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ResumenAbstract

La degradación de transcritos mediada por 
micro-RNAs (miRNAs) es una capa de regu-
lación génica a un nivel post-transcripcional 
que desempeña funciones importantes en 
plantas. Algunos rasgos fenotípicos que son 
de interés para la industria alimenticia están 
fuertemente regulados por este mecanismo 
molecular. En México, plantas de la familia 
Fabaceae representan una de las principales 
fuentes de alimentación. En consecuencia, 
es importante estudiar esta capa de regula-
ción para mejorar los cultivos y la producción 
de semillas, sin embargo, uno de los tópicos 
más difíciles es la identificación de los loci 
miRNAs. Los criterios básicos no son eviden-
cia suficiente para la identificación correcta. 
Recientemente, inteligencias artificiales (IA) 
basada en redes convolucionales (CNN) han 
mostrado un excelente poder predictivo en 
la identificación de los loci miRNAs, sin em-
bargo, algunas de estas CNN profundas son 
complejas y difíciles de entrenar y ejecutar. Se 
ha propuesto un modelo basado en la arqui-
tectura de perceptrón multicapa (MLP) para la 
identificación de loci de miRNAs, sin embargo, 
su rendimiento es limitado debido a las altas 
capacidades de cálculo necesarias para pro-
cesar las secuencias. En este artículo mostra-
mos como las IA basadas en modelos simples 
(MLP) son una opción más ágil y fácil de en-
trenar, Esto, debido en parte, a el uso de fre-
cuencias de k-meros para extraer información 
de las secuencias de nucleótidos y de la re-
presentación de la estructura. En este artícu-
lo evaluamos diferentes características de los 
modelos MLP como, funciones de activación, 
y capas “dropout”. Los modelos más adecua-
dos mostraron una sensibilidad del 84-90% y 
una especificidad del 98-100% cuando fueron 
sometidos a prueba con los datos de evalua-
ción. Adicionalmente, evaluamos los modelos 
con secuencias de transcritos ensambladas y 
obtuvimos valores de sensibilidad del 80-85% 
y especificidad del 90-95%.

Micro-RNA (miRNA) – mediated transcript de-
gradation is a layer of gene regulation at the 
post-transcriptional level that has important 
roles in plants. Some traits of plants that are 
of interest to the food industry are tightly 
regulated by this molecular mechanism. In 
México, Fabaceae – family plants represent 
one of the main food sources. Accordingly, it 
is important to study this layer of regulation 
to improve crop and seed production yields, 
nonetheless, one of the pressing concerns is 
the miRNAs loci identification. The basic and 
ancillary criteria, sometimes are not enough 
evidence for identifying miRNA loci. Artificial 
intelligence (AI), such as convolutional neural 
networks (CNN), have shown excellent predic-
tive performance in identifying miRNAs loci, 
however, some of these CNN are complex 
and difficult to train and run. A multi-layer 
perceptron (MLP) model has been proposed 
for identifying pre-miRNAs sequences; it pro-
cesses 180 feature information, however, the 
analysis is limited by the feature calculation, 
because it is computationally intensive. In this 
work, we proposed the use of AI based on a 
multi-layer perceptron (MLP) model which 
isn’t complex and easy to train, we also pro-
posed the use of k-mer frequencies to extract 
information from nucleotide and secondary-
structure representation sequences. We tes-
ted several features of MLP models such as 
activation functions between layers and the 
number of dropout layers. The best-fitted mo-
dels showed 84-90% of sensitivity and 98 to 
100% of specificity when they were evaluated 
with testing datasets. We tested the predicti-
ve performance of the best-fitted models on 
real deep RNA-seq data. In conclusion, in this 
paper, we present an MLP-based AI capable of 
identifying pre-miRNAs sequences from the 
Fabaceae family plants using deep RNA-Seq 
data, these AIs showed sensitivity values of 
80-85% and specificity values of 90-95%. 
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INTRODUCTION 

Plants life success and the development of traits of agronomic interest are tightly related to 
precise gene regulation. Several layers of regulation are implicated in these phenomena, howe-
ver, micro-RNAs (miRNAs)-mediated posttranscriptional regulation has caught the attention 
because they fine-tune the expression of several gene families that have roles in huge and 
diverse plant phenomena like pathogen resistance (Yang et al., 2021), abiotic stress tolerance 
(Zhang et al., 2022), plant-environment interactions (Song et al., 2019), traits development and 
homeostasis (Dong, Hu and Zhang, 2022). In México, Fabaceae – family plants such as Phaseo-
lus vulgaris (common bean), have gained interest in agriculture and the food industry because 
crop deployments and seed production represent one of the main food sources (Centeno-Gon-
zález et al., 2021; Shavanov 2021). To improve the yield of crops and the production efficiency 
of these food sources, it is important to understand the regulatory process during plant deve-
lopment. We think studying the regulatory process mediated by miRNAs in Fabaceae plants, 
could unveil important features of the developmental process and other functional roles that 
are essential in plants, nonetheless, one of the pressing concerns in studying miRNA regula-
tion, is the miRNA loci (MIR genes) identification and annotation (Meyers, 2008; Rojo-Arias and 
Busskamp, 2019)

