasedness and Consistency

In this section the ideas of unbiased estimator and consistency of a sequence

of estimators are illustrated in some specific examples.

Exercise 2.3.1. Let Tn and T �
n be two independent unbiased and consistent

estimators of θ.

(a) Find and unbiased estimator of θ2;

(b) Find and unbiased estimator of θ(θ − 1);

(c) Are the estimator in parts (a) and (b) consistent?

Solution. (a) The independence and unbiasedness properties of Tn and T �
n

yield that, for each parameter θ,

Eθ[TnT
�
n] = Eθ[Tn]Eθ[T

�
n] = θ · θ = θ2

and then TnT
�
n is an unbiased estimator of θ2.

(b) Using that Eθ[TnT
�
n] = θ2 and Eθ[Tn] = θ, it follows that

Eθ[Tn(T
�
n − 1)] = Eθ[TnT

�
n − Tn] = θ2 − θ = θ(θ − 1),

that is, Tn(T
�
n − 1) is an unbiased estimator of θ(θ − 1).

(c) Since Tn and T �
n are consistent estimators of θ, combining the conver-

gences Tn
Pθ−→ θ and T �

n
Pθ−→ θ with the continuity theorem, it follows that
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TnT
�
n

Pθ−→ θ2 and Tn(T
�
n − 1)

Pθ−→ θ(θ − 1), so that the estimators in parts (a)

and (b) are consistent. ��

Exercise 2.3.2. Let X1, X2, X3 . . . , be independent and identically distribu-

ted random variables with distribution N (µ, µ) for some µ > 0. Find a

consistent unbiased estimator of µ2. [Hint: E[Xn] = µ and E[S2
n] = µ;

consider Tn = XnS
2
n.]

Solution. Recall that in the context of a normal model Xn and S2
n are inde-

pendent; since Eµ[Xn] = µ and Eµ[S
2
n] = µ (because in the present model

the population variance and mean coincide), it follows that Eµ[XnS
2
n] =

Eµ[Xn]Eµ[S
2
n] = µ2, and then Tn = XnS

2
n is an unbiased estimator of µ2.

Finally, using thatXn
Pµ−→µ and S2

n

Pµ−→µ, it follows that Tn
Pµ−→µ·µ = µ2, by

the continuity theorem, and then {Tn} is a consistent sequence of estimators

of µ2. ��

Exercise 2.3.3. Let X1, X2, . . . , Xn be a random sample of size n from the

density f(x; θ) = [(1− θ) + θ/(2
√
x)]I[0,1](x).

(a) Show that Xn is a biased estimator of θ and find its bias bXn
(θ) = bn(θ),

(b) Does limn→∞ bn(θ) = 0 for all θ?

(c) Is Xn consistent in mean square?

Solution. The mean of the density f(x; θ) is

µ(θ) =

�

IR

xf(x; θ) dx =

� 1

0

x[(1− θ) + θ/(2
√
x)] dx =

1− θ

2
+

θ

3
=

1

2
− θ

6
.

(a) Since Eθ[Xn] = µ(θ) �= θ, the sample mean Xn is a biased estimator of

θ, and bn(θ) = µ(θ)− θ = 1− 7θ/6

(b) Notice that bn(θ) = 1− 7θ/6 �= 0 for all θ ∈ [0, 1] does not depend on n,

so that limn→∞ bn(θ) = 1− 7θ/6, and then bn(θ) does not converge to zero

at any parameter value; in particular, considering Xn as an estimator of θ,

the sequence {Xn} is not asymptotically unbiased.

(c) The sequence {Xn} is not consistent in mean square; indeed Eθ[(Xn −
θ)2] ≥ b2n(θ), and then Eθ[(Xn − θ)2] does not converges to zero as n → ∞,

by part (b). ��
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Exercise 2.3.4. Let X1, X2, . . . , Xn be independent and identically distribu-

ted Poisson random variables with parameter λ > 0. Show that Tn =

Xn
2 − Xn is a biased estimator of λ2, find its bias bn(λ) and hence, find

an unbiased estimator of λ2. Does limn→∞ bn(λ) = 0 for all λ?

Solution. Recall that for a Poisson (λ) distribution the mean µ(λ) and the

variance σ(λ)2 are equal to λ. Thus, Eλ[Xn] = µ(λ) = λ and Eλ[X
2

n] =

Varλ[Xn] + (Eλ[Xn])
2 = σ(λ)2/n+ µ(λ)2 = λ/n+ λ2. Thus,

Eλ[Tn] = Eλ[Xn
2 −Xn] = (λ/n+ λ2)− λ.

Thus, as an estimator of λ2, Tn is a biased estimator, and its bias function,

which is given by bn(λ) = Eλ[Tn] − λ2 = λ/n − λ converges to λ �= 0 as

n goes to ∞. To find an unbiased estimator of λ2, recall that Eλ[Xn
2
] =

λ2 + λ/n, and combine this equality with Eλ[Xn/n] = λ/n to conclude that

Eλ[Xn
2 −Xn/n] = λ2, showing that Xn

2 −Xn/n is an unbiased estimator

of λ. ��

Exercise 2.3.5. Let X1, X2, . . . , Xn be independent random variables each

with the same ‘displaced Laplace density’

f(x; θ) =
1

2
e−|x−θ|, x ∈ IR,

where the parameter θ belongs to IR. If Y1 ≤ Y2 ≤ · · · ≤ Yn are the order

statistics, show that Tn = (Y1 + Yn)/2 is an unbiased estimator of θ. ��

Solution. The key fact to keep in mind is that the underlying density is

symmetric about θ, so that Xi− θ and θ−Xi have the same Laplace density

f(x) = (1/2)e−|x|. Using the independence of the variables Xi, it follows

that

(X1 − θ, X2 − θ, . . . , Xn − θ)
d
=(θ −X1, θ −X2, . . . , θ −Xn),

a relation that, after applying the minimum functions in both sides, leads to

min{Xi − θ, i = 1, 2, . . . , n} d
= min{θ −Xi, i = 1, 2, . . . , n}.

Notice now that

min{Xi − θ, i = 1, 2, . . . , n} = min{Xi, i = 1, 2, . . . , n}− θ = Y1 − θ
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whereas

min{θ −Xi, i = 1, 2, . . . , n} = θ +min{−Xi, i = 1, 2, . . . , n}
= θ −max{Xi, i = 1, 2, . . . , n}
= θ − Yn.

Combining the three last displays, it follows that

Y1 − θ
d
= θ − Yn,

and then both sides in this relation have the same expectation, that is,

E[Y1− θ] = E[θ−Yn]. Therefore, E[Y1+Yn] = 2θ, i.e., Eθ[(Y1+Yn)/2] = θ,

showing that Tn = (Y1 + Yn)/2 is an unbiased estimator of θ. ��

Exercise 2.3.6. Let X1, X2, . . . , Xn be independent random variables each

with density f(x; θ) = (1/θ)I[θ,2θ](x).

(a) Show that Y1, Yn are biased estimators of θ, and find their respective

biases. Do these biases converge to zero as n → ∞?

(b) Based on part (a), find unbiased estimators of θ based on Y1 alone, Yn

alone, and a linear combinations of Y1 and Yn.

(c) Two intuitive estimators of θ are Tn = Yn − Y1 and T �
n = (Yn + Y1)/3.

Show that Tn is biased but T �
n is unbiased.

Solution. (a) The expectations Eθ[Y1] and Eθ[Yn] are required to evaluate

the biases of Y1 and Yn as estimators of θ. To compute these quantities the

densities of Y1 and Yn will be determined. First, notice that the distribution

function F (x; θ) of the density f(x; θ) satisfies

F (x; θ) = (x− θ)/θ, x ∈ [θ, 2θ]

and, using the formula for the density of Y1, it follows that

fY1(y; θ) = nf(y; θ)(1− F (y; θ))n−1

=
n

θ
[1− (y − θ)/θ]n−1

=
n(2θ − y)n−1

θn
, θ ≤ y ≤ 2θ.
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Therefore,

Eθ[2θ − Y1] =

� 2θ

θ

(2θ − y)
n(2θ − y)n−1

θn
dy =

n

n+ 1
θ

and then

Eθ[Y1] = θ
n+ 2

n+ 1
, bY1 n(θ) = Eθ[Y1]− θ =

θ

n+ 1
(2.3.1)

Similarly, using the formula for the density of Yn

fYn
(y; θ) = nf(y; θ)(F (y; θ))n−1

=
n

θ
[(y − θ)/θ]n−1

=
n(y − θ)n−1

θn
, θ ≤ y ≤ 2θ,

so that

Eθ[Yn − θ] =

� 2θ

θ

(y − θ)
n(y − θn−1

θn
dy =

n

n+ 1
θ.

Consequently,

Eθ[Yn] = θ
2n+ 1

n+ 1
, bYn n(θ) = Eθ[Y1]− θ = θ

n

n+ 1
(2.3.2)

From (2.3.1) and (2.3.2) it follows that Y1 and Yn are biased estimators of

θ. Since limn→∞ bY1 n(θ) = limn→∞[θ/(n + 1)] = 0, Y1 is asymptotically

unbiased; on the other hand, limn→∞ bYn n(θ) = limn→∞[nθ/(n+1)] = θ, so

that Yn is not asymptotically unbiased.

(b) The first equations in (2.3.1) and (2.3.2) yield that the random variables

Ỹ1 = (n + 1)θ/n and Ỹn = [(n + 1)/(2n + 1)] are unbiased estimators of θ,

which are based on Y1 and Yn alone, respectively. On the other hand,

Eθ[Y1 + Yn] = θ
n+ 2

n+ 1
+ θ

2n+ 1

n+ 1
= 3θ

and then the linear combination (Y1 + Yn)/3 is an unbiased estimator of θ.

(c) The numbered relations in part (a) yield that

Eθ[Tn] = Eθ[Yn − Y1] = θ
2n+ 1

n+ 1
− θ

n+ 2

n+ 1
= θ

n− 1

n+ 1
�= θ,
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and

Eθ[T
�
n] = Eθ[(Yn + Y1)/3] =

1

3
· θ2n+ 1

n+ 1
+

1

3
· θn+ 2

n+ 1
= θ

3n+ 3

3(n+ 1)
= θ;

thus, as estimators of θ, Tn is biased, whereas T �
n is unbiased. ��

2.4. Additional Examples

This section contains additional examples concerning basic computations and

the basic concepts introduced in this chapter.

Exercise 2.4.1. (a) Let X have density f(x; θ) = [2/(1 − θ)2](x − θ)I(θ,1),

where θ ∈ [0, 1). Show that Eθ[X − θ] = 2(1 − θ)/3, and hence find an

unbiased estimator of θ based on a sample of size 1.

(b) If X1, X2, . . . , Xn is a random sample of size n from the density in part

(a), find a function of Xn that is unbiased for θ, and also find the bias of

Xn.

(c) Let Y1 ≤ Y2 ≤ · · · ≤ Yn be the order statistics of the sample in part (b).

Find Eθ[Y1].

Solution. (a) Notice that

Eθ[X − θ] =

�

IR

(x− θ)f(x; θ) dx = [2/(1− θ)2]

� 1

θ

(x− θ)2 dx =
2

3
(1− θ);

hence, the mean of the density f(x; θ) is

µ(θ) = Eθ[X] =
2

3
+

θ

3
.

and Eθ[3X − 2] = θ, that is , T = 3X1 − 2 is an unbiased estimator of θ

based on a sample of size 1.

(b) Because the expectation of the sample average equals the population

mean, part (a) yields that Eθ[Xn] = (2 + θ)/3, that is, Eθ[3Xn − 2] = θ, so

that Tn = 3Xn − 2 is a function of Xn and is an unbiased estimator of θ.

The bias of Xn as an estimator of θ is bXn
(θ) = Eθ[Xn]− θ = 2(1− θ)/3.

(c) To evaluate Eθ[Y1] it is necessary to determine the density of Y1. Observe

that the distribution function of the density f(x; θ) satisfies

F (x; θ) =
(x− θ)2

(1− θ)2
, θ ≤ x ≤ 1.
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An application of the formula for the density of Y1 yields that

fY1(y; θ) = nf(y; θ)[1− F (y; θ)]n−1

= n
2(y − θ)

(1− θ)2

�
1− (y − θ)2

(1− θ)2

�n−1

, θ ≤ y ≤ 1,

an expression the leads to

Eθ[Y1 − θ] =

� 1

θ

(y − θ) · n2(y − θ)

(1− θ)2

�
1− (y − θ)2

(1− θ)2

�n−1

dy.

Changing the variable in the integral to z = (y − θ)/(1 − θ), and observing

that dy = (1 − θ)dz and that z = 0 when y = θ and z = 1 when y = 1, it

follows that

Eθ[Y1 − θ] = 2n(1− θ)

� 1

0

z2
�
1− z2

�n−1
dz.

To obtain an explicit formula, chage the variable in this last integral by

setting w = z2 to obtain, using that z = w1/2 and dz = (1/2)w−1/2, that

Eθ[Y1 − θ] = n(1− θ)

� 1

0

w3/2−1(1− w)n−1 dw.

Recall now that
� 1

0
xα−1(1− x)β−1 = Γ(α)Γ(β)/Γ(α+ β), and combine this

expression with the previous display to obtain

Eθ[Y1 − θ] =
n(1− θ)Γ(3/2)Γ(n)

Γ(n+ 3/2)
. (2.4.1)

The right-hand side can be simplified by observing that

Γ(3/2) = (1/2)Γ(1/2) =
√
π/2

Γ(n) = (n− 1)!

Γ(n+ 3/2) = (n+ 1/2)Γ(n+ 1/2)

= (n+ 1/2)(n− 1/2)Γ(n− 1/2)

...

= (n+ 1/2)(n− 1/2) · · · (1/2)Γ(1/2)

=

�
2n+ 1

2

��
2n− 1

2

�
· · ·

�
1

2

�√
π

=
(2n+ 1)(2n− 1) · · · 1

2n
√
π

=
(2n+ 1)(2n)(2n− 1)(2n− 2) · · · 2 · 1

2n(2n)(2n− 2) · · · 2
√
π

=
(2n+ 1)!

22nn!

√
π.
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Combining these expressions with (2.4.1) it follows that

Eθ[Y1 − θ] =
n(1− θ)[

√
π/2](n− 1)!

[(2n+ 1)!/22nn!]
√
π

=
1− θ

2(2n+ 1)
· 1

[(2n)!/22n(n!)2]

=
1− θ

2(2n+ 1)
· 22n�

2n

n

� .

Thus,

Eθ[Y1] = θ +
1− θ

2(2n+ 1)
· 22n�

2n

n

� ,

concluding the argument. ��

Exercise 2.4.2. Let T1n and T2n be independent unbiased estimators of θ,

with Varθ [T1] = σ2
1n and Varθ [T2] = σ2

2n. For each α ∈ IR show that

T3n = αT1n + (1 − α)T2n is an unbiased estimator of θ and find the value

of α for which Varθ [T3n] is minimum.

Solution. Just notice that Eθ[T3n] = αEθ[T1n] + (1 − α)Eθ[T2n] = αθ +

(1− α)θ = θ, so that T3n is an unbiased estimator of θ. On the other hand,

using the independence of T1n and T2n, the variance of T3n is given by

Varθ [T3n] = Varθ [αT1n + (1− α)T2n] = α2Varθ [T1n]+(1−α)2Varθ [T2n] =

α2σ2
1n+(1−α)2σ2

2n; the value of α that minimizes this variance is the solution

of 2ασ2
1n − 2(1− α)σ2

2n = 0, that is,

α∗ =
σ2
2n

σ2
1n + σ2

2n

and 1− α∗ =
σ2
1n

σ2
1n + σ2

2n

.

Notice that when α = α∗, the statistic that receives the largest weight is the

one with smaller variance. ��

Exercise 2.4.3. Let X1, X2, . . . , Xn be independent random variables each

one with distribution Gamma (α,λ), which has density

f(x;α,λ) =
λα

Γ(α)
xα−1e−λxI(0,∞)(x),
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where α and λ are positive. Suppose that α is known, and define

β ≡ β(λ) = 1/λ, and Tn = Xn/α.

