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ABSTRACT 

This work is concerned with finite-state Markov decision chains. It is supposed that the system 
is driven by a decision-maker assessing random cost via a utility function U. The main objective 
is to provide explicit examples of utility functions such that, in spite of representing different 
risk perceptions, render the same optimal average index and share the same average optimal 
stationary policies.
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INTRODUCTION

This work deals with discretetime finitestate 
Markov decision processes (MDPs) endowed 
with a risksensitive average cost criterion. 

Besides mild continuitycompactness assumptions, 
the class of models analyzed below is characterized 
by two main features concerning
(i) the dynamics of the system, and (ii) the way in 

which the controller measures the performance 
of a control policy:

(i) It is assumed that if the system is driven by a sta
tionary policy, then the sate space is irreducible. 
This means that, regardless of the initial sate x, 
every state y is visited by the system with positive 
probability.

(ii) The controller assesses a random cost via a utility 
function U, which is used to measure the perfor

mance of a control policy by the longrun Uave
rage cost criterion, an idea that will be formally 
introduced in Section 2.

In this framework, the main objective of this note is 
to highlight an interesting phenomenon, namely:

• Controllers with different attitudes before a random 
cost, may endup with the same optimal average index.
This fact is illustrated for specific utility functions by 
performing directly the necessary computations, which 
involve the particular properties of the functions. 
However, when the functions are ‘combined’ to obtain 
a new utility, such properties are not necessarily inhe
rited by the new mapping. For instance, consider two 
controllers with utility functions Ui, i = 1,2, given by

U1 x( ) = x2 , U2 x( ) = x, x 0.
These functions are homogeneous of degrees 2 

and 1/2, respectively and, as it will be shown below, 
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they render the same average criterion. However,
U = aU1 + 1 a( )U2 a 0,1( ),            (1.1)

is not homogeneous of any degree, and it is inter
esting to see whether or not the average index as
sociated to U coincides with the common average 
criterion induced by U1 and U2. In this direction it 
will be shown that

• The class U of utility function whose average criteria 
coincide with a given index J is a cone, that is, 
U1,U2  ∈U ⇒  U1 + U2 ∈ U and cU1 ∈ U for every  
c > 0.

In particular, this conclusion that if U1 and U2 
render the same average index J, then the average 
criterion associated to the function U in (1.1) also 
coincides with J.

The theory and applications of MDPs have been 
extensively studied; see, for instance, Hernández 
Lerma (1988), Puterman (1994), Arapostathis et al. 
(1993), Sennott (1998), Bäuerle and Rieder (2011). 
Concerning the idea of risksensitiveaverage op
timality, it was initiated in Howard and Matheson 
(1972) for exponential utilities, and the interest in 
other type of utilities was recently sparkled in Bäuer
le and Rieder (2013).

The organization of the subsequent material is 
as follows: In Section 2 the decision model is in
troduced and the idea of certainty equivalent of a 
random cost with respect to a general utility U is 
briefly discussed. Next, in Section 3 the notions of 
riskaversion and riskattraction are introduced and 
these concepts are illustrated using utility functions 
frequently used in economics. The exposition con
tinues in Section 4 where the risksensitive average 
criteria are formulated, and then in Section 5 it is 
shown that the three different utilities considered in 
the paper render the same optimal average cost and 
share the same stationary policies. The exposition 
concludes in Section 6 showing the class of utilities 
that determine the same optimal average criteria 
have the cone property.

2. Decision Model and Utility Functions
Let M = (S,A,{A(x)}x∈S,C,P) be an MDP, where the 
state space S is a finite set endowed with the discrete 
topology, the action set A is a metric space and, for 
each x ∈ S, A(x) ⊂  A is the nonempty subset of ad
missible actions at x, whereas
 C:IK → (0,∞)
is the positive cost function, where IK:= {(x,a)|x ∈ 
S,a ∈ A(x)} is the space of admissible pairs. On the 

other hand, P = [pxy(·)] is the controlled transition 
law on S given IK, that is, for all (x,a) ∈ IK and y ∈ S, 
the relations pxy(a) ≥ 0 and Py∈S pxy(a) = 1 are satisfied. 
This model model M represents a dynamical system 
driven by a decision maker (controller) applying ac
tions At as follows: At each time t ∈ IN:= {0,1,2,3,...} 
the controller observes the current state, say Xt = x ∈
S, and knows the previous states and actions. Using 
that information, the decision maker chooses the ac
tion (control) At = a ∈ A(x) to be applied, and such an 
intervention has two consequences: a cost C(x,a) is 
incurred, and the evolution of the system is influen
ced in such a way that the new state at t + 1 will be    
Xt+1 = y ∈ S with probability pxy(a).