During miRNA canonical biogenesis, DNA-dependent RNA polymerase II (DNA Pol II) is res-
ponsible for transcribing the MIR genes that could be coding or non-coding genes, generating 
transcripts called primary transcripts (pri-miRNAs) which are consecutively processed, mainly 
by, the endoribonuclease DICER-LIKE 1 (DCL1) enzyme, Serrate (SE) and Hypnoatic leaves 1 
(HYL1) cofactors producing the pre-miRNAs hairpins/stem-loop which are translocated from 
the nucleus to the cytoplasm to be cleaved by DCL1 again to form the miRNA/miRNA* duplex 
that is methylated by Hua Enhancer 1 (HEN1). Then, the RNA-induced silence complex (RISC) 
formed together with the 20-24 length mature miRNAs and the ARGONAUTE carrier protein 
(AGO1). This complex is responsible for targeting transcripts and recruiting nucleases to degra-
de them or inhibit the translation process (Gangadhar et al., 2021; Zhang et al., 2022).

MIR genes are extremely challenging to locate using basic criteria such as the presence of the 
transcript and the prediction of the stable hairpin formation, and it is because there is a mas-
sive quantity of transcripts that form stable hairpins and they aren’t miRNAs (Kozomara and 
Griffiths-Jones, 2010; Rojo-Arias and Busskamp, 2019). Ancillary criteria have been proposed 
such as conservation between species, target identification, dicer (DCL1) dependence, RNA-de-
pendent RNA polymerase and Polymerases IV/V independence, but they aren’t strong evidence 
in identifying a MIR locus. Evolutionary relationships are strong evidence that can be used to 
identify MIR loci, however, this approach avoids identifying species-specific MIR loci that aren’t 
conserved between species (Meyers, 2008). To understand this complex layer of regulation, it 
is important to correctly identify the MIR loci that encode for miRNAs in sequenced genomes. 

Palabras clave:

Familia Fabaceae, Inteligencia artificial, 
microARNs, Regulación génica de plan-
tas, Regulación post-transcripcional.
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nal regulation.
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Several approaches have been proposed to solve this problem, and those that have succe-
eded are based on convolutional neural networks (CNN). Several works have shown that 
these artificial intelligence are capable of identifying miRNAs transcripts and MIR loci with 
high accuracy (Cha et al., 2021; Zheng et al., 2019; Zhang et al., 2024). Some CNNs are 
complex neural networks, they are composed of several convolutional and pooling layers, 
and several kernels that preprocess the input data, by a process called convolution to au-
tomatically extract different small features or patterns which are passed to a downstream 
feed-forward neural network also known as multi-layer perceptron to get the probability of 
predicting if something belongs to a category (Krizhevsky, Sutskever and Hinton, 2012). It 
is also known that the accuracy of a neural network is related to its size; the bigger it gets, 
the more accurate it becomes. To build an accurate CNN, it has to be complex and big, and 
this becomes computationally expensive (Zhao et al., 2021). In addition, MLP models have 
flexibility in data inputs and have a high capacity in recognizing more abstract patterns. Lo-
kuge and coworkers (2022), have proposed an MLP model that processes 180 sequential, 
structural and thermodynamic features for plant pre-miRNA identification, however, the 
analysis is constrained for the feature calculation because it is computationally intense.

Simple multi-layer perceptron model (MLP) is less complex than deep CNN and it doesn’t 
have to be deep to get accurate predictions, it is composed of the input layer, several 
hidden layers, and the output layer. This architecture is equal to the last part of a CNN (Kri-
zhevsky, Sutskever and Hinton, 2012). Thus, in this work, we proposed the use of artificial 
intelligence (AI) based on the MLP architecture, but instead of using a convolution process 
to extract patterns from input data, we proposed the use of k-mer frequencies from nu-
cleotide and secondary-structure representation sequence, to extract useful patterns from 
input data to make predictions on the assembled sequences of deep-sequencing RNA-seq 
data. This information extraction method isn’t computationally expensive.

With this in mind, we built five models (Daphne, Emerald, Florence, Greece and Hilda) ba-
sed on the MLP architecture, but with different characteristics related to the number of 
dropout layers and activation functions between layers and in the output layer. They are 
simple neural networks composed of an input layer that receives input data from putative 
pre-miRNA assembled sequences, 4 hidden layers (500, 250, 100, 50 neurons) and the out-
put layer of one neuron, if it turns on, it predicts a miRNA, otherwise it turns off. These mo-
dels were trained in a modest PC with a 4-core 3GHz Ryzen 3 processor and 10Gb of RAM; 
no special devices, such as GPUs or TPUs were used in this work. The models’ predictive 
accuracy we obtained in this work was similar to the accuracy obtained with CNN reported 
in (Zheng et al., 2019). However, these MLP models have the advantage of simplicity and 
compactness therefore, they are easy to train, tune and run, even in low-capacity devices. 
Also, they have flexibility in input data processing and can learn more abstract patterns. In 
this work, we also evaluated the effect of the models’ individual output combinations by 
average, on models’ predictive performance and we observed that some combined.
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MATERIALS AND METHODS