(a) Show that Tn is an unbiased estimator of β which is consistent in mean

square.

(b) Show that (X2
1 +X2

2 + · · ·+X2
n)/[nα(α+ 1)] is unbiased and consistent

as estimator of β2.

Solution. To begin with, recall that the first and second moments of the

Gamma (α,λ) distribution are given by

Eλ[X1] =
α

λ
= αβ, and Eλ[X

2
1 ] =

α(α+ 1)

λ2
= α(α+ 1)β2, (2.4.2)

relations that yield

Varλ[X1] =
α

λ2
= αβ2. (2.4.3)

(a) The first equation in (2.4.2) yields that Eλ[Xn] = αβ, and then Eλ[Tn] =

Eλ[Xn/α] = β, that is, Tn is an unbiased estimator of β. On the other hand,

from (2.4.3) it follows that Varλ[Xn] = Varλ[X1]/n = αβ2/n, and then

Eλ[(Tn − β)2] = Varλ[Tn] = Varλ[Xn/α] =
1

α2
Varλ[Xn] =

β2

nα
→ 0,

so that Tn is consistent in mean square as estimator of β.

(b) The second equality in (2.4.2) and the law of large numbers together

yield that

Eλ

�
X2

1 +X2
2 + · · ·+X2

n

n

�
= α(α+ 1)β2,

X2
1 +X2

2 + · · ·+X2
n

n

Pλ−→ α(α+ 1)β2

and then

Eλ

�
X2

1 +X2
2 + · · ·+X2

n

nα(α+ 1)

�
= β2, and

X2
1 +X2

2 + · · ·+X2
n

nα(α+ 1)

Pλ−→ β2

showing that (X2
1 +X2

2 + · · ·+X2
n)/[nα(α+ 1)] is an unbiased estimator of

β2, and that the sequence {(X2
1 +X2

2 + · · ·+X2
n)/[nα(α+1)]} estimates β2

consistently. ��
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Exercise 2.4.4. Let X1, X2, . . . , Xn be independent random variables each

with density N (µ, 1). Find an unbiased estimator of µ2 that is a function of

Xn.

Solution. Notice that Eµ[X
2

n] = Varµ[Xn] + Eµ[Xn]
2 = 1/n + µ2, so that

Eµ[X
2

n−1/n] = µ2, that is, Tn = X
2

n−1/n is an unbiased estimator of µ2.��

Exercise 2.4.5. Let X1, X2, . . . , Xn be independent random variables with

Exponential (λ) distribution, which has density

f(x;λ) = λe−λxI(0,∞)(x),

where λ > 0. Note that Eλ[Xi] = 1/λ.

(a) An intuitive estimator for λ is 1/Xn. Show that this estimator is biased,

and compute the bias b1/Xn
(λ).

(b) Based on part (a), find an unbiased estimator of λ.

Solution. Let n be a fixed positive integer and notice that

Y : = X1 + · · ·+Xn ∼ Gamma (n,λ) ,

so that

Eλ[1/Y ] =

� ∞

0

1

y

λn

Γ(n)
yn−1e−λy dy

=
λn

Γ(n)

� ∞

0

yn−2e−λy dy

=
λn

Γ(n)
· Γ(n− 1)

λn−1
=

λ

n− 1

Hence,

Eλ[1/Xn] = Eλ[n/Y ] =
nλ

n− 1
= λ+

λ

n− 1
; (2.4.4)

this relation shows that 1/Xn is a biased estimator of λ, with bias b1/Xn
(λ) =

λ/(n− 1).

(b) Equality (2.4.4) yields that Eλ[(n− 1)/(nXn)] = λ, so that

Tn = (n− 1)/(X1 +X2 + · · ·+Xn)

is an unbiased estimator of λ. ��
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Exercise 2.4.6. Let X1, X2, . . . , Xn be independent and identically distribu-

ted with mean µ and variance σ2. Show that S2
n and Xn are unbiased and

consistent estimators of σ2 and µ, respectively.

Solution. Using that E[Xi] = µ for all i, the linearity of the expectation

yield that

E[Xn] = E

�
X1 +X2 + · · ·Xn

n

�

=
E[X1] + E[X2] + · · ·+ E[Xn]

n
=

nµ

n
= µ;

thus, Xn is an unbiased estimator of µ whereas, by the law of large numbers,

Xn
P−→µ, so that the sequence {Xn} estimates consistently the population

mean µ.

Next, recall that

E(X2
i ] = Var [Xi] + E[Xi]

2 = σ2 + µ2;

also, it is known that Var
�
Xn

�
= σ2/n, and then

E(X
2

n] = Var
�
Xn

�
+ E[Xn]

2 =
σ2

n
+ µ2;

Combining the two last displays with

n�

i=1

(Xi −Xn)
2 =

n�

i=1

X2
i − nX

2

n,

it follows that

E

�
n�

i=1

(Xi −Xn)
2

�
=

n�

i=1

E[X2
i ]− nE[X

2

n]

=
n�

i=1

(σ2 + µ2)− n

�
σ2

n
+ µ2

�

= nσ2 + nµ2(σ2 + nµ2)

= (n− 1)σ2.

Hence,

E

��n
i=1(Xi −Xn)

2

n− 1

�
= σ2,
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so that S2
n =

�n
i=1(Xi − Xn)

2/(n − 1) is an unbiased estimator of σ2. To

conclude, the consistency of the sequence {S2
n} will be shown. To achieve

this goal, first observe that

S2
n =

1

n− 1

n�

i=1

(Xi −Xn)
2

=
1

n− 1

�
n�

i=1

X2
i − nX

2

n

�

=

�
n

n− 1

��
1

n

n�

i=1

X2
i −X

2

n

�
;

(2.4.5)

next, use the law of large numbers applied to the variables {X2
i } to obtain

that
1

n

n�

i=1

X2
i

P−→E[X2
1 ] = σ2 + µ2;

now, combine the consistency of the sequence {Xn} with the continuity

theorem to obtain that

X
2

n
P−→µ2;

Using again the continuity theorem, the two last displays lead to

1

n

n�

i=1

X2
i −X

2

n
P−→ [σ2 + µ2]− µ2 = σ2,

and then since n/(n− 1) → 1, (2.4.5) yields that S2
n → σ2, establishing the

consistency of the sequence {S2
n}. ��

Exercise 2.4.7. Let X1, X2, . . . , Xn be a random sample from the triangular

density

f(x; a, b) =





x− a

c
, if a ≤ x ≤ (a+ b)/2,

b− x

c
, if (a+ b)/2 ≤ x ≤ b,

0 otherwise,

where a and b are arbitrary real numbers satisfying a < b, and c = c(a, b) =

(b − a)2/4. Show that Xn is an unbiased estimator of E(X1) (the parental

mean), and that Var
�
Xn

�
= (b− a)2/(24n).
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Solution. The specification of f(x; a, b) (or a sketch of its graph) makes it

evident that, as a function of x, f(·; a, b) is symmetric about (a+ b)/2; this

property can be verified analytically as follows:

If w ∈ [0, (b− a)/2], then (a+ b)/2 + w ∈ [(a+ b)/2, b] and

f((a+ b)/2 + w; a, b) =
b− [w + (a+ b)/2]

c
=

(b− a)/2− w

c
.

Similarly, when w ∈ [0, (b− a)/2], the inclusion (a+ b)/2−w ∈ [a, (a+ b)/2]

holds, so that

f((a+ b)/2− w; a, b) =
[(a+ b)/2− w]− a

c
=

(b− a)/2− w

c
.

These two last displays yield that

f((a+ b)/2 + w; a, b) =
(b− a)/2− |w|

c
I−(b−a)2, (b−a)/2)(w), (2.4.6)

showing explicitly that f(·; a, b) is symmetric about (a+ b)/2. Consequently,

the mean of the density is (a+ b)/2, that is

µ ≡ µ(a, b) =

�

IR

xf(x; a, b) dx = (a+ b)/2,

and the variance of the density is

σ2 ≡ σ2(a, b) =

�

IR

(x− (a+ b)/2)2f(x; a, b) dx

=

� b

a

(x− (a+ b)/2)2f(x; a, b) dx

=

� (b−a)/2

−(b−a)/2

w2f(w + (a+ b)/2; a, b) dw

where the change of variable w = x− (a+ b)/2 was used to obtain the third

equality. Using (2.4.6), it follows that

σ2 =

� (b−a)/2

−(b−a)/2

w2 (b− a)/2− |w|
c

dx

= 2

� (b−a)/2

0

w2 (b− a)/2− w

c
dx

=
2

c

�
[(b− a)/2]4

3
− [(b− a)/2]4

4

�

=
[(b− a)/2]4

6c
=

(b− a)4

96c
=

(b− a)2

24
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Concerning the consistency of the sequences {Xn} and {S2
n} as estimators of

µ and σ2, recall that they are always consistent, as it was shown in Exercise

2.4.6. ��

Exercise 2.4.8. In Exercise 2.4.2, suppose that Corr (T1n, T2n) = ρ. Find

the value of α for which Var [T3n] is minimized.

Solution. Recall that T3n = αT1n + (1− α)T2n, so that

Var [T3n] = Var [αT1n + (1− α)T2n]

= α2Var [T1n] + (1− α)2Var [T2n] + 2α(1− α)Cov (T1n, T2n)

= α2σ2
1 + (1− α)2σ2

2 + 2α(1− α)σ1σ2ρ

Taking the derivative with respect to α, it follows that the value of α that

minimizes this expression is the solution α∗ of the following equation:

2ασ2
1 − 2(1− α)σ2

2 + 2(1− 2α)ρσ1σ2 = 0,

and then α∗ =
σ2
2

σ2
1 + σ2

2 − 2ρσ1σ2
. ��



Chapter 3

Maximum Likelihood

This chapter concerns a fundamental technique to construct estimators,

namely, the method of maximum likelihood, which generates estimators with

good asymptotic properties, as asymptotic normality.

3.1. Maximum Likelihood Estimation

In this section a fundamental procedure to obtain an estimator of a paramet-

ric function will be presented. The method is based on an intuitive principle

that can be roughly described as follows: After observing the value attained

by the random observation, say X = x, the estimate of the unknown param-

eter θ is the value θ̂ in the parameter space that assigns highest probability

to the observed data. In other words, under the condition that θ̂ is the true

parameter value, the occurrence of the observed event [X = x] is more likely

than under the condition that the true parameter is different form θ̂. To

establish this idea on firm grounds, it is necessary to define a measure of the

likelihood of an observation X = x under the different parameter values. To

achieve this goal, consider a statistical model

X ∼ Pθ, θ ∈ Θ,

and, to begin with, suppose that X is a discrete vector. In this case, let

28
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fX(x; θ) = Pθ[X = x] be the probability function of X under the condition

that θ is the true parameter value. As a function of θ ∈ Θ, the value f(x; θ)

indicates the probability of observing X = x if the true distribution of X is

Pθ, and then is a measure of the ‘likelihood’ of the observation x under the

condition that θ ∈ Θ is the true parameter. Thus, the likelihood function

corresponding to the data X = x is defined by

L(θ;x) = fX(x; θ), θ ∈ Θ (3.1.1)

When X is continuous it has a density fX(x; θ) depending on θ, and the

likelihood function associated with the observation X = x is also defined by

(3.1.1); notice that in this case, f(x; θ is not a probability. However, suppose

that the measurement instrument used to determine the observation has a

certain precision h, where h is ‘small’, so that when X = x is reported, the

practical meaning is that the vector X belongs to a ball B(x;h) with center

x and radius h; , when θ is the true parameter value, the probability of such

an event is �

y∈B(x;h)

fX(y; θ) dy

and, if the density fX( ·; θ)) is continuous, the above integral is approximately

equal to

Volume of B(x;h)f(x; θ) = Volume of B(x;h)L(θ;x);

it follows that the likelihood function is (approximately) proportional to the

probability of observing X = x; moreover, the proportionality constant does

not depend on θ, and then when the maximizer of the function L(·;X) is

determined, such a point also maximizes the approximate probability of the

event [X ∈ B(x, h)].

The maximum likelihood estimator of θ, hereafter denoted by θ̂ ≡ θ̂(X),

is (any) maximizer of the likelihood function L(θ;X) as a function of θ, that

is, θ̂(X) satisfies

L(θ̂;X) ≥ L(θ;X), θ ∈ Θ. (3.1.2)

This maximum likelihood method to construct estimators of θ plays a central

role in Statistics, and there are, at least, two reasons for its importance:

(i) The method is intuitively appealing, and (ii) The procedure generates

estimators that, in general, have nice behavior. For instance, as the sample
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size increases, the sequence of maximum likelihood is generally consistent,

and the estimators are asymptotically unbiased. Moreover, (iii) As it will

be seen later, the asymptotic variance of maximum likelihood estimators is

minimal.

On the other hand, frequently what is desired is to estimate the value

of a parametric function g(θ) at the true parameter value. In this context,

it is necessary to decide what value ĝ is ‘more likely’ when X = x has been

observed. To determine such a value, consider the likelihood function L(·;x)
of the data and define, for each possible value g̃ of the function g(θ), the

reduced likelihood corresponding the value g̃ of g(θ) by

Lg̃(X): = max
θ: g(θ)=g̃

L(θ;X), (3.1.3)

so that Lg̃(X) is the largest likelihood that can be achieved among the pa-

rameters θ that produce the value g̃ for g(θ). The maximum likelihood

method prescribes to estimate g(θ) by the value ĝ that maximizes Lg̃(X) as

a function of g̃:

Lĝ(X) ≥ Lg̃(X), g̃ an arbitray value of g(θ).

The maximizing value can be determined easily. Set

ĝ = g(θ̂) (3.1.4)

and notice that (3.1.2) and (3.1.3) imply that, for each possible value g̃ of

g(θ),

L(θ̂;X) ≥ max
θ: g(θ)=g̃

L(θ;X) = Lg̃(X)

and

L(θ̂;X) = max
θ: g(θ)=ĝ

L(θ;X) = Lĝ(X)

It follows that Lĝ(X) ≥ Lg̃(X), and then the reduced likelihood is maximized

by ĝ in (3.1.4). In short, the maximum likelihood estimator of a parametric

function g(θ) is ĝ = g(θ̂), the value that is obtained by evaluating the func-

tion g ate the maximum likelihood estimator of θ. This result is called the

invariance principle (or property) of the maximum likelihood estimation pro-

cedure. Before concluding this presentation, it is useful to note that, when
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the observation vector X is a sample (X1, X2, . . . , Xn) of size n from a pop-

ulation with probability function or density f(x; θ), the likelihood function

is given by

L(θ;X) =
n�

i=1

f(Xi; θ);

since the logarithmic function is strictly increasing, maximizing this product

is equivalent to maximizing its logarithm, which is given by

L(θ;X) =
n�

i=1

log(f(Xi; θ)).

In any case, whether L(·;X) or L(θ;X) is being maximized, the problem

of obtaining its maximizer is an interesting one. As it should be expected,

the differentiation technique is of central importance in the analysis of this

optimization problem, In particular, if the likelihood function is ‘smooth’ as

a function of θ and the maximizer belongs to the interior of the parameter

space, the following likelihood equation is satisfied:

DθL(θ;X) = 0, (3.1.5)

where Dθ is the gradient operator, whose components are the partial deriva-

tives with respect to each element of the parameter θ; thus, when θ is a vector,

(3.1.5) represent a system of equations satisfied by θ̂. On the other hand,

when θ̂ belongs to the boundary of the parameter space, the requirement

(3.1.5) is no longer necessarily satisfied by the optimizer θ̂. The following

examples illustrate the application of the maximum likelihood method for

the construction of estimators in models that frequently appear in statistics,

and show that the application of the technique leads to interesting problems,

even for familiar models as the normal one.

3.2. The Method in Specific Cases

This section contains examples illustrating the application of the method of

maximum likelihood to construct estimators.