Assumption 2.1. (i) For each x ∈ S, A(x) is a com-
pact subset of A.
(ii) For every x,y ∈ S, the mappings a 7→ C(x,a) and a 
→7 pxy(a) are continuous in a ∈ A(x).

Observe that, since C is positive, this assumption 
yields that

0 < min
k K

C k( ) max
k K

C k( ) ||C||< .         (2.1)

Policies. A policy π is a rule for choosing actions 
which, at each time t ∈ IN, may depend on the cu
rrent state as well as on the record of previous states 
and actions; see, for instance, Puterman (1994), or 
Bäuerle and Reider (2011) for details. The class of all 
policies is denoted by P and, given the initial state x 
∈ S and the policy π being used for choosing actions, 
the distribution of the stateaction process {(Xt,At)} is 
uniquely determined; such a distribution and the co
rresponding expectation operator are denoted by  Px

and Ex , respectively. Next, define IF:= Q
x∈S A(x) and 

notice that IF is a compact metric space, which con
sists of all functions f:S → A such that f(x) ∈ A(x) for 
each x ∈ S. A policy π is stationary if there exists f ∈ IF 
such that the equality At = f(Xt) is always valid under 
π; the class of stationary policies is naturally identi
fied with IF. Observe that, when the system is driven 
by f ∈ IF, the state process {Xt} is a Markov chain with 
timeinvariant transition matrix [pxy(f(x)]x,y∈S.

Utility Functions. A basic assumption in this 
work is that the attitude of the decisionmaker before 
a random cost Y is determined by a utility function 
U. This means that Y is assessed via E[U(Y)], where 
it is supposed that the expectation is welldefined. 
Thus, given two random costs Y and Y1, the deci
sion maker will prefer to pay Y1 when E[U(Y1)] < 
E[U(Y)], and will be indifferent between both costs 
if E[U(Y)] = E[U(Y1)]; observe that the preferen
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ces of the controller do not change when an affine 
transformation with positive slope is applied to U. 
In the sequel, all the utilities in the discussion are 
supposed to be continuous and strictly increasing 
functions on [0,∞).

Now, suppose that a decision maker with utili
ty function U receives the offer to avoid the random 
cost Y by paying a fixed amount c. In this case, the 
offer will be definitively accepted if U(c) < E[U(Y)] 
and will be refused when U(c) > E[U(Y)]. The thres
hold value c* satisfying U(c*) = E[U(Y)]—so that the 
decision maker is indifferent between paying the fi
xed amount c*or the random cost Y—is the certainty 
equivalent of Y with respect to U.

Definition 2.1. [Certainty Equivalent.] Let U be a 
utility function defined on [0,∞) If Y is a random cost, 
the certainty equivalent of Y is the number EU(Y) such 
that

U(EU(Y)) = E[U(Y)].
According to this definition, when the controller 

faces a random cost Y, he/she will (gladly) pay EU(Y) 
in order to avoid the random cost Y ; note that the 
certainty equivalent is explicitly given by

EU(Y) = U−1 [E[U(Y)]].               (2.2)
Since U is strictly increasing, the inverse function 

U−1 exists and then EU(Y) is welldefined if U(Y) has fi
nite expectation, as it is the case when Y takes values on 
a compact interval contained in [0,∞), a condition that 
is supposed to hold for all of the random costs Y under 
consideration. The certainty equivalent EU(Y), repre
sents the controller’s assessment of Y in terms of a sin
gle number and may be thought of as a kind of average 
of Y in terms of the preferences of the decision maker.

Example 2.1. Let Y be a random variable taking va
lues in a compact interval contained in [0,∞]. 

(i) For each x ≥ 0, let the power utility Uγ be given by
Uγ(x) = xγ,

where γ > 0. In this case Uγ
−1(y) = x1/γ and then

U Y( ) = U 1 E U Y( )( ) = E Y( )1/
=||Y ||

so that EUγ(Y ) is the usual γmean of Y . Note that
U1(x) = x is the idenity function and EU1(Y ) = 

E[Y ] is the usual expectation of Y ;
U2(x) = x2, and EU2(Y ) = E[Y 2]1/2 is the quadratic 

mean of Y .