1. Datasets preparation
Datasets were constructed with sequences obtained from two sources, (1) unspliced transcript se-
quences from species belonging to the Fabaceae family downloaded from NCBI datasets (https://
www.ncbi.nlm.nih.gov/datasets/), and (2) with hairpin pre-miRNA sequences already reported in 
Plants miRNA Encyclopedia (Guo et al., 2020) for those Fabaceae species. We build 150 datasets for 
training models; and 40 datasets for testing. 

To build the datasets, we randomly sampled subsequences of size of 60 to 200 nucleotides from 
unspliced transcripts obtained from reported transcriptomes for Fabaceae plant species (Glycine 
max GCA_000004515.5, Cicer arietum GCA_000331145.1, Cajanus cajan GCA_000340665.2, Phaseolus 
vulgaris GCA_000499845.2, Arachis ipaensis GCA_000816755.2, Arachis duranensis GCA_000817695.3, 
Arachis hypogea GCA_003086295.2, Medicago truncatula GCA_003473485.2, Vigna unguiculata 
GCA_004118075.2, Glycine soja GCA_004193775.2, Lotus japonicas GCA_012489685.2, Arachis stenos-
perma GCA_014773155.1, Vigna umbellate  GCA_018835915.1, Pisum sativum GCA_024323335.2). We 
randomly sampled 4450 – 4480 sequences 150 times for the training datasets and 40 times for the 
testing datasets. The hairpin pre-miRNA sequences were downloaded from the Plant miRNA En-
cyclopedia database, where the miRNA loci were annotated by employing in silico predictions and 
experimental evidence from small RNA-seq and Parallel Analysis of RNA ends (PARE-seq) data (Guo 
et al., 2020). The hairpin pre-miRNA sequences dataset was split into two datasets, one of them with 
80% (3813) of the sequences for training and the other with 20% (953) of the sequences for tes-
ting. For each training dataset, we concatenated the hairpin pre-miRNA sequence dataset destined 
for training, and for each testing dataset, we also concatenated the pre-miRNA sequences dataset 
destined for testing. The randomly sampled subsequences were labeled as negative pre-miRNA 
sequences, and the sequences of pre-miRNA hairpins were labeled as positive sequences during 
training.

To transform the information from sequences to multi-layer perceptron input data, the 5-mers fre-
quencies of the nucleotide sequences and two-dimensional structure-sequence representation cal-
culated by RNAfold of ViennaRNA package (Lorenz et al., 2011), percentage of guanine and cytosine, 
minimum free energy and minimum free energy divided by sequence length were calculated. These 
data were used during training for discriminating between true and false pre-miRNAs sequences. All 
dataset values were normalized using the Min-Max method where original data are linearly trans-
formed (Henderi et al., 2021). Training and testing datasets are available at figshare_link.

2.  K-mers frequencies calculation for nucleotide and secondary 
structure sequence 
 We computed the total possible k-mers of 5 nucleotides composed by an alphabet of 4 letters [“A”, “C”, 
“G”, “T”] representing the nucleotides, then the count of the presence of each k-mer on sequence is 
calculated using a sliding-window algorithm. Then, each k-mer count is divided by the total count of all 
possible k-mers for each analyzed sequence. We applied a similar approach to process the information 
of the secondary structure. In that case, the secondary structure is represented by 3 letters [“.”, “(“, 
“)”]. The dot means that the nucleotide doesn't match any other nucleotide, left parenthesis and right 
parenthesis means that these nucleotides are aligned in the secondary structure. So the sequence 
that represents the secondary structure was processed in a similar way to the nucleotides k-mers but 
in this case, we used 5-mers conformed with letters of an alphabet of 3 letters.  
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3.	 Model evaluation methods
The metrics we used to evaluate the models were Sensitivity, Specificity, Positive Predictive Value 
(PPV) and Negative Predictive Value (NPV). Sensitivity can be defined, in this case, as the probability 
of identifying positive results on a population of sequences that are known to be miRNAs, and spe-
cificity is the probability of correctly identifying negative results on sequences population that are 
not miRNAs (Trevethan, 2017).

We also measured the accuracy as follows. 

sensitivity = 

PPV  = 

accuracy   = 

specificity = 

NPV = 

TP 

TP 

(TP+TN )

TN 

TN 

(TP+FN)

(TP+FP)

(TP+TN+FP+FN)

(TN+FP)

(TN+FN)

Eq. 1

Eq. 3

Eq. 5

Eq. 2

Eq. 4

Where TP means true positives, TN, true negatives, FP, false positives and FN false negatives.