Exercise 3.2.1. Let X1, X2, . . . , Xn be a random sample from the uniform

density in (0, θ), that is, f(x; θ) = (1/θ)I(0,θ](x), where θ ∈ Θ = (0,∞).
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Find the maximum likelihood estimator of θ, say Tn, and show that {Tn} is

a consistent sequence of estimators.

Solution. The likelihood function is given by

L(θ;X) =

n�

i=1

(1/θ)I(0,θ)(Xi) =

�
1/θn, if 0 < Xi ≤ θ for i = 1, 2, . . . , n
0, otherwise.

From this expression it follows that L(θ;X) is maximized by the smallest

number θ which satisfies Xi ≤ θ for every i, and such a number is θ̂n =

max{X1, . . . , Xn} = X(n), the largest order statistic of the sample. The

sequence {θ̂n} is consistent; indeed, given θ ∈ (0,∞) and ε ∈ (0, θ),

Pθ[|θ̂n − θ| > ε] = Pθ[θ̂n > θ + ε] + Pθ[θ̂n < θ − ε]

= Pθ[θ̂n < θ − ε]

= Pθ[X1 ≤ θ − ε, X2 ≤ θ − ε, . . . , Xn ≤ θ − ε]

= (1− ε/θ)n

where, to establish the second equality it was used that, when θ is the param-

eter value, the inequality θ̂n ≤ θ always holds, and the last step is due to the

fact that Pθ[Xi ≤ θ−ε] = 1−ε/θ for all i. It follows that Pθ[|θ̂n−θ| > ε] → 0

as n → ∞, that is, θ̂n
Pθ−→ θ, establishing the consistency of {θ̂n}. ��

.

Exercise 3.2.2. Let X1, X2, . . . , Xn be a random sample from the N
�
θ, θ2

�

distribution, where θ ∈ (0,∞). Find the maximum likelihood estimator of

θ. Is the sequence {θ̂n} consistent?

Solution. The likelihood function is given by

L(θ;X) =
n�

i=1

(1/
√
2πθ)e−(Xi−θ)2/[2θ2]

and it logarithm is given by

L(θ;X) = −n

2
log(2π)− n log(θ)− 1

2

n�

i=1

�
Xi − θ

θ

�2
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Hence

∂θL(θ;X) = −n

θ
+

n�

i=1

Xi(Xi − θ)

θ3

= − n

θ3
[θ2 +m1θ −m2]

where mi is the ith sample moment about 0, i = 1, 2. From this expression,

direct calculations show that the equation ∂θL(θ;X) = 0 is equivalent to

θ2 +m1θ −m2 = 0, The unique positive solution of this likelihood equation

is

θ∗ =

�
m2

1 + 4m2 −m1

2
=

4m2

2[
�
m2

1 + 4m2 +m1]
.

Since ∂θL(θ;X) → −∞ as θ → ∞, and ∂θL(θ;X) → +∞ as θ → 0, it follows

that θ∗ is the unique maximizer of the likelihood function, that is,

θ̂n =
4m2

2[
�

m2
1 + 4m2 +m1]

=
4
�n

i=1 X
2
i /n

2[
�

(
�n

i=1 Xi/n))2 + 4
�n

i=1 X
2
i /n+

�n
i=1 Xi/n]

To analyze the consistency of {θ̂n}, recall that the law of large numbers

implies that

n�

i=1

X2
i /n

Pθ−→Eθ[X
2
1 ] = Varθ [X1] + (Eθ[X1])

2 = θ2 + θ2 = 2θ2

and
n�

i=1

Xi/n
Pθ−→Eθ[X1] = θ.

Combining these convergences with the continuity theorem it follows that

θ̂n
Pθ−→ 4(2θ2)

2[
�

(θ)2 + 4(2θ2) + θ]
=

8θ2

2[
√
9θ2 + θ]

= θ

establishing the consistency of {θ̂n}. ��

Exercise 3.2.3. Let X1, X2, . . . , Xn be a random sample of size m from a

N
�
µ,σ2

�
distribution, and let Y1, Y2, . . . , Yn be a random sample of size n
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from a N
�
ν,σ2

�
distribution, where the two samples are independent. Find

the maximum likelihood estimator of the overlapping coefficient

Δ(θ) ≡ Δ = 2Φ

�
− |ν − µ|

σ

�
, θ = (µ, ν,σ2) ∈ IR× IR× (0,∞) = Θ.

Show that, as min{n,m} → ∞, the sequence of maximum likelihood estima-

tors {Δ̂mn} is consistent for Δ. Also find the maximum likelihood estimator

of θ = (µ, ν,σ2).

Solution. The likelihood function is given by

L(θ;X,Y) =
n�

i=1

(1/
√
2πσ)e−(Xi−µ)2/[2σ2]

m�

j=1

(1/
√
2πσ)e−(Yj−ν)2/[2σ2]

and it logarithm is given by

L(θ;X) = C − (n+m) log(σ)− 1

2

n�

i=1

(Xi − µ)2

σ2
− 1

2

m�

j=1

(Yj − ν)2

σ2
,

where the term C does not involve the parameters. The critical points of

L(·;X,Y) satisfy

∂µL(θ;X,Y) =
n�

i=1

(Xi − µ)

σ2
= 0

∂νL(θ;X,Y) =
m�

j=1

(Yj − ν)

σ2
= 0

∂σL(θ;X,Y) = −n+m

σ
+

n�

i=1

(Xi − µ)2

σ3
+

m�

j=1

(Yj − ν)2

σ3
= 0

Direct calculations yield that the unique solution (µ∗, ν∗,σ∗) of this system

is given by

µ∗ = Xn =
1

n

n�

i=1

Xi

ν∗ = Y m =
1

m

m�

j=1

Yj

σ2
∗ =

1

n+m




n�

i=1

(Xi −Xn)
2 +

m�

j=1

(Yj − Y m)2




=
n

n+m
S̃2
nX +

m

n+m
S̃2
mY
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where S̃2
nX =

�n
i=1(Xi −Xn)

2/n and S̃2
mY =

�m
j=1(Yj − Y m)2/m are the

maximum likelihood estimators of σ2 based only on X and Y, respectively.

Since L(θ;X,Y) → −∞ when |µ| + |ν| → ∞ or σ → 0, it follows that the

above point (µ∗, ν∗,σ2
∗) is the maximizer of L(·;X,Y), that is,

θ̂nm = (µ̂nm, ν̂nm, σ̂2
nm) =

�
Xn, Y m,

n

n+m
S̃2
nX +

m

n+m
S̃2
mY

�

When min{n,m} → ∞, it was shown in Exercise 2.4.6 that the law of large

numbers implies that

Xn
Pθ−→µ, Y m

Pθ−→ ν, S̃2
n

Pθ−→σ2, and S̃2
m

Pθ−→σ2

and then, since σ̂2
nm is a convex combination of S̃2

n and S̃2
m,

σ̂2
nm

Pθ−→σ2.

Hence, the sequence {θ̂nm} is consistent when min{m,n} goes to ∞. Since

the overlapping coefficient Δ = Δ(θ) is a continuous function of θ, it follows

form the above displays and the continuity theorem, that as min{n,m} → ∞,

Δ̂nm = Δ(θ̂nm)

= 2Φ

�
− |Xn − Y n|

σ̂nm

�
Pθ−→ 2Φ

�
− |µ− ν|

σ

�
= Δ(θ) = Δ,

establishing that {Δ̂nm} is a consistent sequence as n and m increase. ��

Exercise 3.2.4. Let X1, X2, . . . , Xn be a random sample of size n from the

gamma density f(x;α,λ) = λαxα−1e−λx/Γ(α)I(0,∞)(x), where θ = (α,λ) ∈
Θ = (0,∞)× (0,∞). Use the approximation

Γ�(α)
Γ(α)

≈ log(α)− 1

2α
(3.2.1)

to find an approximate formula for the maximum likelihood estimator θ̂n =

(α̂n, λ̂n).

Solution. Under the condition Xi > 0 for all i (which in the present context

always holds with probability 1), the likelihood function is

L(θ;X) =
n�

i=1

(λα/Γ(α))Xα−1
i e−λXi , θ = (α,λ) ∈ (0,∞)× (0,∞).
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and it logarithm is given by

L(θ;X) = nα log(λ)− n log(Γ(α)) + (α− 1)

n�

i=1

log(Xi)− λ

n�

i=1

Xi

Thus, a critical point of L(·;X) satisfies

∂αL(θ;X) = n log(λ)− n
Γ�(α)
Γ(α)

+

n�

i=1

log(Xi) = 0,

∂λL(θ;X) = n
α

λ
−

n�

i=1

Xi = 0.

(3.2.2)

The second equation yields that

α

λ
= Xn. (3.2.3)

Combining the first equation in (3.2.2) with (3.2.1) it follows that

n log(λ)− n

�
log(α)− 1

2α

�
+

n�

i=1

log(Xi) ≈ 0,

that is,

− log
�α
λ

�
+

1

2α
+

1

n

n�

i=1

log(Xi) ≈ 0,

a relation that via (3.2.3) leads to

− log
�
Xn

�
− 1

2α
+

1

n

n�

i=1

log(Xi) ≈ 0,

and then

α̂n ≈ 1

2
��n

i=1 log(Xi)/n− log
�
Xn

�� .

Combining this expression and (3.2.3) it follows that

λ̂n ≈ 1

2Xn

��n
i=1 log(Xi)/n− log

�
Xn

�� ,

concluding the argument. ��

In the following section an the maximum likelihood method is applied

to a ‘non-smooth’ model.
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3.3. Estimation of the Mean of a Laplace Distribution

Maximizing the likelihood function can be a challenging task when it is not

smooth. In this section a statistical model based on the Laplace density

is studied to illustrate the application of the method, when the likelihood

function does not hace a derivative at some points.

Exercise 3.3.1. Let X1, X2, . . . , Xn be a random sample of size n from the

(Laplace) double exponential density with center θ ∈ IR ≡ Θ, which is given

by

f(x; θ) =
1

2
e−|x−θ|.

Find the maximum likelihood estimator of θ.

Solution. The likelihood function is

L(θ;X) = 2−n
n�

i=1

e−|Xi−θ|.

and it logarithm is given by

L(θ;X) = −n log(2)−
n�

i=1

|Xi − θ|.

The main difficulty in this problem is that the absolute value function is

not differentiable at every point. Indeed, the mapping θ �→ |x − θ| is not

differentiable at θ = x, whereas

d

dθ
|x− θ| = −sign(x− θ), θ �= x.

where sign(a) = 1 if a > 0 and sign(a) = −1 for a < 0. Notice now that

L(θ;X) is a continuous function of θ and observe the following facts:

(i) When θ ≤ min{Xi, i = 1, 2, . . . , n} = X(1), the relations |Xi− θ| = Xi− θ

hold for every i, and in this case L(θ;X) = −�n
i=1[Xi − θ] = nθ−�n

i=1 Xi;

consequently,

lim
θ→−∞

L(θ;X) = −∞.

(ii) For θ ≥ max{Xi, i = 1, 2, . . . , n} = X(n), the equalities |Xi − θ| = θ−Xi

are always valid, so that L(θ;X) = −�n
i=1[Xi − θ] = −nθ+

�n
i=1 Xi; thus,

lim
θ→∞

L(θ;X) = −∞.
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These properties (i) and (ii) together with the continuity of L(θ;X) with

respect to θ yield that, given X, L(θ;X) attains its maximum at some point

θ̂n ∈ IR. To determine such a point, it is convenient to write

L(θ;X) = −n log(2)−
n�

i=1

|X(i) − θ|

where X(1) ≤ X(2) ≤ · · · ≤ X(n) are the order statistics of the sample

X1, . . . , Xn; this expression for the log-likelihood function is equivalent to

the original one, because the vector of order statistics is just a permutation

of the original data. Now, let θ �= X(1), X(2), . . . , X(n) and notice that

∂θL(θ;X) =

n�

i=1

sign(X(i) − θ)

= #{i |X(i) > θ}−#{j |X(j) < θ}

where #A stands for the number of elements of the set A. Hence,

θ < X(1) ⇒ ∂θL(θ;X) = n

X(1) < θ < X(2) ⇒ ∂θL(θ;X) = n− 2

X(2) < θ < X(3) ⇒ ∂θL(θ;X) = n− 4

X(3) < θ < X(4) ⇒ ∂θL(θ;X) = n− 6

...

X(k) < θ < X(k+1) ⇒ ∂θL(θ;X) = n− 2k

X(k+1) < θ < X(k+2) ⇒ ∂θL(θ;X) = n− 2(k + 1)

...

X(n−3) < θ < X(n−2) ⇒ ∂θL(θ;X) = 6− n

X(n−2) < θ < X(n−1) ⇒ ∂θL(θ;X) = 4− n

X(n−1) < θ < X(n) ⇒ ∂θL(θ;X) = 2− n

X(n) < θ ⇒ ∂θL(θ;X) = −n

(3.3.1)

Suppose that n ≥ 2 and let k∗ be the largest positive integer such that

n ≥ 2k∗, that is, k∗ satisfies

n ≥ 2k∗ and n− 2(k∗ + 1) < 0. (3.3.2)

With this notation, (3.3.1) shows that
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(a) ∂θL(θ;X) ≥ 0 when θ ∈ (−∞, X(1)) ∪ (X(1), X(2)) ∪ · · · (X(k∗), X(k∗+1)),

and then the continuity of L(θ;X) implies that L(θ;X) is an increasing

function of θ in the interval (−∞, X(k∗+1)], so that

L(θ;X) ≤ L(X(k∗+1);X), θ ∈ (−∞, X(k∗+1)].

(b) ∂θL(θ;X) < 0 when

θ ∈ (X(k∗+1), X(k∗+2)) ∪ · · · ∪ (X(n−1), X(n)) ∪ (X(n),∞),

and then, by continuity of L(θ;X), the mapping θ �→ L(θ;X) is decreasing

in θ ∈ [X(k∗+1),∞). Thus,

L(θ;X) ≤ L(X(k∗+1);X), θ ∈ [X(k∗+1),∞).

The two last displays together yield that θ �→ L(θ;X) attains its maximum

at

θ̂n = X(k∗+1). (3.3.3)

If the sample size n is odd, say n = 2r + 1, then k∗ in (3.3.2) equals r, and

X(k∗+1) = X(r+1) is the sample median,

θ̂n = median(X1, . . . , Xn) = median(X)

On the other hand, if the sample size n is even, n = 2r, then k∗ in (3.3.2)

equals r, and ∂θL(θ;X) is zero in the interval (X(r), X(r+1), and then L(θ;X)

is constant on the interval θ ∈ [X(r), X(r+1], and it follows that every point

in that interval is a maximizer of L(θ;X). Notice that when n = 2r is

an even integer, every point in [X(r), X(r+1] is a median of the data, and

the above expression for θ̂n remains valid. Summarizing: the maximum

likelihood estimator of θ is any sample median, and if the sample size n is

even, θ̂n is not unique. ��

3.4. The Poisson and Normal Distributions

In this section additional examples about the application of the maximum

likelihood method are presented for models involving common distributions.
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Exercise 3.4.1. Let X1, X2, . . . , Xn be a random sample of size n from the

Poisson (λ) distribution, where λ ∈ [0,∞). Find the maximum likelihood

estimator of p(0) + p(1).

Solution. The interesting function must be expressed in terms of the param-

eter λ. Notice that

p(0) + p(1) = Pλ[X = 0] + Pλ[X = 1] = e−λ + λe−λ =: g(λ).