(ii) The logarithmic utility is given by
UL(x) = log(x), x ≥ 0.

In this case, UL
1 y( ) = e y  and

EUL(Y ) = UL−1 (E[UL(Y )]) = eE[log(Y )]
is the logarithmic mean of Y.

(iii) Consider now the utility U given by
U(x) = (x − a)3,

where a is a positive number. In this case U−1(y) = 
a+y1/3 and then the corresponding certainty equiva
lent is given by.

u Y( ) = U 1 E U Y( )[ ]( ) = a+ E Y a( )3( )1/3

.The above utilities above are widely used in eco
nomics (Stokey and Lucas, 1989). 

3. Risk-Aversion and Attraction
The attitude of a controller before a random cost Y 
is determined by its certainty equivalent, which as 
already mentioned, is a kind of average. A decision
maker with utility function U is risk-neutral if

EU(Y) = E[Y]
for every random cost Y. In this case, the certainty 
equivalent has a physical interpretation which does 
not depend on the observer, namely, E[Y] is the ave
rage of the observed values of Y in a longseries of 
identical random experiments generating the ran
dom cost. By comparing the certain equivalents of 
a controller with E[Y], a classification of the attitude 
before a random cost is obtained.

Definition 3.1. [Risk Aversion and Attraction.] 
Consider a decision-maker with utility function 
U:[0,∞) → IR and let I ⊂  [0,∞).
(i) The controller is riskaverse on I if

EU(Y) ≥ E[Y]
for every random variable Y taking values on I with 
probability 1. 

(ii) The controller is riskseeking I if
 EU(Y) ≤ E[Y] when P[Y ∈ I] = 1.

(iii) The riskpremium associated to Y is given by
∆U(Y) = EU(Y ) − E[Y].

In words, the controller is riskaverse (resp. risk
seeking) on an interval I if his/her assessment of a 
random cost Y taking values on I is higher (resp. 
lower) than E[Y]. Of course, the controller knows 
that E[Y] is the average of Y in a long series of iden
tical trials, but also realizes that in a specific instance 
the value attained by Y does not generally coinci
de with E[Y]. When a controller is riskaverse, he/
she is ‘afraid’ of the occurrence of costs exceeding 
the expected value, whereas if the controller is risk
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seeking then the possible occurrence of a value less 
that E[Y] is more relevant for his/her perceptions. 
For instance, consider the owner of an expensive 
brand new car paying $500 for an insurance policy 
guaranteeing that, in case of a crash in the next year, 
he/she will receive an identical vehicle. The cost of 
the car is $300,000 and the owner feels that there is 
a small probability equal to 0.001 of participating in 
a crash. What the owner foresees for the next year, 
is a random cost Y that can take the values $0 and 
$300,000 with probabilities 0 and 0.001, respectively, 
so that E[Y ] = $300; however, $500 were gladly paid 
to avoid facing the random cost Y , so that Y is asses
sed higher than its expectation E[Y ], that is, EU(Y ) ≥ 
$500 > E[Y ], indicating that the owner is riskaverse. 
On the other hand, if a $200 insurance policy is re
jected by the owner of the car then EU(Y ) < $200 < 
E[Y ], indicating that the owner is riskseeking.

Recalling that all of the utility functions con
sidered in the paper are increasing,Definitions 2.1 
and 3.1 together yield that a controller with utility 
function U is riskaverse on I if

E[U(Y )] ≥ U(E[Y ]) when P[Y ∈ I] = 1,
a requirement that, by Jensen’s inequality, is equiva
lent to the convexity of U on the interval I. Similarly, 
the controller is riskseeking on I whenever

E[U(Y )] ≤ U(E[Y ]) if P[Y ∈ I] = 1,
a relation that is valid exactly when U is concave on I. 
On the other hand, the equality EU(Y ) = E[Y ] holds 
for every random cost taking values in I if, and only 
if, the controller is both riskaverse and riskseeking, 
that is, when U is a linear function, an, without loss 
of generality, in this case it can be assumed that U is 
the identity function.

Example 3.1. The risk-aversion and attraction will be 
analyzed for each one of the utilities in Example 2.1.