4.	 Multi-layer perceptron model building, training and testing
Five multi-layer perceptron model architectures were constructed (Daphne, Emerald, Florence, 
Greece and Hilda) with an input layer of 1271 containers receiving sparse data, four hidden 
dense-connected layers with 500, 250, 100 and 50 neurons each layer. To avoid data overfit 
ting, two dropout layers set to 20% were added between the first and second hidden layers for 
Daphne, Emerald and Florence. Dropout layers of 20% were set between all hidden layers for 
the Greece model, and Hilda was constructed without any dropout layer between hidden layers. 
We tested different strategies of neuron activations in hidden layers; for the Emerald model 
we used sigmoid activation functions, for Florence, Greece and Hilda we used the hyperbolic 
tangent activation functions. In the case of Daphne, we did not use any activation function in 
the hidden layers. The output layer contained one neuron and was activated with the sigmoid 
function for every model (see Table 1). 

Meanwhile, PPV and NPV measure the likelihood if a given sequence encodes or doesn't encode 
for a miRNA, respectively (Trevethan, 2017).

Table 1.  Architecture features of MLP models

Daphne Emerald Florence Greece Hilda

Act. function None Sigmoid Tanha Tanh Tanh

Dropout 2 layersb 2 layers 2 layers Fullc None

Output act. 
function

Sigmoid Sigmoid Sigmoid Sigmoid Sigmoid

a. Hyperbolic tangent activation function.
b. Two dropout layers were set at 20% after hidden layer 1 and 2.
c. Full means that this model has dropout layers set at 20% after all hidden layers.
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During training, the Adaptive Moment Estimator (Adam) algorithm was used as the optimizer, Bi-
nary Cross Entropy was used as the Loss function, and Binary Accuracy was used as a metric to 
monitor the training. Hyperparameters such as learning rate and weight rate decay were set to 
1x10-4 and 1x10-7, respectively.

Adam optimizer.
vt= β1*vt-1-(1-β1 )*gt

Eq. 6

Eq. 7

Eq. 8

Eq. 9

Eq. 10

Where wt+1 is the weight for the next iteration, wt is the current weight, n is the learning rate, ∆wt is 
the amount of change of weight at time (t), vt is the exponential average of the gradients, st is the 
exponential average of the gradients raised to the square, and β1 and β2 are hyper-parameters set 
to 0.9 and 0.99 respectively.

Binary Cross Entropy Loss function.
We performed a mini-batch gradient descent learning with a batch size of 64 and 5 epochs with 
5 dataset randomization. For each dataset randomization, 80% of it, was used for training, and 
the remaining 20% was used for validation. The new model’s parameter values were saved if the 
Binary Accuracy value calculated on validating data was higher than the same metric calculated 
with the previously saved model’s parameters. We iterated this procedure until loss and valida-
tion loss values remained unchanged using the 150 training datasets. Model testing was done 
with new 40 datasets and the best model was selected. To use these models, we calculated the 
predictions from individual models and the results were rounded. If the result is equal to 1, the 
transcript was predicted to encode a miRNA, otherwise it was discarded. Model building, training 
and testing were done with Numpy, Pandas and Tensorflow + Keras Python libraries and with the 
required dependencies. The training was done on a PC machine with a 3GHz Ryzen 3 processor 
and 4Gb of RAM.
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RESULTS AND DISCUSSION 

1.Multi-layer perceptron model is a computationally streamlined 
option
Despite the challenging in identifying loci that encode miRNAs in a genome of interest, artificial in-
telligence based on neural networks has shown good predictive performance. Convolutional neural 
networks (CNN) have been chosen because they can extract complex miRNAs’ features automati-
cally from a sole nucleotide sequence, and they avoid depending on the calculated features such 
as minimum free energy, sequence length, secondary structure and base composition (Zheng et al., 
2019; Zhang et al., 2024). Convolutional Neural Networks' predictive accuracy, sensitivity and specifi-
city values ranged between 92 to 97, 87 to 97 and 97 to 100% respectively (Cha et al., 2021; Zheng et 
al., 2019; Zhang et al., 2024). Nonetheless, some of these neural networks are complex because they 
have several convolutional, kernel and pooling layers where input data is preprocessed, and then 
the information extracted from the convolution process is flattened and passed through a multi-
layer feed-forward neural network also known as multi-layer perceptron (Krizhevsky, Sutskever and 
Hinton, 2012). Predictive accuracy is highly related to the complexity and size of the neural network; 
the bigger and more complex it is, the more accurate it is. But, it is also known that big and complex 
neural networks are difficult to train because they are computationally expensive (Zhao et al., 2021).

Another way to obtain information and extract complex features from nucleotide sequences is to 
use k-mer frequencies. These frequencies were mainly used in alignment-free sequence comparison 
methods and represent the nucleotide composition on a given sequence. If the size of the k-mer in-
creases, the frequency representation becomes more specific (Zielezinski et al., 2017). In this work, 
we hypothesized that an artificial intelligence based on a simple multi-layer perceptron (MLP) model, 
would be a streamlined option because its architecture isn’t complex and it hasn’t to be big to get a 
good predictive performance (Zhao et al., 2021). We also think that k-mer frequencies can be used 
as input data, and we also dare to propose the use of the sequence information of the secondary-
structure representation calculated with RNAfold, and processed as k-mer frequencies as input data. 
We think we can extract base composition and secondary structure patterns from these input data.