The maximum likelihood estimator of g(λ) will be constructed using the in-

variance principle: first, λ̂n will be determined, and then ĝn will be obtained

by replacing λ by λ̂n in the above expression for g(λ). To develop this plan,

notice that the likelihood function is

L(λ;X) =
n�

i=1

e−λλ
Xi

Xi!
= e−nλλ

�n

i=1
Xi

n�

i=1

1

Xi!
,

whose logarithm is given by

L(λ;X) = −nλ+ log(λ)

n�

i=1

Xi −
n�

i=1

log(Xi!),

Suppose that
�

i Xi > 0 and observe that in this case L(λ;X) → −∞ as

λ → 0 or λ → ∞, so that λ �→ L(λ;X) attains its maximum at some point

λ̂n ∈ (0,∞), which is be a solution of

∂λL(λ;X) = −n+
1

λ

n�

i=1

Xi = 0,

an equation that has the unique solution λ∗ = Xn. Thus, λ̂n = Xn, and

then

ĝn = g(λ̂n) = (1 + λ̂n)e
−λ̂n = (1 +Xn)e

−Xn . (3.4.1)

Consider now the case
�

i Xi = 0. In this context, L(λ;X) = −nλ, so

that L(λ, ;X) is decreasing as a function of λ ∈ [0,∞, and then attains

its maximum at λ̂n = 0 = Xn, and the invariance principle yields that

the expression (3.4.1) for ĝn is also valid in this context. Since
�

i Xi ≥ 0

with probability 1, it follows that ĝn = (1 +Xn)e
−Xn . Notice now the the

strong law of large numbers yields that λ̂n
Pλ−→λ; since that function g(λ)
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is continuous, an application of the continuity theorem yields that ĝn =

g(λ̂n)
Pλ−→ g(λ), that is, the sequence {ĝn} is consistent. ��

Exercise 3.4.2. Let X1, X2, . . . , Xn be a random sample of size m from a

N
�
µ,σ2

1

�
distribution and, independently, let Y1, Y2, . . . , Yn be a random

sample of size n from the N
�
µ,σ2

2

�
distribution. Find the maximum likeli-

hood estimators of µ,σ2
1 ,σ

2
2 , and find the variance of these estimators.

Solution. A solution to this problem will not be presented. The analysis be-

low shows that finding the maximum likelihood estimator of θ = (µ,σ2
1 ,σ

2
2)

requires to solve a cubic equation; although an explicit formula for the solu-

tion of a cubic equation is available, it is not simple. The likelihood function

is

L(θ;X,Y) =

m�

i=1

(1/
√
2πσ1)e

−(Xi−µ)2/[2σ2
1 ]

n�

j=1

(1/
√
2πσ2)e

−(Yj−µ)2/[2σ2
2 ]

and it logarithm is given by

L(θ;X) = C −m log(σ1)− n log(σ2)−
1

2

m�

i=1

(Xi − µ)2

σ2
1

− 1

2

n�

j=1

(Yj − µ)2

σ2
2

,

where C stands for a quantity not involving the parameters. Assuming that

this function has a maximizer in the parameter spaceΘ = IR×(0,∞)×(0,∞),

such a point must satisfy the following likelihood system:

∂µL(θ;X,Y) =
m�

i=1

(Xi − µ)

σ2
1

+
n�

j=1

(Yj − µ)

σ2
2

= 0

∂σ1
L(θ;X,Y) = −m

σ1
+

m�

i=1

(Xi − µ)2

σ3
1

∂σ2L(θ;X,Y) = − n

σ2
+

n�

j=1

(Yj − µ)2

σ3
2

The first equation yields that

m(Xm − µ)

σ2
1

+
n(Y n − µ)

σ2
2

= 0

that is,

m(Xm − µ)σ2
2 + n(Y n − µ)σ2

1 = 0
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whereas the last two likelihood equations are equivalent to

σ2
1 =

1

m

m�

i=1

(Xi − µ)2 = S̃2
X m + (Xm − µ)2

σ2
2 =

1

n

n�

j=1

(Yj − µ)2 = S̃2
Y n + (Y n − µ)2

where S̃2
X m =

�m
i=1(Xi − µ)2/m and S̃2

Y n =
�n

j=1(Yj − µ)2/n. The two

last displays together lead to

m(Xm − µ)[S̃2
Y n + (Y n − µ)2] + n(Y n − µ)[S̃2

X m + (Xm − µ)2] = 0,

a cubic equation in µ ��

.

Exercise 3.4.3. Let X1, X2, . . . , Xn be a random sample of size n from the

truncated Laplace density

f(x; θ) =
1

2(1− e−θ)
e−|x|I[−θ,,θ](x)

where θ ∈ Θ = (0,∞). Find the maximum likelihood estimator of θ. Is this

estimator unbiased? Consistent?

Solution. The likelihood function is given by

L(θ;X) =
n�

i=1

1

2(1− e−θ)
e−|Xi|I[−θ, θ](Xi)

=
1

2n(1− e−θ)n
e−
�n

i=1
|Xi|

n�

i=1

I[−θ, θ](Xi)

Observing that

I[−θ, θ](x) = 1 ⇐⇒ −θ ≤ x ≤ θ ⇐⇒ |x| ≤ θ

it follows that

L(θ;X) =





1

2n(1− e−θ)n
e−
�n

i=1
|Xi|, if θ ≥ |Xi|, i = 1, 2, . . . , n

0, otherwise.
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Notice now that θ �→ (1/(1 − e−θ)n is a decreasing function, a fact that

implies that �L(θ;X) is maximized at the smallest value at which the function

is positive, that is,

θ̂n = max{|X1|, |X2|, . . . , |Xn|}.

To analyze the bias of θ̂n, notice that Pθ[|Xi| < θ] = 1 for every i, so that

Pθ[|Xi| < θ, i = 1, 2, . . . , n] = 1, i.e., for every θ ∈ Θ

Pθ[θ̂n < θ] = 1; (3.4.2)

this structural property implies that Eθ[θ̂n] < θ, and then θ̂n is a biased

estimator of θ, and its bias function bθ̂n(θ) = Eθ[θ̂n] − θ is negative. To

study the consistency, notice that if ε ∈ (0, θ), then

Pθ[|Xi| ≤ θ − ε] = Pθ[−(θ − ε) ≤ Xi ≤ θ − ε]

=

� θ−ε

−(θ−ε)

1

2(1− e−θ)
e−|x| dx =:α(θ, ε) < 1.

Hence,

Pθ[θ̂n ≤ (θ − ε)] = Pθ[|Xi| ≤ θ − ε, i = 1, 2, . . . , n]

=

n�

i=1

Pθ[|Xi| ≤ θ − ε] = α(θ, ε)n → 0 as n → ∞.

Since (3.4.2) implies that Pθ[θ̂n ≥ θ + ε] = 0, it follows that

Pθ[|θ̂n − θ| ≥ ε)] = Pθ[θ̂n ≤ θ − ε] + Pθ[θ̂n ≥ θ + ε]

= Pθ[θ̂n ≤ θ − ε] = α(θ, ε)n → 0 as n → ∞,

that is, θ̂n
Pθ−→ θ, so that the sequence {θ̂n} is consistent. A natural question

is to see whether the sequence {θ̂n} is asymptotically unbiased. To study

this problem observe that

|bθ̂n(θ)| = |Eθ[θ̂n]− θ|
≤ Eθ[|θ̂n − θ|]
= Eθ[|θ̂n − θ|I[|θ̂n − θ| < ε]] + Eθ[|θ̂n − θ|I[|θ̂n − θ| ≥ ε]]

≤ ε+ Eθ[|θ̂n − θ|I[|θ̂n − θ| ≥ ε]]
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Observing that Pθ[|θ̂n − θ| ≤ θ] = 1, it follows that

|bθ̂n(θ)| ≤ ε+ θEθ[I[|θ̂n − θ| ≥ ε]] ≤ ε+ θα(θ, ε)n

and then, because α(θ, ε)n →, this implies that lim supn→∞ |bθ̂n(θ)| ≤ ε;

hence, since ε > 0 is arbitrary, limn→∞ bθ̂n(θ) = 0, that is, {θ̂n} is asymp-

totically unbiased. ��

Remark 3.4.1. The above analysis of the unbiasedness property for θn was

not based on a direct computation of the expectation of θ̂n. If an explicit

formula for the bias function is required, such an expectation must be cal-

culated using the density of θ̂n, which is determined as follows:. Notice that

the distribution function of |Xi| is

G(x; θ) = Pθ[|Xi| ≤ x] =

� x

−x

1

2(1− e−θ)
e−|t|I[−θ,,θ](t)dt

=

� x

0

1

(1− e−θ)
e−t dt =

1− e−x

1− e−θ
, x ∈ [0, θ)

an expression the renders the following formula for the density of |Xi|:

g(x; θ) =
e−x

1− e−θ
I[0,θ)(x).

Using the formula for the density of the maximum of independent and iden-

tically distributed random variables,

fθ̂n(x; θ) = ng(x; θ)G(x; θ)n−1 =
ne−x

1− e−θ

�
1− e−x

1− e−θ

�n−1

I[0,θ)(x).

The expectation of θ̂n can be now computed explicitly as follows:

Eθ[θ̂n] =

� θ

0

x
ne−x

1− e−θ

�
1− e−x

1− e−θ

�n−1

dx

= x

�
1− e−x

1− e−θ

�n����
θ

x=0

−
� θ

0

�
1− e−x

1− e−θ

�n

dx

= θ −
� θ

0

�
1− e−x

1− e−θ

�n

dx.

Therefore, the bias function of θ̂n is

bθ̂n(θ) = Eθ[θ̂n]− θ = −
� θ

0

�
1− e−x

1− e−θ

�n

dx, θ > 0
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showing explicitly that the bias is always negative. Also, observing that

lim
n→∞

�
1− e−x

1− e−θ

�n

= 0, x ∈ [0, θ),

the bounded convergence theorem implies that

lim
n→∞

� θ

0

�
1− e−x

1− e−θ

�n

dx = 0,

a convergence that yields that {θ̂n} is asymptotically unbiased. ��

3.5. Estimating the Parameters of a Beta Distribution

Exercise 3.5.1. Let X1, X2, . . . , Xn be a random sample of size n from the

Beta (α,β) density

f(x;α,β): =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1I(0,1)(x)

where α and β are positive numbers. In the following questions β is a known

number, but α ∈ (0,∞) is unknown.

(a) Find the maximum likelihood estimator of α when β = 1;

(b) Find the maximum likelihood estimator of α when β = 2;

(c) Find the maximum likelihood estimator of α/(1 + α) in each of the pre-

ceding cases (a) and (b).

Solution. Set X = (X1, X2 . . . , Xn).

(a) When β = 1 the density of each observation Xi is

f(x;α, 1):=
Γ(α+ 1)

Γ(α)Γ(1)
xα−1(1− x)1−1I(0,1)(x) = αxα−1I(0,1)(x).

where it was used that Γ(1) = 1 and Γ(α + 1) = αΓ(α) to set the second

equality. Thus, the likelihood function associated to a sample X ∈ (0, 1)n is

L(α;X) =
n�

i=1

αXα−1
i = αn

�
n�

i=1

Xi

�α−1



46

whose logarithm is

L(α;X) = n log(α) + (α− 1)

n�

i=1

log(Xi), α ∈ (0,∞)

Recalling that log(x) → −∞ as x � 0 and that log(x) < 0 when x ∈ (0, 1),

it follows that L(α;X) → −∞ as α � 0 or α → ∞, and then L(·;X) has a

maximizer α̂n in (0,∞). Such a point is a solution of the likelihood equation

∂αL(α;X) =
n

α
+

n�

i=1

log(Xi) = 0,

whose unique solution is α = −n/(
�n

i=1 log(Xi)). Consequently,

α̂n = − n�n
i=1 log(Xi)

.

(b) Suppose that β = 2. In this case, the density of each observation Xi is

f(x;α, 2):=
Γ(α+ 2)

Γ(α)Γ(2)
xα−1(1−x)2−1I(0,1)(x) = α(α+1)xα−1(1−x)I(0,1)(x);

as for the second equality, recall that Γ(2) = 1 and Γ(α+2) = (α+1)αΓ(α).

It follows that the likelihood function associated to a sample X ∈ (0, 1)n is

L(α;X) =

n�

i=1

α(α+1)Xα−1
i (1−Xi) = [α(α+1)]n

�
n�

i=1

Xi

�α−1 n�

i=1

(1−Xi)

whose logarithm is given by

L(α;X) = n log(α) + n log(α+ 1) + (α− 1)
n�

i=1

log(Xi) +
n�

i=1

log(1−Xi),

where α ∈ (0,∞). As in the previous part, it is not difficult to see that

L(α;X) → −∞ as α � 0 or α → ∞, so that L(·;X) has a maximizer α̂n in

(0,∞) which satisfies that the likelihood equation

∂αL(α;X) =
n

α
+

n

α+ 1
+

n�

i=1

log(Xi) = 0;

after some simple algebra, this equation is equivalent to (2α+1)+α(α+1)Y =

0, where Y =
�n

i=1 log(Xi)/n. This quadratic equation in α can be written

as α2Y + α(2 + Y ) + 1 = 0, which has roots

α =
−(2 + Y )±

�
(2 + Y )2 − 4Y

2Y
=

−(2 + Y )±
√
4 + Y 2

2Y
;
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Recalling that Y < 0, the root that is positive is given by

α =
−(2 + Y )−

√
4 + Y 2

2Y
=

2√
4 + Y 2 + (2− Y )

;

hence,

α̂n =
2�

4 + (
�n

i=1 log(Xi))2 + (2−�n
i=1 log(Xi))

.

(c) By the invariance principle, the maximum likelihood estimator of g(α) =

α/(α+ 1) is given by ĝ =
α̂n

1 + α̂n
. ��

3.6. Additional Examples

Exercise 3.6.1. Let f1(x) and f2(x) be two density functions and consider a

random sample Z1, Z2 of size two of the mixture

f(z; θ) = θf1(z) + (1− θ)f2(z) = f2(z) + θ[f1(z)− f2(z)],

where θ ∈ [0, 1]. Find the maximum likelihood estimator of θ.

Solution. The likelihood function of the data Z = (Z1, Z2) is

L(θ;Z) = [f2(Z1) + θd(Z1)][f2(Z2) + θd(Z2)], θ ∈ [0, 1],

where

d(z): = f1(z)− f2(z).

To find the maximizers of L(·;Z), consider the following exhaustive cases:

(i) d(Z1)d(Z2) > 0: In this context, the mapping

θ �→ [f2(Z1) + θd(Z1)][f2(Z2) + θd(Z2)]

is convex, and its unique critical point is a minimizer. Thus, L(·;Z) attains
its maximum at θ = 0 or θ = 1. Observing that L(0;Z) = f2(Z1)f2(Z2) and

L(1;Z) = f1(Z1)f1(Z2), it follows that

θ̂2(Z) =





1, if f1(Z1)f1(Z2) > f2(Z1)f2(Z2)
0, if f1(Z1)f1(Z2) < f2(Z1)f2(Z2)
0 or 1, if f1(Z1)f1(Z2) = f2(Z1)f2(Z2).
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(ii) d(Z1)d(Z2) < 0: In this framework, the mapping

θ �→ [f2(Z1) + θd(Z1)][f2(Z2) + θd(Z2)]

is concave, an attains its maximum (with respect to all the points θ ∈ IR) at

the unique critical point point

θ∗(Z) = −d(Z1)f2(Z2) + d(Z2)f2(Z1)

2d(Z1)d(Z2)

and the maximizer of L(·;Z) is given by

θ̂2(Z) =





θ∗(Z), if θ∗(Z) ∈ [0, 1]
0, if θ∗(Z) < 0
1, if θ∗(Z) > 1.

(iii) d(Z1) = 0 and d(Z2) �= 0: In this framework, L(θ;Z) is a linear function

of θ with slope f2(Z1)d(Z2), and it follows that

θ̂2(Z) =





1, if f2(Z1)d(Z2) > 0
0, if f2(Z1)d(Z2) < 0
any point in [0, 1], if f2(Z1) = 0.

Similarly,

(iv) d(Z1) �= 0 and d(Z2) = 0: In these circumstances, L(θ;Z) is a linear

function of θ with slope f2(Z2)d(Z1), and

θ̂2(Z) =





1, if f2(Z2)d(Z1) > 0
0, if f2(Z2)d(Z1) < 0
any point in [0, 1], if f2(Z2) = 0.