(i) For each γ > 0, the power utility Uγ(x) = xγ satisfies 
that

U ' x( ) = x 1 , and U" x( ) = 1( )x 2 ,x > 0.
Therefore,
• If γ < 1, then U" x( )  is always negative, and Uγ is 

concave on [0,∞), so that a controller with this uti
lity function is riskseeking;

• If γ > 1, then U" x( ) >  0 for every x > 0. It follows 
that Uγ is convex on [0,∞), indicating that Uγ perta
ins to a riskaverse controller.

Of course, when γ = 1, so that Uγ(x) = x, the utili
ty function is both convex and concave, and the con
troller is riskneutral.

(ii) The logarithmic utility UL(x) = log(x) satisfies that
U 'L x( ) =1/ x, and U"L x( ) = 1/ x2 ,x > 0.

Thus, UL is concave on [0,∞) and pertains to a 
riskseeking controller.

(iii) For a positive number a, the utility U(x) = (x − a)3 

satisfies
U0(x) = 3(x − a)2,  and  U00(x) = 6(x − a),x ≥ 0,

and then U is concave on [0,a] and convex on [a,∞), 
Thus, a controller with utility function U is risksee
king in the interval [0,a] and riskaverse on [a,∞). 

4. Average Criteria
In this section, the (longrun) average cost criterion 
associated to a given utility is introduced, and a cha
racterization of the riskneutral average index is pre
sented in terms of the optimality equation. Let M be 
the MDP introduced in Section 2, and suppose that 
a controller with utility function U ∈ U drives the 
system using a policy π ∈ P starting at X0 = x. In this 
context JU,n(π,x) stands for the certainty equivalent of 
the total cost C X t ,At( )t=0

n 1  incurred before time n > 
0, that is,!#!

JU ,n ,x( ) = U 1 Ex U C X t ,At( )
t=0

n 1

                                                                              ;    (4.1)

see (2.2). With this notation, the (longrun superior li
mit) Uaverage cost at state x under policy π is given by

JU ,x( ) : limsup
n

1
n

JU ,n ,x( ),
   

                                                                                    (4.2)

and the corresponding optimal value function is spe
cified as

JU* x( ) := inf JU ,x( ),x S,
P

   
                                                                                    (4.3)

whereas a policy π* ∈ P is Uaverage optimal if 
JU(π*,x) = JU*

 (x) for each x ∈ S. In certain sense, the 
criterion (4.2) represents a pessimistic point of view, 
since it measures the performance of the policy π in 
terms of the largest (worst) limit point of the avera
ges JU,n(π,x)/n. The optimistic perspective to the ave
rage index is given by the inferior limit Uaverage 
criterion specified by

JU ,x( ) := liminf
n

1
n

JU ,n ,x( ),
   

                                                                                             (4.4)

with corresponding optimal value function

JU* x( ) := inf JU ,x( ),x S
P

   
                                                                                    (4.5)
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note that (4.2)—(4.5) immediately yield that 

.( )JU* JU* .( ).                                                                                    (4.6)

As it will be shown below, for the utilities analyzed 
in Examples 2.1 and 3.1, the equality holds in the 
above display under the following communication 
condition.

Assumption 4.1. For each stationary policy f the 
state space is communicating, that is, given x,y ∈ S, 
there exists a positive integer n ≡ n(x,y) such that 
Px

f[Xn = y] > 0.

Under this condition the Markov chain induced by a 
stationary policy f has an invariant distribution ρf:S 
→ (0,1], that is, P

x∈S ρf(x) = 1 and P
x∈S ρf(x)pxy(f(x)) = 

ρf(y) for each y ∈ S. In this case, the classical ergodic 
theorem yields that for every initial state X0 = x,

lim
n

1
n

C
t=0

n 1

X t ,At( ) = Pf y( )
y S

C y ,f y( )( ) =: f ,Px
f

                                                                        a.s.    (4.7)

The average criteria in (4.2) and (4.4) have been wi
dely studied in two cases: When the utility function 
is exponential, that is, U(x) = eλx for some λ 6= 0,  
or when U(x) = x, which corresponds to a riskneu
tral controller. In this latter case the subindex U will 
not be explicitly indicated in (4.1)–(4.6), and the 
analysis of the corresponding riskneutral average 
criteria is based on the following result (Pueterman, 
1994).