N_k^l∈ {W_1,W_2,…,W_n } Eq. 11

 

5.	 Deep-sequencing RNA data processing 
Deep-sequencing RNA data (dsRNA) from Phaseolus vulgaris (Accession number SRP074456) and 
Medicago truncatula (Accession number SRP000631) were downloaded from the NCBI SRA archi-
ve, accessing them by the links from Plant’s miRNA Encyclopedia (Guo et al., 2020). Reads’ quality 
was evaluated with FastQC (Andrews, 2010), reads were filtered out by quality value lower than 
24 (for phred33 encoding) and adapters were also cut with Trimmomatic (Bolger, Lohse and 
Usadel, 2014) with default parameters except for MINLEN which was set to 10. Reads mapping 
was done with Hisat2 (Kim et al., 2019) using the reference genome sequences of Phaseolus vul-
garis G19833 (Accession: GCA_000499845.2) and Medicago truncatula Jemalong A17 (Accession: 
GCA_003473485.2). The SAM output files were sorted, indexed and transformed to BAM format 
with Samtools utilities (Li et al, 2009). BAM files were used to perform an assembly with Python 
custom scripts (simpleAssembler.py https://github.com/exseivier/mlp-fabaceae/SCRIPTS) and 
the Pysam Python module. After assembly, sequences were extracted from the GTF output file 
with Gffread (Pertea and Pertea 2020). These sequences were used in downstream analysis with 
the multi-layer perceptron models to predict if the assembled sequences encode or don’t enco-
de for a miRNA. 

The expression above shows the total possible k-mers that can be formed for nucleotide sequence 
and secondary structure sequence where “l” is the alphabet length (4 for nucleotides, and 3 for se-
condary structure), k stands for the size of the k-mer and n is equal to l^k. For this MLP architecture, 
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Figure 1. Models’ behavitor development along training. . In this figure we show the line plots, that 
monitor the evolution of model’s predictive performance along the training iterations/epochs for 
(A) Daphne, (B) Emerald, (C) Florence, (D) Greece and (E) Hilda. Red lines show the validation Loss 
calculated with validating data, and blue lines show the training Loss calculated with training data. 
Lines with dots represent the Binary Accuracy calculated with training data (blue) and validating 
data (red).

The performance development during training for Daphne, Florence and Hilda (Figure 1A, 1C, 1E) 
was similar between them, it was much less chaotic compared to Greece's (Figure 1D) develop-
ment behavior, although, it was moderately chaotic compared to Emerald (Figure 1B). This result 
can be explained because Daphne doesn’t use any activation function in the hidden layers and 
Florence and Hilda use hyperbolic tangent activation function in the hidden layers which permits 
calculating parameters with negative or positive values. Unlike all these models, Emerald uses the 
sigmoid function in hidden layers that allows calculating only positive values from 0 to 1. We think 
this feature leads to a less chaotic training process in the case of Emerald. The pattern of behavior 
for the Greece development can be explained by the excessive use of dropout layers that can intro-
duce bias and uncertainties in the model's predictive performance during training. Nevertheless, 
the chaotic history of the model development along the training is not related to the final model 
performance. Finally, we observed no data overfitting during training from the beginning to the 
end, so that means the Loss values calculated with validating datasets didn’t dramatically diverged 
from Loss values obtained with the training datasets.

we built the input layer as follows: k-mer frequencies for nucleotide sequences (45= 1024 k-mers) 
were concatenated with additional information (sequence length, guanine and cytosine percentage, 
minimum free energy (MFE) and MFE / sequence length) and the k-mers frequencies of secondary 
structure (35=243 k-mers). The whole input layer sums 1271 containers, that were consecutively den-
se-connected to the 4 hidden layers as described in materials and methods.

To this end we built five neural networks based on a multi-layer perceptron architecture (Daphne, 
Emerald, Florence, Greece and Hilda) (see Table 1). Results for the training process are shown in (Fi-
gure 1). It is easily observed, in almost all models (Figure 1A-C, 1E), except for Greece (Figure 1D), the 
diminishing of the Loss value and the increment of the Binary Accuracy value for training (blue line) 
and validating (red line) datasets along the training process that were around from 5k to near 7k of 
iterations. It took, in average, 30 minutes to reach that level of training in a PC with a 3GHz Ryzen 3 
processor with 4 cores and 10Gb of RAM. No graphic card was used in this work.  
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2.	 Models Testing
We evaluated the predictive performance for each saved model’s parameters for every model ar-
chitecture with 40 new datasets. So that means we got 40 different testing Binary Accuracy values 
for each model’s parameters tested. For each model, we plotted the horizontal boxplots of these 
values. In the ordinate axis, we plotted the Binary Accuracy of the saved model’s parameters during 
training sorted from lowest to highest value, and in the abscise axis, we plotted the Binary Accu-
racy obtained with the testing datasets (Figure 2). For almost all models, except for Greece (Figure 
2D), we observed an expected behavior, it is a positive correlation between the Binary Accuracy ob-
served during training and the Binary Accuracy obtained during testing, and the saturation effect 
observed at higher values of training and testing Binary Accuracy. These curved shapes observed 
in (Figure 2), for some models, represent the real continued improvement of the models along the 
training, until they reached a point where they couldn’t improve any more. Testing Binary Accuracy 
ranged between 89 to 98% which are excellent predictive values for a mathematical model.