Finally,

(iv) d(Z1) = 0 and d(Z2) = 0: In this case L(θ;Z) is a constant function, so

that

θ̂2(Z) = any point in [0, 1],

and the solution is complete. ��

Exercise 3.6.2. Let X1, X1, . . . , Xn be a random sample of size n from the

(discrete) Uniform ({1, 2, . . . , θ}) distribution on the set {1, 2, . . . , θ}, whose
probability function is given by

f(x; θ) =
1

θ
I{1,2,...,θ}(x).
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Find the maximum likelihood estimator of θ, and its mean. Is this estimator

unbiased?

Solution. GivenX = (X1, X2, . . . , Xn) with positive integer components, the

corresponding likelihood function is given as follows: For a positive integer

θ,

L(θ;X) =
n�

i=1

1

θ
I{1,2,3,...,θ}(Xi) =

�
1/θn, if Xi ≤ θ for all i = 1, 2, . . . , n,
0, otherwise,

an expression that can be written as

L(θ;X) =

�
1/θn, if max{Xi, i = 1, 2, . . . , n} ≤ θ,
0, otherwise.

Since θ �→ 1/θn is a decreasing mapping on the set of positive integers, it

follows that the maximizer of L(·;X) is the minimal value of θ at which

L(θ;X) is positive, that is,

θ̂n = X(n) = max{X1, X2, . . . , Xn}.

To find the expectation of θ̂n, first the distribution function of the estimator

will be determined. Given a positive integer θ, notice that

Pθ[θ̂n ≤ k] = Pθ[Xi ≤ k, i = 1, 2, . . . , n]

=

k�

i=1

Pθ[Xi ≤ k] =

k�

i=1

�
k

θ

�
=

�
k

θ

�n

, k = 1, 2, . . . , θ,

Thus, the probability function of θ̂n is determined by

fθ̂n(k; θ) = Pθ[θ̂n = k]

= Pθ[θ̂n ≤ k]− Pθ[θ̂n ≤ (k − 1)]

=

�
k

θ

�n

−
�
k − 1

θ

�n

, k = 1, 2, . . . , θ,
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and then

Eθ[θ̂n] =
θ�

k=1

kPθ[θ̂n = k]

=
θ�

k=1

k

��
k

θ

�n

−
�
k − 1

θ

�n�

=
θ�

k=1

kn+1 − k(k − 1)n

θn

=

θ�

k=1

kn+1 − (k − 1)n+1 − (k − 1)n

θn

=
θ�

k=1

kn+1 − (k − 1)n+1

θn
−

θ�

k=1

(k − 1)n

θn

=
θn+1 − (1− 1)n+1

θn
−

θ�

k=1

(k − 1)n

θn

= θ −
θ−1�

k=1

kn

θn
.

and it follows that θ̂n is a biased estimator of θ. ��

Exercise 3.6.3. Let X1, X2, . . . , Xn be a random sample of size n from the

Poisson (λ) distribution, where λ ∈ [0,∞) is unknown.

(a) Find the maximum likelihood estimator of e−λ.

(b) Find an unbiased estimator of e−λ.

Solution. (a) The maximum likelihood estimator ĝn of g(λ) = e−λ will be

constructed via the invariance principle, that is, if λ̂n is the maximum like-

lihood estimator of λ, then ĝn = g(λ̂n). To find λ̂n, notice that, given a

sample X = (X1, X2, . . . , Xn) whose components are nonnegative integers,

the corresponding likelihood function is given by

L(λ;X) =

n�

i=1

λXi

Xi!
e−λ = λ

�n

i=1
Xie−nλ

n�

i=1

1

Xi!
, λ ∈ [0,∞)

and its logarithm is

L(λ;X) = log(λ)

n�

i=1

Xi − nλ+ log

�
n�

i=1

1

Xi!

�
, λ ∈ [0,∞). (3.6.1)
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(i) Suppose that Xi > 0 for some i. In this case, the basic properties of

the logarithmic function yield that L(λ;X) → −∞ as λ → 0 or as λ → ∞.

Therefore, L(·;X) attains its maximum at some positive point, which satisfies

∂λL(λ;X) =
1

λ

n�

i=1

Xi − n = 0;

this equation has the unique solution λ = Xn =
�n

i=1 Xi/n. Hence,

λ̂n = Xn. (3.6.2)

(ii) Suppose now that Xi = 0 for all i. In this context, (3.6.1) shows that

the likelihood function reduces to L(λ;X) = −nλ, and then its maximizer is

λ̂n = 0 = Xn. Thus, in any circumstance, the maximum likelihood estimator

of λ is the sample mean. Thus, for g(λ) = e−λ, the maximum likelihood

estimator of g(λ) is

ĝn = e−λ̂n = e−Xn .

It is interesting to observe that this estimator is biased. Indeed, using that

the population mean of the Poisson (λ) distribution is λ, it follows that

Eλ[Xn] = λ, and then observing that the function H(x) = e−x is strictly

convex, Jensen’s inequality implies that

e−λ = H(λ) = H(Eλ[Xn]) < Eλ[H(Xn)] = Eλ[e
−Xn ].

(b) To determine an unbiased estimator of e−λ, notice that

e−λ = Pλ[X1 = 0] = Eλ[I[X1 = 0]].

Thus, I[X1 = 0] is an unbiased estimator of e−λ; since all the Xi have the

same distribution, it follows that, for every i, I[Xi = 0] is also an unbiased

estimator, and then so is their average T =
�n

i=1 I[Xi = 0]/n. However, the

idea behind this problem is to determine an unbiased estimator of λ which

is a function of Xn. Let G(Xn) be such that

Eλ[G(Xn)] = e−λ for every λ ∈ [0,∞). (3.6.3)

Since Xn = Tn/n where Tn = X1 +X2 + · · ·+Xn ∼ Poisson (nλ), it follows

that

Eλ[G(Xn)] =
∞�

k=0

G(k/n)Pλ[Tn = k] =
∞�

k=0

G(k/n)
(nλ)k

k!
e−nλ,
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and then

Eλ[G(Xn)] = e−λ ⇐⇒
∞�

k=0

G(k/n)
(nλ)k

k!
e−nλ = e−λ

⇐⇒
∞�

k=0

G(k/n)nk

k!
λk = e(n−1)λ

⇐⇒
∞�

k=0

G(k/n)nk

k!
λk =

∞�

k=0

(n− 1)k

k!
λk

where the classical expansion ea =
�∞

k=0 a
k/k! was used in the last step.

Therefore (3.6.3) is equivalent to

∞�

k=0

G(k/n)nk

k!
λk =

∞�

k=0

(n− 1)k

k!
λk, λ ∈ [0,∞).

Now, using the known fact that two power series coincide in an interval if

and only if they have the same coefficients, this last display is equivalent to

G(k/n)nk

k!
=

(n− 1)k

k!
, k = 0, 1, 2, 3, . . . ,

that is,

G(k/n) =
(n− 1)k

nk
=

�
1− 1

n

�k

, k = 1, 2, 3, . . . .

Consequently,

G(Xn) = G(Tn/n) =

�
1− 1

n

�Tn

=

�
1− 1

n

�nXn

is the unique unbiased estimator of e−λ which is a function of Xn. ��

Exercise 3.6.4. Let X1, X2, . . . , Xn be a random sample of size n from the

Bernoulli (p) distribution, where p ∈ [0, 1], and set Tn = X1+X2+ · · ·+Xn.

(a) Find the maximum likelihood estimator Mn of pq = p(1− p)

(b) Show that Un = Tn(n− Tn)/[n(n− 1)] is an unbiased estimator of pq =

p(1− p).

(c) Show that the maximum likelihood estimator of pq is biased, but is asymp-

totically unbiased.
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(d) Show that the unbiased estimator of pq has larger variance than the

maximum likelihood estimator.

Solution. (a) The maximum likelihood estimator of p is Xn, so that, by the

invariance property, Xn(1−Xn) = Mn is the maximum likelihood estimator

of p(1− p) = pq.

(b) In Exercise 2.2.1 it was shown that Tn(Tn − 1)/[n(n− 1)] is an unbiased

estimator of p2. Since Xn = Tn/n is an unbiased estimator of p, it follows

that

pq = p(1− p)

= p− p2 = Ep

�
Tn

n
− Tn(Tn − 1)

n(n− 1)

�
= Ep

�
Tn(n− Tn)

n(n− 1)

�
= Ep[Un],

that is, Un = Tn(n− Tn)/[n(n− 1)] is an unbiased estimator of pq.

(c) Notice that

Mn = Xn(1−Xn)

=
Tn

n

�
1− Tn

n

�
=

Tn(n− Tn)

n2
=

n− 1

n

Tn(Tn − 1)

n(n− 1)
=

n− 1

n
Un.

Hence,

Ep[Mn] = Ep

�
n− 1

n
Un

�
=

n− 1

n
Ep[Un] =

n− 1

n
pq = pq − pq

n
.

It follows that bMn
(p) = Ep[Mn]− pq = −pq/n, so that Mn is biased; since

bMn
(p) = pq/n → 0 as n → ∞, Mn is asymptotically unbiased.

(d) As already noted in the previous part, Mn = [(n − 1)/n]Un, and then

Varp [Mn] = Varp [[(n− 1)/n]Un] = [(n− 1)/n]2Varp [Un]. Therefore,

Varp [Un] =

�
n

n− 1

�2

Varp [Mn] > Varp [Mn] ,

showing that the variance of the unbiased estimator Un is larger than the

variance of the maximum likelihood estimator Mn. ��

3.7. Bivariate Normal Distribution
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Exercise 3.7.1. Let X = ((X1 1, X2 1), (X1 2, X2 2), . . . , (X1n, X2n)) be a ran-

dom sample of size n from the bivariate normal distribution with means

µ1, µ2, variances σ2
1 and σ2

2 and correlation coefficient ρ. Suppose that

ρ ∈ (−1, 1) is unknown and find the maximum likelihood estimator of ρ

if

(a) µ1, µ2, and σ2
1 and σ2

2 are also unknown.

(b) µ1, µ2, and σ2
1 and σ2

2 are known.

Solution. (a) In this case the parameter is θ = (µ1, µ2,σ1,σ2, ρ) ∈ Θ =

IR × IR × (0,∞) × (0,∞) × (−1, 1), and the likelihood of the sample X is

given by

L(ρ;X) = e−Q/[2(1−ρ2)]
n�

i=1

1

2π
�

σ2
1σ

2
2(1− ρ2)

(3.7.1)

where

Q =
n�

i=1

��
X1 i − µ1

σ1

�2

+

�
X2 i − µ2)

σ2

�2

− 2ρ

�
X1 i − µ1)

σ1

��
X2 i − µ2

σ2

��
.

(3.7.2)

The logarithm of the likelihood function is

L(θ;X) = − Q

2(1− ρ2)
− n log(σ1)− n log(σ2)−

n

2
log(1− ρ2)− n log(2π),

(3.7.3)

and without loss of generality it will be supposed that the vectors (X1 i, i =

1, 2, . . . , n) and (X2 i, i = 1, 2, . . . , n) are not constant. The maximizer of

L(·;X) will be determined in two phases:

(i) First, given σ1,σ2 and ρ, the maximizer of L(·;X) with respect to µ1 and

µ2 will be determined.. Notice that (3.7.2) and (3.7.3) together yield that

L(·;X) is a concave quadratic form in (µ1, µ2), and then it is maximized at

the pair satisfying the following critical equations:

∂µ1
L(θ;X) = 0, and ∂µ2

L(θ;X) = 0,

which are equivalent to
n�

i=1

�
X1 i − µ1

σ1

�
− ρ

n�

i=1

�
X2 i − µ2

σ2

�
= 0,

−ρ

n�

i=1

�
X1 i − µ1

σ1

�
+

n�

i=1

�
X2 i − µ2

σ2

�
= 0.
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Since ρ ∈ (−1, 1), these equations have the unique solution

µ̂1 =
1

n

n�

i=1

X1 i =: X1n, and µ̂2 =
1

n

n�

i=1

X2 i =: X2n.

Thus,

L(θ;X) ≤ L(X1n, X2n,σ1,σ2, ρ), θ = (µ1, µ2,σ1,σ2, ρ) ∈ Θ. (3.7.4)

(ii) Next, the function L(X1n, X2n,σ1,σ2, ρ) will be maximized with respect

to σ1,σ2 and ρ. To achieve this goal, notice that

L(X1n, X2n,σ1,σ2, ρ)

= − Q̃

2(1− ρ2)
− n log(σ1)− n log(σ2)−

n

2
log(1− ρ2)− n log(2π),

where

Q̃ =

n�

i=1

��
X1 i −X1n

σ1

�2

+

�
X2 i −X2n)

σ2

�2
�

− 2ρ

��
X1 i −X1n)

σ1

��
X2 i −X2n

σ2

�� (3.7.5)

From this expressions, it follows that, as σ1 or σ2 goes to 0 or ∞ or ρ → ±1,

the function L(X1n, X2n,σ1,σ2, ρ) converges to −∞, and then the mapping

(σ1,σ2, ρ) �→ L(X1n, X2n,σ1,σ2, ρ;X)) attains its maximum at some point

(σ1,σ2, ρ) ∈ (0,∞)× (0,∞)× (−1, 1), which satisfies

∂σ1L(X1n, X2n,σ1,σ2, ρ)

=
−1

2(1− ρ2)

�
−2

σ1

n�

i=1

�
X1 i −X1n

σ1

�2

+
2ρ

σ1

n�

i=1

�
X1 i −X1n

σ1

��
X2 i −X2n

σ1

��
− n

σ1
= 0

∂σ2L(X1n, X2n,σ1,σ2, ρ)

=
−1

2(1− ρ2)

�
−2

σ2

n�

i=1

�
X2 i −X2n

σ2

�2

+
2ρ

σ2

n�

i=1

�
X1 i −X1n

σ1

��
X2 i −X2n

σ2

��
− n

σ2
= 0

∂ρL(X1n, X2n,σ1,σ2, ρ)

=
−ρ

(1− ρ2)2
Q̃− 1

2(1− ρ2)
∂ρQ̃+

nρ

1− ρ2
= 0

(3.7.6)
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The first equation immediately yields that

n(1− ρ2)

σ1

=

�
1

σ1

n�

i=1

�
X1 i −X1n

σ1

�2

− ρ

σ1

n�

i=1

�
X1 i −X1n

σ1

��
X2 i −X2n

σ2

��

and then, multiplying both sides by σ1/n,

S2
1

σ2
1

− ρ
S1 2

σ1σ2
= 1− ρ2 (3.7.7)

where

S2
1 =

n�

i=1

�
X1 i −X1n

�2
/n

S2
2 =

n�

i=1

�
X2 i −X2n

�2
/n

S1 2 =
n�

i=1

�
X1 i −X1n

� �
X2 i −X2n

�
/n

(3.7.8)

Similarly, from the second equation in (3.7.7) it follows that

S2
2

σ2
2

− ρ
S1 2

σ1σ2
= 1− ρ2 (3.7.9)

Combining the specification of Q̃ in (3.7.5) with (3.7.8) it follows that

Q̃ = n

�
S2
1

σ2
1

− ρ
S1 2

σ1σ1
+

S2
2

σ2
1

− ρ
S1 2

σ1σ1

�
,

and then, at the solution of the system (3.7.6), equalities (3.7.7) and (3.7.9)

yield that

Q̃ = 2n(1− ρ2);

combining this relation with the third equation in (3.7.6), it follows that

−ρ

(1− ρ2)2
[2n(1− ρ2)]− 1

2(1− ρ2)
∂ρQ̃+

nρ

1− ρ2
= 0,

that is,
−2nρ

(1− ρ2)
− 1

2(1− ρ2)
∂ρQ̃+

nρ

1− ρ2
= 0,
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equality that immediately yields that

ρ = − 1

2n
∂ρQ̃.

Since ∂ρQ̃ = −2nS1 2/(σ1σ2) (see (3.7.5) and (3.7.8)), it follows that

ρ =
S1 2

σ1σ2
. (3.7.10)

Together with (3.7.7) this implies that S2
1/σ

2
1−ρ2 = 1−ρ2, that is S2

1/σ
2
1 = 1,

so that

σ2
1 = S2

1 .