Figure 2. Testing predictive performance. In this figure we show the results of the predictive performance evaluation for every 
model’s parameters, saved during training for (A) Daphne, (B) Emerald, (C) Florence, (D) Greece, (E) Hilda. In the ordinate axis 
we sorted the saved models’ parameters by Binary Accuracy values from the lowest to the highest, and plotted in the abscise 
axis the testing Binary Accuracy values in horizontal boxplots. In this plot, training accuracy means the Binary Accuracy calcula-
ted with the validating datasets during training.

In the case of the Greece model, we observed an eccentric behavior (Figure 2D), which means, 
it appears, as though it was a negative correlation between the Binary Accuracy observed in the 
training and the testing Binary Accuracy. But in a closer inspection, it can be seen a quick positive 
correlation between 73 to 94.26 % of Binary Accuracy observed in training reaching 90% of testing 
Binary Accuracy, and then a negative correlation was observed. It seems the model improved quic-

To monitor and test the model’s predictive performance we saved the models’ parameters if they 
produced a lower validating Loss and higher validating Binary Accuracy values than these values 
calculated with the previous model’s parameters. So we saved a new model each time it happened 
during the entire training process. These saved models were used to test the predictive accuracy 
with new datasets the models never saw during training. 
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Figure 3. Predictive performance evaluation of individual models and combinations.. In this figure we plot 
the percentage of (A) sensitivity, (B) specificity, (C) PPV and (D) NPV. Lower case letters tag groups 
of means of data whose values are significantly different. We used the Tukey HSD method to 
calculate the minimum significant difference between means. In order to normalize the data, 
log(odds) values of the percentages were calculated, that means the ln(X/(100-X)) where X is the 
percentage value.

kly and then it became less predictive. We think this behavior may be attributed to the excessive 
use of dropout layers between the 4 hidden layers that caused an uncertain effect.

To better understand the predictive power of the MLP models we calculated the Sensitivity, Speci-
ficity, Positive Predictive (PPV) and Negative Predictive Values (NPV) using the 40 testing datasets 
in the model evaluation process. So, we challenged the best model’s parameters for every model 
(Daphne, Emerald, Florence, Greece and Hilda) to make predictions over these testing datasets 
and counted the true positives (TP), true negatives (TN), false positives (FP) and false negatives 
(FN). TP means the pre-miRNAs sequences that were predicted as pre-miRNAs, TN means the no 
pre-miRNAs sequences that were predicted as no pre-miRNAS, FP means non-miRNAS sequences 
that were predicted as pre-miRNAs and FN means pre-miRNAs sequences that were predicted as 
no pre-miRNAs.

Accordingly, the sensitivity concept means the accuracy of the model to correctly predict if a se-
quence is a miRNA given a dataset of miRNAs sequences. Sensitivity values for the selected best 
models vary between them. Emerald and Greece showed the highest values, Daphne and Florence 
showed lower values, and Hilda showed the lowest values. That means Emerald and Greece are 
fitted to correctly predict miRNAs in a population of miRNAs sequences because they got values 
ranging from 84 to 90% (Figure 3A). The specificity concept means the accuracy of the model to 
correctly discard sequences as pre-miRNA given a dataset of no pre-miRNA sequences. In this 
analysis, we observed that Daphne is better fitted to correctly discard sequences as miRNAs com-
pared to other models because it showed the highest values ranging from near 98 to 100% (Figure 
3B). These results are confirmed with the PPV and NPV values respectively (Figure 3C, 3D). These 
results suggest that some models like Emerald and Greece are fitted to correctly predict miRNAs 
but they are not well fitted to discard sequences as pre-miRNAs. In contrast, Daphne is an excellent 
model for discarding pre-miRNAs, but has a lower performance in correctly predicting miRNAs, 
unlike Emerald and Greece. It seems that, during training, each model was specialized to one task 
that could be in predicting or discarding.
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Combinations	 Daphne	 Emerald	 Florence	 Greece	     Hilda
DEG	    	     	
DE		
DEFG		
DEFGH	
FEG			 
DtoG		
a. the X’s means that this model was combined with the other selected.