Similarly, (3.7.9) and (3.7.10) together yield that

σ2
2 = S2

2 ,

and then (3.7.10) becomes

ρ =
S1 2

S1S2

In short, the mapping (σ1,σ2, ρ) �→ L(X1n, X2n,σ1,σ2, ρ) attains its maxi-

mum at the point specified in the three previous displays, that is,

L(X1n, X2n,σ1,σ2, ρ) ≤ L(X1n, X2n, S1, S2, S1 2/[S1S2]), σ1,σ2 > 0,

where ρ ∈ (−1, 1), and combining this inequality with (3.7.4), it follows that

L(θ;X) ≤ L(X1n, X2n, S1, S2, S1 2/[S1S2];X), θ ∈ Θ, .

showing that the maximum likelihood estimator θ̂ = (µ̂1, µ̂2, σ̂2, σ̂2, ρ̂) is

given by

(µ̂1, µ̂2, σ̂2, σ̂2, ρ̂) = .(X1n, X2n, S1, S2, S1 2/[S1S2]);

in particular, the maximum likelihood estimator of the population correlation

coefficient ρ is the sample correlation coefficient S1 2/[S1S2].

(b) When µ1, µ2 and σ1 and σ2 are known, the likelihood function is given

by (3.7.1), where Q is specified by (3.7.2), that is,

L(ρ;X) = e−Q/[2(1−ρ2)]
n�

i=1

1

2π
�

σ2
1σ

2
2(1− ρ2)

(3.7.11)
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and the corresponding logarithm is

L(ρ;X) = − Q

2(1− ρ2)
− n log(σ1)− n log(σ2)−

n

2
log(1− ρ2)− n log(2π),

(3.7.12)

where, writing

S̃2
1 =

1

n

n�

i=1

�
X1 i − µ1

σ1

�2

S̃2
2 =

1

n

n�

i=1

�
X2 i − µ2)

σ2

�2

S̃1 2 =
1

n

n�

i=1

�
X1 i − µ1)

σ1

��
X2 i − µ2

σ2

�

Q is given by

Q = n[S̃2
1 + S̃2

2 − 2ρS̃1 2]

The value of ρ maximizing L(ρ;X) in the interval (−1, 1) satisfies the likeli-

hood equation

∂ρL(ρ;X) = − ρQ

(1− ρ2)2
− ∂ρQ

2(1− ρ2)
+

nρ

1− ρ2
= 0,

which is equivalent to

−nρ[S̃2
1 + S̃2

2 − 2ρS̃1 2]

(1− ρ2)2
− −2nS̃1 2

2(1− ρ2)
+

nρ

1− ρ2
= 0,

that is,

−ρ[S̃2
1 + S̃2

2 − 2ρS̃1 2]

(1− ρ2)
+ S̃1 2 + ρ = 0,

equality that can be written as

(1− ρ2)[S̃1 2 + ρ]− ρ[S̃2
1 + S̃2

2 − 2ρS̃1 2] = 0;

this cubic equation should be solved numerically. ��

Remark 3.7.1. (i) At first, sight, part (b) seemed to be easier than part

(a), since in part (b) only ρ is unknown. However, the maximum likelihood

estimators was explicitly found when all the quantities determining the dis-

tribution of the observation data were unknown.
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(ii) A very elegant method to determine the maximum likelihood estimators

when the observation vectors have a multivariate normal distribution with

unknown mean and covariance matrix, can be found, for instance in Chapter

1 of Anderson (2002). The argument relies on on the spectral theory of

positive matrices and on a factorization result in terms of triangular matrices.

��

3.8. Logistic Model

In this section the maximum likelihood method is applied to logistic, binomial

and normal models.

Exercise 3.8.1. Let X1, X2, . . . , Xn be a random variable of size n from the

logistic density

f(x;α) = β
e−(α+βx)

(1 + e−(α+βx))2

where α is an unknown real number and β is known. In this context, find

the maximum likelihood estimator of α.

Solution. This is a case where an explicit formula for the maximum likelihood

estimator α̂n does not exist, and α̂n(X) = α̂(X1, X2, . . . , Xn) must be found

numerically. In the following argument it will be shown that α̂n exits, and is

uniquely determined and is the unique critical point of the likelihood func-

tion. The likelihood function associated to the sample X = (X1, X2, . . . , Xn)

is given by

L(α;X) =

n�

i=1

β
e−(α+βXi)

(1 + e−(α+βXi))2

=
βne−

�n

i=1
(α+βXi)

�n
=1(1 + e−(α+βXi))2

= βn e−n(α+βXn)

�n
=1(1 + e−(α+βXi))2

,

and its logarithm is

L(α;X) = n log(β)− n(α+ βXn)− 2
n�

i=1

log(1 + e−(α+βXi)).
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Thus,

∂αL(α;X) = −n+ 2
n�

i=1

e−(α+βXi)

1 + e−(α+βXi)

= −n+ 2
n�

i=1

e−(α+βXi) + 1− 1

1 + e−(α+βXi)

= −n+ 2
n�

i=1

�
1− 1

1 + e−(α+βXi)

�

= n− 2
n�

i=1

1

1 + e−(α+βXi)
.

(3.8.1)

Notice that limα→∞ 1 + e−(α+βXi) = 1, so that

lim
α→∞

∂αL(α;X) = −n < 0,

and limα→−∞ 1 + e−(α+βXi) = ∞, and then

lim
α→−∞

∂αL(α;X) = n > 0.

These two last displays together imply that there exists (at least) a point

α∗(X) ≡ α∗ such that

∂αL(α;X)|α=α∗ = 0. (3.8.2)

Notice now that

∂2
αL(α;X) = ∂α

�
n− 2

n�

i=1

1

1 + e−(α+βXi)

�

= −2

n�

i=1

e−(α+βXi)

(1 + e−(α+βXi))2
< 0,

so that L(α;X) is a concave function of α, and then the point α∗ satisfying

(3.8.2) is unique, and is the unique maximizer of L(α;X), that is, α̂n(X) =

α∗. Notice that (3.8.1) and (3.8.2) together yield that α̂n is the unique

solution of the likelihood equation

n�

i=1

1

1 + e−(α+βXi)
=

n

2

which, as already mentioned, must be solve numerically. ��
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Exercise 3.8.2. Let X1, X2, . . . , Xm be a random sample of size m from the

N
�
µ,σ2

�
distribution and, independently, let Y1, Y2, . . . , Yn be a random

sample of size n from N
�
µ,λσ2

�
where λ > 0 is unknown.

(a) If µ and σ are known, find the maximum likelihood estimator of λ.

(b) If µ and σ and λ are unknown, find the maximum likelihood estimator

of θ = (µ,σ,λ).

Solution. (a) Suppose that µ and σ2 are known. In this case the distribution

of the random vector X = (X1, X2, . . . , Xm) does not involve λ, and the esti-

mation of this parameter relies only on Y = (Y1, Y2 . . . , Yn). The statistical

model for this last vector is

Y1, . . . , Yn are i.i.d. N
�
µ,λσ2

�
random variables, λ ∈ (0,∞). (3.8.3)

Since λ is an arbitrary real number, setting

σ2
1 = λσ2 (3.8.4)

the statistical model (3.8.3) is equivalent to

Y1, . . . , Yn are i.i.d. N
�
µ,σ2

1

�
random variables, σ1 ∈ (0,∞).

For this model, the maximum likelihood estimator of σ2
1 is given by

σ̂2
1 =

1

n

n�

i=1

(Xi − µ)2;

since λ = σ2
1/σ

2, the maximum likelihood estimator of λ is

λ̂ =
σ̂2
1

σ2
=

1

n

n�

i=1

�
Xi − µ

σ

�2

.

(b) The statistical model for (X,Y) is determined by

(i) Y1, . . . , Yn are i.i.d. N
�
µ,λσ2

�
random variables,

(ii) X1, . . . , Xm are i.i.d. N
�
µ,σ2

�
random variables,

(iii) The vectors (X1, . . . , Xm) and Y = (Y1, . . . , Yn) are independent,

(iv) µ ∈ IR, σ ∈ (0,∞), λ ∈ (0,∞).
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Defining σ1 > 0 by

σ2
1 = λσ2, (3.8.5)

the mapping (µ,σ,λ) �→ (µ,σ,σ1) is a bijection of the parameter space IR×
(0,∞) × (0,∞). Hence, the above statistical model is equivalent to the

following:

(i) Y1, . . . , Yn are i.i.d. N
�
µ,σ2

1

�
random variables,

(ii) X1, . . . , Xm are i.i.d. N
�
µ,σ2

�
random variables,

(iii) The vectors (X1, . . . , Xm) and Y = (Y1, . . . , Yn) are independent,

(iv) µ ∈ IR, σ ∈ (0,∞), σ1 ∈ (0,∞).

This model was studied in Exercise 3.4.2, where it was shown that µ̂ is

determined as the root of a cubic equation, and then σ̂ and σ̂1 are the

determined by

σ̂2 =
1

m

m�

i=1

(Xi − µ̂)2 and σ̂2
1 =

1

n

n�

j=1

(Yj − µ̂)2;

then, (3.8.5) and the invariance property together yield that

λ̂ =
σ2
1

σ2

is the maximum likelihood estimator of λ. ��

Exercise 3.8.3. Suppose that

X1 ∼ Binomial (n1, p)

X2 ∼ Binomial (n2, p)

...

Xk ∼ Binomial (nk, p)

are independent random variables. Find the maximum likelihood estimator

of p.

Solution. Given X = (X1, X2, . . . , Xk) such that Xi is an integer between 0

and n1, the corresponding likelihood function is

L(p;X) =
k�

i=1

�
ni

Xi

�
pXi(1− p)ni−Xi
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whose logarithm is given by

L(p;X) =

k�

i=1

log

��
ni

Xi

��
+

k�

i=1

[Xi log(p) + (ni −Xi) log(1− p)]

=
k�

i=1

log

��
ni

Xi

��
+ log(p)

k�

i=1

Xi + log(1− p)

�
N −

k�

i=1

Xi

�

=
k�

i=1

log

��
ni

Xi

��
+ log(p)T + log(1− p) [N − T ]

where N =
�k

i=1 ni and T =
�k

i=1 Xi. The kernel in this expression

(the part involving the parameter p), is the same as the kernel of a sam-

ple Y1, Y2, . . . , YN of size N from the Bernoulli (p) distribution when the

grand total Y1 + Y2 + · · · + YN is equal to T . The computations for this

case are well-known and yield that, in the present problem, the maximum

likelihood estimator of p is

p̂ =
T

N
=

X1 +X2 + · · ·+Xk

n1 + n2 + · · ·+ nk
.

��

Exercise 3.8.4. Let (X1, X2, . . . , Xk) be a random vector with multino-

mial distribution with parameter p = (p1, p2, . . . , pk) and n trials, where

n is known and the probabilities pi are unknown numbers is [0, 1] satisfying�k
i=1 pi = 1. Find the maximum likelihood estimator p̂ = (p̂1, p̂2, . . . , p̂k).

Solution. Given X = (X1, X2 . . . , Xk) with positive components adding up

to n, the corresponding likelihood function is

L(p;X) =

�
n

X1, X2, . . . , Xk

�
pX1
1 pX2

2 · · · pXk

k ≡ CpX1
1 pX2

2 · · · pXk

k ,

where the convention 00 = 1 is enforced, and the multinomial coefficient has

been denoted by C, since it does not involve the unknown vector parameter

p. Let P be the set of all admissible values of the vector p, that is,

P =
�
p = (p1, p2, . . . , pk) ∈ IRk

���
k�

i=1

pi = 1, pi ≥ 0, i = 1, 2, . . . , k

�
.
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This set is closed and bounded, so that the continuous function L(·;X) at-

tains its maximum at some point p̂ = (p̂1, p̂2, . . . , p̂k):

L(p̂;X) ≥ �L(p;X), p ∈ P. (3.8.6)

To determine this point, let D be the set of all indices i such that Xi is

no-null, that is,

D = {i ∈ {1, 2, . . . , n} | Xi �= 0}, (3.8.7)

so that

L(p;X) = C
�

j∈D

p
Xj

j , (3.8.8)

Now, observe the following properties (a)–(e):

(a) L(p̂;X) > 0. Indeed, the k-dimensional vector u = (1/k, 1/k, . . . , 1/k) ∈
P satisfies L(u;X) = C/kn > 0, and then (3.8.6) implies that �L(p̂;X) > 0.

(b) If Xi = 0 then p̂i = 0. Proceeding by contradiction suppose that Xi = 0

but p̂i > 0. In these circumstances, notice that i /∈ D and that p̂i < 1, since

otherwise p̂i = 1, and then p̂j = 0 for all j �= i; in particular, p̂j = 0 for every

j ∈ D, and then (3.8.8) yields that L(p̂;X) = 0, which contradicts the fact

(a) stated above. To continue. define the new vector p̃ ∈ P as follows:

p̃i = 0, p̃j = p̂j/(1− p̂i), j �= i,

so that p̃j = p̂j/(1− p̂i) for every j ∈ D, and then

L(p̃;X) = C
�

j∈D

�
p̂j

1− p̂i

�Xj

=
1�

j∈D(1− p̂i)Xj
C
�

j∈D

p̂
Xj

j

=
1�

j∈D(1− p̂i)Xj
L(p̂;X)

where (3.8.8) with p̂ instead of p was used in the last step. Since p̂i ∈ (0, 1)

and Xj > 0 for j ∈ D, the above display yields that L(p̃;X) > L(p̂;X),

which is a contradiction, since p̂ maximizes L(·;X) on the set P and p̃ ∈ P.

It follows thatXi = 0 implies that p̂i = 0, establishing the desired conclusion.
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(c) p̂i = 0 implies Xi = 0. Indeed, if p̂i = 0 but Xi �= 0, it follows that i ∈ D

and then the factor p̂Xi
i = 0 appears in the right hand side of (3.8.8), so that

L(p̂;X) = 0, in contradiction with fact (a).

The discussion in (a)-(c) can be summarized as follows: The largest value

of the likelihood function is positive, and a coordinate p̂i of the maximizer p̂

is positive if, and only if, the observation Xi is positive.

(d) Suppose that D is a singleton, say D = {j∗}. In this case p̂j∗ = 1.

When D = {j∗}, notice that (3.8.8) yields that L(p;X) = Cp
Xj∗
j∗ , which is

an increasing function of pj∗ , and then attains its maximum when pj∗ = 1,

so that p̂j∗ = 1.

(e) Suppose that S contains two or more indices and let j∗ ∈ D be fixed.

For every i ∈ D the equality

Xi

p̂i
=

Xj∗

pj∗

occurs.

To verify this assertion, for a real number h satisfying |h| < min{p̂i, p̂j∗},
define the k-dimensional vector p(h) by

p(h)j =





p̂j , if j �= i, j∗

p̂i − h, if j = i
p̂j∗ + h, if j = j∗

It follows form this specification p(h) ∈ P and p(0) = p̂. Defining g(h) =

L(p(h);X) for |h| < min{p̂i, p̂j∗}, relation (3.8.6) yields that 0 �= L(p̂;X) =

g(0) ≥ g(h), that is, the function g attains its maximum at h = 0, so

that g�(0) = 0. Observing that g(h) = C̃(p̂i − h)Xi(p̂j∗ + h)Xj∗ where

C̃ is a no-null term which does not depend on h, it follows that g�(h) =

[Xj∗/(pj∗ + h)−Xi/(pi − h)]g(h). Therefore,

0 = g�(0) =

�
Xj∗

pj∗
− Xi

pi

�
g(0),

and then, since g(0) �= 0,
Xj∗

pj∗
=

Xi

pi
.

Using the previous facts, it will be shown that, for i = 1, 2, . . . , k,

p̂i =
Xi

n
. (3.8.9)
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To establish this assertion, first notice that if i /∈ D, then Xi = 0, by (3.8.7),

and this implies that p̂i = 0, by part (b), so that the above equality always

holds when i /∈ D. To conclude it will be shown that (3.8.9) occurs when

i ∈ D. To achieve this goal, consider the following two exhaustive cases.

(i) D is a singleton, say D = {j∗}. In this context p̂j∗ = 1, by part (c),

and Xj∗ = n, since the Xi = 0 for i �= j∗ (by (3.8.7)) and
�k

r=1 Xr = n.