As we saw earlier, the chaotic history of the evolution of the model’s predictive performance is not 
related to the final model’s accuracy. Despite the chaotic evolution of Greece's model, we observed 
a good performance at predicting miRNAs. In addition, we got, in this work, metric values very simi-
lar to the values obtained with the Convolutional Neural Networks proposed by Zheng et al. (2019), 
but with a less complex and more compact neural network. This observation agrees with the idea 
that MLP architecture using k-mer frequencies of nucleotide and secondary structure sequences 
as feature information, is a streamlined option.

3.	 Prediction improvement by models’ output combinations
According to the observations about the task specialization, the models have suffered during tra-
ining, we hypothesized that the average of the individual outputs of the models which have con-
trasting specialized scenarios would produce a more robust and accurate pre-miRNA sequence 
prediction. To test this hypothesis, we calculate the average of the Emerald, Daphne and Greece 
models’ output with the following logic: as we observed, Daphne has specialized in discarding 
miRNAs, and Emerald and Greece have specialized in the predicting miRNAs task. We think the 
Daphne, Emerald and Greece output combination by the average will render better performan-
ce, in addition to the non-overfitted feature of the Greece model caused mainly by the use of 
excessive dropout layers between the 4 hidden layers. We called “DEG” to this combination. We 
also built other combinations and we used them as controls in the analysis (“DE”, “DEFG”, “DE-
FGH”, “FEG”, “DtoG”, see Table 2).

Xa X
X X
X X X X

XXXXX

X
X X X

X

X

Table 2. Combinations of the model’s individual outputs

In this analysis, we confirmed the prediction of our hypothesis of combining Daphne, Emerald 
and Greece outputs. In (Figures 3A and 3B), we showed the sensitivity and specificity values for 
individual models as well as for the combinations. It can be observed that DEG’s combined model 
showed a sensitivity significantly higher than Daphne, but was lower than Emerald and Greece. 
And the specificity of the DEG combined model is much higher than Emerald and Greece. It seems 
like the DEG combined model has inherited the features of the individual models and got a better 
predictive performance. It also can be observed in the values of PPV and NPV (Figure 3C and 3D). 
The other models showed better specificity but had lower values of sensitivity even lower or at 
least equal than Daphne and Florence. In general, these other models did not perform as well as 
DEG combined model did. 

 4.	 Predicting miRNAs from deep-sequencing RNA-seq data
Although the “DEG” combined model and other individual models have shown good results, they 
haven’t been tested with real deep-sequencing RNA-seq data. To test the predictive performance 
on real data, we analyzed deep-sequencing RNA (dsRNA-seq) data obtained from Phaseolus vul-
garis (common bean), a plant of interest in the agriculture and food industry (Accession number 
SRP074456) and Medicago truncatula (Accession number SRP000631). We downloaded the dsRNA-
seq data from the NCBI SRA archive, and the data processing pipeline is described in the materials 
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and methods section. Once we had the transcripts assembled from dsRNA-seq data, we analyzed 
them with Dpahne, Emeral and Greece models as well as the “DEG” combined model to predict 
which of these assembled sequences are pre-miRNAs and which of them aren’t. We used as true 
pre-miRNAs, the stem-loop sequences reported at Plants miRNAs Encyclopedia (PmiREN, Guo et al., 
2020). The results of the assembling process and the transcripts prediction are shown in Table 3.

Table 3. Results of assembling transcripts and predictions

Models DEG combined model d Daphne
Plant species P. vulgaris M. truncatula P. vulgaris M. truncatula

Predicted a 166 187 182 195

Discarded b 1394 2294 1378 2286

Total c 1560 2481 1560 2481

Models Emerald Greece
Plant species P. vulgaris M. truncatula P. vulgaris M. truncatula

Predicted 217 243 198 222
Discarded 1343 2238 1362 2259
Total 1560 2481 1560 2481

a. Assembled transcripts predicted as pre-miRNA sequences.
b. Assembled transcripts discarded as pre-miRNA sequences.
c. Total assembled short transcripts (60 to 200 nucleotides). %GC ranges 10 – 65% for P. vulgaris and 0-78% for M. truncatula.
d. DEG combined model is the average of the Daphne, Emerald and Greece individual outputs.

Results of sensitivity and specificity as well as the percentage of true positive (TP), false positive (FP), 
true negative (TN) and false negative (FN) predicted with MLP models (DEG, Emerald, Daphne and 
Greece) on dsRNA data from P. vulgaris is shown in (Figure 4).  

Figure 4. Models’ predictive performance on dsRNA data of P.   vulgaris. In (A) we plot the percenta-
ge of sensitivity and specificity for each tested model. (B) Schematic representation of the four 
possible outcomes: true positive, false positive, true negative and false negative. Horizontal 
blue bars represent the assembled transcripts; the cyan bars represent the mapped stem-loop 
sequences of reported miRNAs. Green and red horizontal bars represent the assembled trans-
cripts, that were predicted as miRNA or discarded, respectively. In (C) we plot the percentages 
of true positives, false positives, true negatives and false negatives in stacked bars for each 
tested model.
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We observed good specificity values for all individual and combined models reaching above 90%, 
which means a good discarding performance. We also observed that the DEG sensitivity value 
was higher than Daphne’s sensitivity value but lower than Emerald’s and Greece’s sensitivity 
values. Although this behavior, in general, was congruent with the models' testing results, we 
observed a notorious good performance in Greece predictions, showing high specificity values, 
even similar to Daphne’s sensitivity value (Figure 4A). Additionally, we observed, that Daphne's 
model had the lowest percentage of TP and the highest percentage of FN; this observation co-
rrelates with the lowest sensitivity value. Contrastingly, Greece had the highest percentage of TP 
and the lowest percentage of FN, and this correlates with the highest sensitivity value. Emerald 
had the highest FP percentages which affected the model behavior diminishing the specificity 
value. These results suggest that Greece is the best-fitted model to analyze dsRNA data of Fa-
baceae family plants (Figure 4C). To confirm this suggestion, we evaluated these models with 
dsRNA data from other related plants, Medicago truncatula. So we hypothesized if Greece is the 
fitted model to accurately predict pre-miRNAs sequences from dsRNA data of Fabaceae plants, 
we should expect to find similar results on the prediction performance with transcripts from as-
sembled dsRNA data of M. truncatula.

Results of sensitivity and specificity values, as well as count percentages for TP, FP, TN and FN 
for models’ predictive performance on dsRNA data of M. truncatula, are shown in Figure 5. In 
this analysis, we observed, that every model had high values of specificity as they did in pre-
dictions made on dsRNA data of P. vulgaris. However, we observed that the sensitivity value of 
DEG's combined model was closely similar to Daphne’s sensitivity value; it didn’t improve and it 
doesn’t correlate with the results obtained in the case of P. vulgaris. Unlike Daphne's and DEG's 
combined model, Greece and Emerald had high sensitivity values, being Greece the one that had 
the highest value. We also observed percentages of TP, FP, TN and FN with similar tendencies to 
these results observed in the case of P. vulgaris. This means Greece had the higher percentage of 
TP and the lowest percentage of FN, inversely Daphne model had the lower percentage of TP and 
the higher percentage of FN. Moreover, we observed that Emerald showed a higher percentage 
of FP. These results suggest, again, that Greece is the best-fitted model to predict plant miRNAs 
of the Fabaceae family.

Figure 5. Models’ predictive performance on dsRNA data of M. truncatula . In (A) we plot the percentage of sensi-
tivity and specificity for each tested model. (B) Schematic representation of the four possible outcomes: true po-
sitive, false positive, true negative and false negative. Horizontal blue bars represent the assembled transcripts; 
the cyan bars represent the mapped stem-loop sequences of reported miRNAs. Green and red horizontal bars 
represent the assembled transcripts, that were predicted as miRNA or discarded, respectively. In (C) we plot the 
percentages of true positives, false positives, true negatives and false negatives in stacked bars for each tested 
model.
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Greece and Emerald showed low specificity values and showed high values of sensitivity compa-
red to Daphne’s specificity and sensitivity values during the testing stage (Figure 3). DEG combi-
ned model showed a balanced performance with high sensitivity values compared with Daph-
ne and high specificity values compared to Greece and Emerald also, during the testing stage 
(Figure 3). Noteworthy, Greece performed better than Emerald Daphne and combined model 
DEG achieving high sensitivity values and similar specificity values when predicting miRNAs from 
deep-sequencing RNA data in Phaseolus vulgaris (Figure 4) and Medicago truncatula (Figure 5). In 
summary, Greece showed acceptable values of sensitivity and specificity ranging from 80.00 to 
85.72% and 91.46 to 93.57%, respectively, which were closely similar to the values obtained with 
the convolutional neural network proposed by (Zheng et al., 2019).

CONCLUSION
In this work, we developed models of artificial intelligence based on a simple Multi-Layer Percep-
tron architecture with the ability to identify miRNAs sequences of the Fabaceae – family plants 
from the deep-sequencing RNA-seq data. The Greece model showed a chaotic evolution during 
training, fast improvement, and the best predictive performance with real data, thus we conclu-
de that the use of dropout layers is important to avoid data overfitting in MLP models, and the 
chaotic evolution during the model training and testing isn’t related to the final predictive perfor-
mance with real data. Greece showed comparable values of accuracy, sensitivity and specificity 
to the convolutional neural network approach, but Greece is based on a simple MLP architectu-
re, thus that permits training, tuning and running this model with low-capacity devices. We also 
conclude that calculating k-mer frequencies is another way to extract patterns and useful infor-
mation from nucleotide sequences and secondary-structure representation sequences that can 
be used as input data in MLP-based models. Finally, we think the Greece artificial intelligence can 
be used in pipelines for the mapping and annotating of miRNAs in the Fabaceae-family genomes, 
and it can be easily retrained to perform prediction tasks in other plant families. 

The models can be accessed in the following link: https://github.com/exseivier/mlp-fabaceae
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