Consequently, (3.8.9) also holds when i = j∗.

(ii) D contains two or more indices. In this case, part (e) yields that the

quotient
Xi

p̂i
= λ

is constant when i varies in D. Thus, Xi = λp̂i and, using that Xi = 0 = p̂i

when i /∈ D, it follows that

n =

n�

r=1

Xr =
�

r∈D

Xr =
�

r∈D

λp̂r = λ

k�

r=1

p̂r = λ,

and then p̂i = Xi/n for all i ∈ D, showing that (3.8.9) also occurs when

i ∈ D. In short, for every i = 1, 2, . . . , k, the maximum likelihood estimator

of pi is p̂i = Xi/n. ��

Exercise 3.8.5. Let X1, X2, . . . , Xn be a random sample of size n from the

N
�
µ,σ2

�
distribution, where the vector (µ,σ2) ∈ Θ = IR × (0,∞) is un-

known. Set

g(µ,σ2) = P(µ,σ2)[X > c],

where c is a known constant. Determine the maximum likelihood estima-

tor ĝn of this parametric function and show that the {ĝn} is a consistent

sequence.

Solution. The basic properties of the normal distribution yield that

g(µ,σ2) = 1− Φ

�
c− µ

σ

�
,

where, as usual, Φ(·) is the cumulative distribution function of the standard

normal distribution. Recalling that the maximum likelihood estimator of

µ,σ2) is

(µ̂n, σ̂
2
n) = (Xn, S

2
n),
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the invariance theorem yields that

ĝn = 1− Φ

�
c−Xn

Sn

�
;

since g(·, ·) is a continuous function in the parameter space Θ and the se-

quences {Xn} and {S2
n} estimate consistently to the parameters µ and σ2,

respectively, the continuity theorem yields that {ĝn} is a consistent sequence

for g(µ,σ2). ��

Exercise 3.8.6. Let X = (X1, X2, . . . , Xn) be a random sample from the

density f(x; θ) = (θ/x2)I[θ,∞)(x), where θ ∈ Θ = (0,∞).

(a) Find the maximum likelihood estimator {θ̂n} of θ and verify that {θ̂n}
is consistent.

(b) Find the maximum likelihood estimator of g(θ) = Pθ[X ≤ c], where c is

a known constant, and show the consistency of the sequence {ĝn}.
(c) If n = 5 find the estimate ĝ5 corresponding to

x = (2.9, 1.48, 5.62, 4.0, 1.22).

Solution. (a) Given X = (X1, X2, . . . , Xn) with positive components, the

corresponding likelihood function is

L(θ,X) =
n�

i=1

θ

X2
i

I[θ,∞)(Xi) =
θn�n

i=1 X
2
i

n�

i=1

I[θ,∞)(Xi), θ ∈ (0,∞).

Observing that

n�

i=1

I[θ,∞)(Xi) = 1 ⇐⇒ I[θ,∞)(Xi) = 1 for all i = 1, 2, . . . n

⇐⇒ θ ≤ Xi for all i = 1, 2, . . . n

⇐⇒ θ ≤ X(1) = min{X1, X2, . . . , Xn},
⇐⇒ I(0,X(1)](θ) = 1,

it follows that

L(θ,X) =
1�n

i=1 X
2
i

θnI(0,X(1)](θ).
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This expression shows that L(·;X) is strictly increasing in (0, X(1)] and is

null outside this interval. Hence, θ̂n = X(1). Observe now that, for ε > 0,

Pθ[θ̂n > θ + ε] = Pθ[Xi > θ + ε, i = 1, . . . , n]

=
n�

i=1

Pθ[Xi > θ + ε]

=
n�

i=1

� ∞

θ+ε

θ

x2
dx

=

�
θ

θ + ε

�n

→ 0 as n → ∞.

Since Pθ[θ̂n < θ] = 0, it follows that Pθ[|θ̂n − θ| > ε] = Pθ[θ̂n > θ + ε] → 0

as n → ∞, that is, {θ̂n} is a consistent sequence.

(b) By the invariance principle, the maximum likelihood estimator of g(θ) is

ĝn = g(θ̂n) = g(X(1)).

On the other hand, the function g(θ) is explicitly given by

g(θ) =

� c

0

f(x; θ) dx =

� c

0

θ

x2
I[θ,∞)(x) dx =

�
1− θ/c, if θ ≤ c,
0 if c < θ,

and it is clear the g(·) is continuous in the parameter space. Using that

{θ̂n} is a consistent sequence, the continuity theorem yields the consistency

of {ĝn}.

The estimate θ̂5(x) corresponding to the given data is

θ̂5(x) = min{x1, x2, x3, x4, x5} = 1.48,

and then

ĝ5(x) = g(1.48) =
�
1− 1.48/c, if θ ≤ 1.48,
0 if 1.48 < θ.

��

Exercise 3.8.7. Let X = (X1, X2, . . . , Xn) be a random sample of size n from

the displaced exponential density

f(x; δ,λ) = (1/λ)e−(x−δ)/λI[δ,∞)(x),
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where θ = (δ,λ) ∈ Θ = IR×(0,∞) is unknown. In this context, the maximum

likelihood estimator of θ is

θ̂n = (δ̂n, λ̂n) = (X(1), Xn −X(1)),

where X(1) is the minimum of the sample X. If n = 5 and the sample takes

the value x as in Exercise 3.8.6, find the estimate of the parametric function

g(θ) = Pθ[X > c], where c is a known constant and X has density f(·; δ,λ).

Solution. . Notice the following two facts: (i) IfX has density f(x; δ,λ), then

Y = (X−δ)/λ has the Exponential (1) distribution, an assertion that follows

from the change of variable formula, and (ii) If Y ∼ Exponential (1), then

P [Y > y] = min{1, e−y}. It follows that g(θ) = P [X > c] = P [(X − δ)/λ >

(c− δ)/λ] = min{1, e−(c−δ)/λ}, and then

ĝn = g(θ̂n) = g(δ̂n,λn) = min{1, e−(c−δ̂n)/λ̂n}.

For the data vector in Exercise 3.8.6, n = 5, and the observed value of

θ̂5 = (δ̂5, λ̂5) is (1.48, 5.055− 1.480) = (1.48, 3.575). Therefore, the estimate

ĝ5(x) is given by

ĝ5(x) = g(1.48, 3.575)

= min{1, e−(c−1.48)/3.575} =

�
1, if c < 1.48,
e−(c−1.48)/3.575, if c ≥ 1.48,

concluding the argument. ��

Exercise 3.8.8. Let X = (X1, X2, . . . , Xn) be a random sample from a

Geometric (p) distribution, where p ∈ [0, 1], so that the common probability

function of the variables Xi is given by

f(x; p) = (1− p)x−1pI{1,2,3,...}(x).

(a) Find the maximum likelihood estimator of p.

(b) A state has 36 counties. Assume that each county has equal proportions

of people who favor a certain gun control proposal. In each of 8 randomly

selected counties, it is determined how many people is needed to sample to

find the first person who favors the proposal. The results are

3, 8, 9, 6, 5, 3, 2
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(e.g., in the first county sampled, the first two persons sampled were opposed,

and the third one was in favor). Based on this data, compute the maximum

likelihood estimator of p.

Solution. (a) Given a sample X = (X1, X2, . . . , Xn) whose components are

positive integers, the corresponding likelihood function is

L(p;X)

n�

i=1

(1− p)Xi−1p = (1− p)Tn−npn, p ∈ [0, 1],

where

Tn =

n�

i=1

Xi.

The function L(·;X) is continuous in [0, 1], and then it has a maximizer p̂n.

To determine such a point, notice that Tn ≥ n, since the Xis are positive

integers, and consider the following two exhaustive cases.

(i) Tn = n. In this context, L(p;X) = pn is an increasing function in [0, 1],

so that the likelihood function is maximized at the unique point p̂n = 1.

(ii) Tn > n. In this case L(p;X) is null at the extreme points p = 0 and

p = 1 of its domain, and is positive for p ∈ (0, 1). It follows that L(p;X)

attains its maximum inside the open interval (0, 1), and the maximizer must

satisfy the likelihood equation

∂pL(p;X) = −Tn − n

1− p
L(p : X) +

n

p
L(p;X) = 0

where L(p;X) �= 0. Hence,
Tn − n

1− p
=

n

p
,

which is equivalent to p(Tn−n) = n(1−p), that is, pTn = n, and the unique

solution is p = n/Tn. Consequently,

p̂n =
n

Tn
=

1

Xn

,

a relation that is also valid when Tn = n, since in this case p̂n = 1 and

Xn = 1. In short, the maximum likelihood estimator of p is p̂n = 1/Xn.

(b) For the data set x in the problem, X8 attains the value x8 = 40/8 = 5,

and the corresponding estimate of p is p̂8 = 1/5 = 0.2. ��



Chapter 4

Method of Moments

4.1. Description of the Method

This section introduces another method to produce estimators of parametric

functions. Consider a random variable X whose distribution depends on an

unknown parameter θ,

X ∼ Pθ, θ ∈ Θ,

where the parameter space Θ is a subset of IRm for some m. Now, let µ�
k(θ)

be the kth moment of the distribution Pθ, that is,

µ�
k(θ) = Eθ[X

k], (4.1.1)

which is supposed to be finite. Now, let X = (X1, X2, . . . , Xn) be a random

sample of size n of the population Pθ, so that

X1, X2, . . . , Xn are independent and identically

distributed with common distribution Pθ.
(4.1.2)

The kth sample moment of the data X = (X1, X2, . . . , Xn) is defined by

m�
k n =

1

n

n�

i=1

Xk
i . (4.1.3)

71
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This sample moment is naturally considered as an estimator of µ�
k; indeed,

since the powers Xk
1 , X

k
2 , . . . , X

k
n are independent with the same distribution

as Xk, the law of large numbers yields that

m�
k n =

1

n

n�

i=1

Xk
i

Pθ−→Eθ[X
k] = µ�

k(θ) (4.1.4)

so that the sequence {m�
k n}n=1,2,3,... estimates µ�

k(θ) consistently. More-

over, Eθ[mk n] =
�n

i=1 Eθ[X
k
i ]/n = nµ�

k(θ)/N = µ�
k(θ), so that m�

k n is an

unbiased estimator of µ�
k(θ).

The method of moments can be now stated formally as follows: Given

X1, X2, . . . , Xn as in (4.1.2), then

(i) The kth population moment µ�
k(θ) is estimated by m�

k n;

(ii) If a parametric quantity g(θ) can be expressed in terms of the population

moments µ�
1(θ), µ

�
2(θ), . . . , µ

�
r(θ), say

g(θ) = G(µ�
1(θ), µ

�
2(θ), . . . , µ

�
r(θ)), (4.1.5)

then the estimator of g(θ) based on X1, X2, . . . , Xn is given by

ĝn = G(m�
1n,m

�
2n, . . . ,m

�
r n); (4.1.6)

in words, if the parametric quantity g(θ) is a function of some population

moments, then the estimator ĝn is the same function evaluated at the cor-

responding sample moments.

4.2. Consistency of the Estimators

As it was already noted, the estimator m�
k n of µ�

k(θ) is unbiased. However,

the above estimator ĝn of the parametric function in (4.1.5) is not, in general,

unbiased if the function G is not linear; this assertion will be exemplified

several times below. On the other hand, it will be now proved that the

sequence {ĝn} is generally consistent. The following is the continuity theorem,

and it was stated without proof in Section 2.1

Theorem 4.2.1. Suppose that the function G(z1, z2, . . . , zr) is continuous at

each point (µ�
1(θ), µ

�
2(θ), . . . , µ

�
r(θ)), θ ∈ Θ. In this case, within the frame-

work determined by (4.1.2), the parametric function g(θ) in (4.1.5) is esti-

mated consistently by the sequence {ĝn} specified in (4.1.6).
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Proof. It must be shown that, for each θ ∈ Θ and ε > 0,

lim
n→∞

Pθ[|ĝn − g(θ)| > ε] = 0. (4.2.1)

To establish the conclusion, let θ ∈ Θ be arbitrary but fixed. By the conti-

nuity of the function G, given ε > 0, there exists δ > 0 such that

|xi − µ�
i(θ)| ≤ δ, i = 1, 2, . . . , r

⇒ |G(x1, x2, . . . , xr)−G(µ�
1(θ), µ

�
2(θ), . . . , µ

�
r(θ))| ≤ ε.

This implication is equivalent to

|G(x1, x2, . . . , xr)−G(µ�
1(θ), µ

�
2(θ), . . . , µ

�
r(θ))| > ε

⇒ |xi − µ�
i(θ)| > δ, for some i = 1, 2, . . . , r.

Consequently,

|G(m�
1n,m

�
2n, . . . ,m

�
r n)−G(µ�

1(θ), µ
�
2(θ), . . . , µ

�
r(θ))| > ε

⇒ |m�
i n − µ�

i(θ)| > δ, for some i = 1, 2, . . . , r.

that is,

[|G(m�
1n,m

�
2n, . . . ,m

�
r n)−G(µ�

1(θ), µ
�
2(θ), . . . , µ

�
r(θ))| > ε]

⊂
r�

i=1

[|m�
i n − µ�

i(θ)| > δ],

which can be written as

[|ĝn − g(θ)| > ε] ⊂
r�

i=1

[|m�
i n − µ�

i(θ)| > δ];

see (4.1.5) and (4.1.6). From this point, the monotonicity and subadditivity

properties of a probability distribution yield that

Pθ[|ĝn − g(θ)| > ε] ≤
r�

i=1

Pθ[|m�
i n − µ�

i(θ)| > δ].

Recalling the Pθ[|m�
i n − µ�

i(θ)| > δ] → 0 as n → ∞, by (4.1.4), taking the

limit as n goes to ∞ in the above display, it follows that

lim
n→∞

Pθ[|ĝn − g(θ)| > ε] ≤
r�

i=1

lim
n→∞

Pθ[|m�
i n − µ�

i(θ)| > δ] = 0,
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establishing (4.2.1). ��

Before proceeding to present some examples on the method of moments,

it is convenient to summarize the precedent discussion: Given a sample X =

(X1, X2, . . . , Xn) of a population Pθ, where θ ∈ Θ,

(i) The method of moments prescribes to estimate a population moment by

the corresponding sample moment;

(ii) The estimator of a function of the moments µ�
1(θ), µ

�
2(θ), . . . , µ

�
k(θ) is

constructed evaluating the same function at the sample moments

m�
1n,m

�
2,n, . . . ,m

�
k n.

(iii) When estimating a continuous function of population moments, the

method of moments produces consistent estimators.

(iv) If a linear function of population moments is being estimated, the

method of moments generates unbiased estimators; however, the estimators

of nonlinear functions of population moments are generally biased.

4.3. Applications

One of the appealing features of the method of moments is that, as soon as

the parametric function of interest can be expressed as a function of the pop-

ulation moments, the construction of the estimator corresponding to a given

sample is straightforward. In some cases the method can be applied success-

fully, particularly in problems for which the maximum likelihood estimate

needs to be determined numerically.

The above ideas are illustrated in the following examples.

Exercise 4.3.1. Let X1, X2, . . . , Xn be a random sample of size n from the

Uniform (0, θ) distribution, where θ ∈ Θ = (0,∞).

(a) Find the method of moments estimator of θ and show that it is unbiased.

(b) Find the method of moments estimator of θ2 and show that it is biased,

Also, find an unbiased estimator of θ2.

(c) Show the consistency of the estimators in parts (a) and (b).
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Solution. (a) First, the parametric quantity g(θ) = θ must be expressed in

terms of the moments of the parent distribution. In the present case, if X ∼
Uniform (0, θ), then µ�

1(θ) = Eθ[X] = θ/2, so that θ = 2µ�
1. Consequently,

the moments estimator of θ is θ̂n = 2m�
1n(X) = 2Xn. Notice that θ is a

linear function of µ�
1(θ), and then θ̂n is unbiased.

(b) The moments estimator of g(θ) = θ2 based on the sample of size n

is ĝn = g(θ̂n) = θ̂2n = (2Xn)
2 = 4X

2

n; since θ̂n is not constant, Jensen’s

inequality yields that Eθ[ĝn] = Eθ[(θ̂n)
2] > Eθ[θ̂n]

2 = θ2, and then ĝn is a

biased estimator. To determine an unbiased estimator of g(θ) = θ2, notice

that
Eθ[θ̂

2
n] = Varθ

�
θ̂n

�
+ Eθ[θ̂n]

2

= Varθ
�
2Xn

�
+ θ2

= 4Varθ
�
Xn

�
+ θ2

= 4
θ2

12n
+ θ2 =

�
1 +

1

3n

�
θ2.

Consequently, Un = 3n/(1 + 3n)θ̂2n = (3n/(1 + 3n)ĝn = 12n/(1 + 3n)X
2

n is

an unbiased estimator of θ2.

(c) Notice that in parts (a) and (b), θ and g(θ) are continuous functions of

the population moment µ�
1(θ), and then the sequences {θ̂n} and {ĝn} are

consistent for θ and g(θ), respectively. Also, Un = (3n/(1 + 3n)ĝn
Pθ−→ 1 ·

g(θ) = g(θ), and then {Un} is a consistent sequence for the parametric

function g(θ). ��

Exercise 4.3.2. Let X1, X2, . . . , Xn be a random sample of size n from the

Beta (α,β) distribution, where θ = (α,β) ∈ (0,∞) × (0,∞). Determine the

moment estimators of α and β.

Solution. If X ∼ Beta (α,β), the first two moments of X are

µ�
1 = Eθ[X] =

α

α+ β
, µ�

2 =
αβ

(α+ β)2(1 + α+ β)
+ (µ�

1)
2.

Now, the parameters α and β will be expressed in terms of µ�
1 and µ�

2. Notice

that

µ�
2 − (µ�

1)
2 =

µ�
1(1− µ�

1)

1 + α+ β
, and then α+ β =

µ�
1(1− µ�

1)

µ�
2 − (µ�

1)
2
− 1.
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Since α = µ�
1(α+ β), it follows that

α = µ�
1

�
µ�
1(1− µ�

1)

µ�
2 − (µ�

1)
2
− 1

�

On the other hand, notice that 1−µ�
1 = 1−Eθ[X] = 1−α/(α+β) = β/(α+β),

so that

β = (1− µ�
1)(α+ β) = (1− µ�

1)

�
µ�
1(1− µ�

1)

µ�
2 − (µ�

1)
2
− 1

�

From these two last displays, it follows that the moments estimators of α

and β based on a sample of size n are given by

α̂n = m�
1n

�
m�

1n(1−m�
1n)

m�
2n − (m�

1n)
2
− 1

�
= m�

1n

�
m1n −m�

2n

m�
2n − (m�

1n)
2

�

β̂n = (1−m�
1n)

�
m�

1n(1−m�
1n)

m�
2n − (m�

1n)
2
− 1

�
= (1−m�

1n)

�
m1n −m�

2n

m�
2n − (m�

1n)
2

�
,

concluding the argument. ��

Exercise 4.3.3. Let X1, X2, . . . , Xn be independent random variables, each

with the density f(x; θ) = 1/(2θ)I[−θ,θ](x). Find the moments estimator of

θ and show directly that is biased.

Solution. The uniform distribution on the interval [−θ, θ] has mean µ�
1 = 0,

so that θ can not be expressed as a function of µ�
1. Therefore, the second

moment must be calculated. If X ∼ Uniform(−θ, θ),

µ�
2(θ) = Eθ[X

2] = Varθ [X2] =
(2θ)2

12
=

θ2

3
.

Since θ is a positive number, it follows that θ = (3µ�
2(θ))

1/2, and then the

moments estimator of θ is given by

θ̂n = (3m�
2n)

1/2.

This estimator is biased. Indeed, the second sample moment is not con-

stant with probability 1 and, using that the function H(x) = x1/2 is strictly

concave, it follows from Jensen’s inequality that

Eθ[θ̂n] = Eθ[(3m
�
2n)

1/2] = Eθ[H(3m�
2n)] > H(Eθ[(3m

�
2n]) = H(θ2) = θ,
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so that θ̂n is biased with positive bias function. ��

4.4. Further Examples

Exercise 4.4.1. Let X1, X2, . . . , Xn be a random sample of size n from a

N
�
θ, θ2

�
distribution for some θ ∈ Θ = (0,∞). Find an estimator of θ2

using the method of moments.

Solution. Let X ∼ N
�
θ, θ2

�
and notice that the first population moment is

µ�
1(θ) = Eθ[X] = θ, Thus, a method of moments estimator of θ is given by

θ̂n = m�
1n = Xn. This estimator was obtained quite directly, and the sim-

plicity of the present argument should be contrasted with the effort required

to determine the maximum likelihood estimator of θ; see Exercise 3.2.2. ��

Exercise 4.4.2. Let X1, X2, . . . , Xn be a random sample of size n from the

Geometric (p) distribution, so that the common probability function of the

variables is

f(x; p) = (1− p)x−1pI{1,2,3,...}(x).

Use the method of moments to find an estimator of p. Show that the method

of moments used to estimate 1/p produces the estimator Xn.

Solution. If X ∼ Geometric (p), then

µ�
1(θ) = Eθ[X] =

∞�

x=1

x(1− p)x−1p

= p

∞�

x=1

x(1− p)x−1

= p
d

dp

� ∞�

x=1

(1− p)x

�
= p

d

dp

�
1

1− (1− p)

�
=

p

p2
=

1

p
.

It follows that p = 1/µ�
1, and then the method of moments produces the

following estimator of p:

p̂n =
1

m�
1n

=
1

Xn
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As for the estimation of g(p) = 1/p, the previous calculations show that

g(p) = µ�
1(p), and then

ĝn = m�
1n = Xn

is an estimator of g(p) produced by the method of moments. ��

Exercise 4.4.3. Let X1, X2, . . . , Xn be a random sample from the ‘displaced’

exponential population with density

f(x;α,λ) =
1

λ
e(x−α)/λI(α,∞)(x),

where θ = (α,λ) ∈ IR× (0,∞) = Θ. Use the method of moments to generate

estimators of α and λ, and investigate their unbiasedness and consistency.

Solution. To begin with, the first two population moments of the given popu-

lation will be determined, The task is simplified by the following observation:

If X has the density f(x;α,λ), then Y = (X − α)/λ ∼ Exponential (1).

It follows that E[Y ] = 1 = Var [Y ] = E[Y 2]− 1, so that

E

�
X − α

λ

�
= 1 = E

��
X − α

λ

�2
�
− 1.

The first part of this relation yields that

µ�
1(θ) = Eθ [X] = α+ λ (4.4.1)

whereas the second part implies that Eθ

�
(X − α)2

�
= 2λ2, so that

Eθ

�
X2 − 2Xα+ α2

�
= 2λ2,

a relation that leads to

µ�
2(θ) = Eθ[X

2] = 2λ2 − α2 + 2Eθ[X]α

= 2λ2 − α2 + 2(λ+ α)α

= 2λ2 + 2αλ+ α2

= 2λ(λ+ α) + α2

= 2λµ�
1(θ) + α2

(4.4.2)
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where (4.4.1) was used in the last step. Using (4.4.1) again, notice that

λ = µ�
1(θ)− α, and then

µ�
2(θ) = 2(µ�

1(θ)− α)µ�
1(θ) + α2

= 2µ�
1(θ)

2 − 2µ�
1(θ)α+ α2 = µ�

1(θ)
2 + (µ�

1(θ)− α)2.

Consequently,

λ2 = (µ1(θ)− α)2 = µ�
2(θ)− µ�

1(θ)
2;

observe that the relation µ�
2(θ) − µ�

1(θ)
2 is the population variance, so that

µ�
2(θ)− µ�

1(θ)
2 ≥ 0. Hence, recalling the λ > 0,

λ =
�
µ�
2(θ)− µ�

1(θ)
2,

and

α = µ�
1(θ)− λ = µ�

1(θ)−
�
µ�
2(θ)− µ�

1(θ)
2.

From these expressions, the method of moments renders the following esti-

mators:

λ̂n =
�
m�

2n − (m�
1n)

2

α̂n = m�
1n −

�
m�

2n − (m�
1n)

2.

Since λ and α are continuous functions of µ�
1 and µ�

2, it follows that these

estimators are consistent, and since they are not linear functions of µ�
1 and

µ�
2, they are not unbiased. Before concluding, it is interesting to observe that

m�
2−(m�

1)
2 =

�n
i=1 X

2
i /n−X

2

n =
�n

i=1(Xi−Xn)
2/n is the sample variance

S̃2
n (with denominator n), and then λ̂n is the sample standard deviation S̃n,

whereas α̂n = Xn − S̃n. ��

Exercise 4.4.4. Let X1, X2, . . . , Xn be a random sample of size n from the

discrete uniform distribution on the set {1, 2, . . . , θ} where θ is an unknown

positive integer. Use the method of moments to find an estimator of θ.

Solution. To express the parameter θ in terms of the population moments,

just notice that if X ∼ Uniform ({1, 2, . . . , θ}) then µ�
1(θ) = Eθ[X] = (1 +

θ)/2, so that θ = 2µ�
1(θ) − 1. Hence, the method of moments produces

the estimator θ̂n = 2m�
1n − 1 = 2Xn − 1; since θ is a linear function of

µ�
1(θ), it follows that the estimators θ̂n are unbiased and the sequence {θ̂n}

is consistent. ��
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Exercise 4.4.5. Let f1(x) and f2(x) be two densities with means µ1 and µ2,

respectively, where µ1 �= µ2. For each θ ∈ [0, 1] = Θ define the mixture

f(x; θ) = θf1(x) + (1− θ)f2(x).

Use the method of moments to find an estimator of θ based on a random

sample of size n from f(x; θ).

Solution. Observe that if X ∼ f(x; θ) then

µ�
1(θ) = Eθ[X]

=

�

IR

x[θf1(x) + (1− θ)f2(x)] dx

= θ

�

IR

xf1(x) + (1− θ)

�

IR

xf2(x) dx

= θµ1 + (1− θ)µ2 = µ2 + θ(µ1 − µ2);

notice that-the expectations of the densities f1 and f2 (µ1 and µ2, respec-

tively) are known numbers. Since µ1 �= µ2, it follows that

θ =
µ�
1(θ)− µ2

µ1 − µ2

and then, when a random sample X1, X2, . . . , Xn of the density f(x; θ) is

available, the method of moments prescribes the estimator

θ̂n =
m�

1n − µ2

µ1 − µ2
=

Xn − µ2

µ1 − µ2
,

which is unbiased. ��

Exercise 4.4.6. Let X1, X2, . . . , Xn be a random sample of size n form the

Gamma (α,λ) distribution, where θ = (α,λ) ∈ Θ = (0,∞)× (0,∞). Use the

method of moments to obtain estimators of α and λ.

Solution. The starting point is to evaluate the moments of order one and two

of the Gamma (α,λ) distribution. It is known that if X ∼ Gamma (α,λ),

then

µ�
1(θ) = Eθ[X] =

α

λ
, and µ�

2(θ) = Eθ[X
2] =

α(α+ 1)

λ2
. (4.4.3)
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To express α and λ in terms of µ�
1(θ) and µ�

2(θ), notice that

µ�
2(θ)

µ�
1(θ)

2
=

α(α+ 1)/λ2

α2/λ2
=

α+ 1

α
= 1 +

1

α
.

Hence,
µ�
2(θ)− µ�

1(θ)
2

µ�
1(θ)

2
=

1

α
,

which is equivalent to

α =
µ�
1(θ)

2

µ�
2(θ)− µ�

1(θ)
2
.

Combining this expression with the first equality in (4.4.3), it follows that

λ =
α

µ�
1(θ)

=
µ�
1(θ)

µ�
2(θ)− µ�

1(θ)
2
.

Then the method of moments estimation prescribes the estimators

α̂n =
(m�

1n)
2

m�
2n − (m�

1)
2
,

and

λ̂n =
m�

1n

m�
2n − (m�

1n)
2
.

Since m�
1n = Xn and

m�
2n − (m�

1n)
2 =

n�

i=1

X2
i /n−X

2

n =

n�

i=1

(Xi −Xn)
2/n = S̃2

n

the above estimators can be expressed in more familiar terms:

α̂n =
X

2

n

S̃2
n

, and λ̂n =
Xn

S̃2
n

.

Since α and λ are continuous functions of µ�
1(θ) and µ�

2(θ), the sequences

{α̂n} and {λ̂n} are consistent. ��

Remark 4.4.1. An interesting aspect of the precedent problem is that method

of moments allowed to obtain explicit formulas for the estimators of α and

λ. In contrast, the maximum likelihood estimators of α and λ must be

determined numerically for each data set. ��
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Exercise 4.4.7. Let X1, X2, . . . , Xn be a sample of the Bernoulli (p) distribu-

tion, where p ∈ [0, 1]. Find the moments estimator of p.

Solution. IfX ∼ Bernoulli (p), then µ�
1(p) = Ep[X] = p, so that the moments

estimator of p is p̂n = m�
1n = Xn. ��

Exercise 4.4.8. Let X1, X2, . . . , Xn be a sample of the density

f(x; θ) =
θ

x2
I[θ,∞)(x),

where θ ∈ Θ = (0,∞). Find an estimator of θ using the method of moments.

Solution. As usual, the starting point is to compute moments of the distribu-

tion until the parametric quantity to be estimated—θ in the present case—

can be expressed in terms of the available moments. Let X have the density

f(x; θ) and notice that

µ�
1(θ) = Eθ[X] =

�

IR

xf(x; θ) dx =

� ∞

θ

x
θ

x2
dx = θ

� ∞

θ

1

x
dx = ∞.

Since the first population moment is not finite, all the other moments of

order k ≥ 1 are ∞. Thus, θ can not be expressed in terms of the moments of

X which have order equal or larger than one. However, in the present case

an alternative is to consider fractional moments, that is, expected values of

fractional powers of X. For instance, consider X1/2 and notice that

µ�
1/2(θ) = Eθ[X

1/2]

=

�

IR

x1/2f(x; θ) dx =

� ∞

θ

x1/2 θ

x2
dx = θ

� ∞

θ

1

x3/2
dx = 2θ1/2.

Therefore,

θ =

�
µ�
1/2(θ

2

�2

,

an expression that leads to consider the estimator

θ̂n =

�
m�

1/2, n

2

�2

=

��n
i=1 X

1/2
i /n

2

�2

=

��n
i=1 X

1/2
i

2n

�2

,

which is biased, since θ is not a linear function of µ�
1/2(θ); however, θ is a

continuous function of µ1/2(θ), so that the sequence {θ̂n} is consistent. Of

course, other fractional moments may be used in this problem. ��
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Exercise 4.4.9. Let X1, X2, . . . , Xn be a sample of the Poisson (λ) distribu-

tion , where λ ∈ [0,∞). Find the moments estimator of λ.

Solution. If X ∼ Poisson (λ), then µ�
1(λ) = Eλ[X] = λ, so that the moments

estimator of λ is λ̂n = m�
1n = Xn. ��

Exercise 4.4.10. Let X1, X2, . . . , Xn be a sample of the N
�
0,σ2

�
distribution

, where σ ∈ (0,∞). Find the moments estimator of σ2 and analyze the

consistency of the sequence {σ̂2}.

Solution. If X ∼ N
�
0,σ2

�
, then µ�

1(σ) = Eσ[X] = 0, so that σ2 can not be

expressed in terms of µ�
1(σ) and it is necessary to compute more moments of

X. Next, observe that µ�
2(σ) = Eσ[X

2] = Varσ [X] = σ2, and it follows that

the interesting parametric function—σ2 in the present problem—equals the

second population moment. Thus, the method of moments prescribes the

estimator

σ̂2 = m�
2n =

1

n

n�

i=1

X2
i ;

since σ2 is a linear function of µ�
2(σ), σ̂

2 is an unbiased estimator of σ2. ��
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