Theorem 4.1. Under Assumptions 2.1 and 4.1 the 
following assertions (i)-(iv) are valid:
(i) There exist g ∈ IR as well as a function h:S → IR 
such that the following (riskneutral average cost) 
optimality equation holds:

g + h x( ) = min
a A x( )

C x,a( )+ Pxy a( )h y( )
y S

, x S,  (4.8)

(ii) The riskneutral superior and inferior average 
criteria render the same optimal value function, and 
the optimal average cost is equal to g:

J—
* x( ) = J* x( ) = g , x S,

where J* x( )  and J*(x) are given in (4.3) and (4.5) 
with the identity function instead of U. 

(iii) There exists a stationary policy f ∈ IF satisfying

g + h(x) = C(x,f(x)) + Xpxy(f(x))h(y),  x ∈ S,                                                                                    (4.9)
                                          y∈S

and such a policy is optimal with respect to the supe
rior and inferior average cost criteria, that is,

J* x( ) = J x;f( ) = g = J— x;f( ) = J—
* x( ), x S.         (4.10)

Note that (4.10) is equivalent to the following relations:

g liminf
n

1
n

Ex C X t ,At( )
k=0

n 1

, x S P

g = lim
n

1
n

Ex
f C X t ,At( )

k=0

n 1

, x S.

   

                                                                                   (4.11)

According to Theorem 4.1, a riskneutral average op
timal policy can be always found in the class IF of sta
tionary policies. For some models, for instance in in
ventory theory (Bertsekas, 2004), it can be frequently 
determined a priori that the optimal stationary policy 
has a special structure, and the quest of an optimal 
policy can be restricted to a ‘small’ subset IF0 of IF. In 
this case, instead of finding a solution (g,h(·)) of the 
nonlinear optimality equation (4.8) to determine the 
optimal policy f ∈ IF in (4.10), it may be inter
esting (and more efficient) to compute the risk
neutral average cost associated to each policy φ ∈ 
IF0, and then pick the one with smallest average 
cost. Note that for φ ∈ IF, (4.7) and the bounded 
convergence theorem together imply that

J* x,( ) = lim
n

1
n

Ex C X t ,At( )
k=0

n 1

= x( )
x S

C x, x( )( ),

so that J(·,φ) is determined in terms of ρφ, the inva
riant distribution of the Markov chain associated to φ. 
The following result shows that ρφ can be found using 
any computing program that solves a linear system of 
equations with nonsingular coefficient matrix.

Theorem 4.2. Given φ ∈ IF, let P be the transition 
matrix of the Markov chain associated to φ, that is, P 
= [pxy(φ(x)]x,y∈S, and let the row vector ρ = (ρx, x ∈ S) 
be the unique invariant distribution of the matrix P, 
so that ρP = ρ.
(i) The matrix I−P +J is invertible, where J is the square 
matrix on S with all of its components are equal to 1.
(ii) The invariant distribution ρ is the unique solution 
to the linear system

x[I − P + J] = 1l
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where 1l is the row vector with all of its components 
equal to 1.
Proof. By Assumption 4.1 the matrix P is communi
cating, so that the PerronFrobenious theorem ensu
res that the (left) Kernel of the I − P is generated by 
ρ, that is,
x[I − P] = 0 if and only if x = tρ for some t ∈ IR.       (4.12)
Also, note that the definitions of J and 1l yield that
xJ = s(x)1l, where s(x) = Xxi.
                              i
(i) Observe that
x[I − P + J] = x[I − P] + xJ = x[I − P] + s(x)1l.        (4.13)
 
Now, combine this relation with the equality [I−P]1l0 

= 0 (which occurs because P is a stochastic matrix), 
to obtain

x[I − P + J]1l0 = s(x)1l1l0.

Next, suppose that x[I − P + J] = 0. In this case the 
above display yields that s(x) = 0, so that(4.13) im
plies that x[I − P] = 0, a relation that via (4.12) leads 
to x = tρ for some t ∈ IR; since 0 = s(x) = s(tρ) = t, it 
follows that x = tρ = 0. In short,

x[I − P + J]1l0 = 0 ⇒  x = 0,

and then the matrix [I − P + J] is invertible.

(ii) Since ρ = ρP and s(ρ) = 1, (4.13) shows that ρ[I 
−P +J] = 1l; since I −P +J is invertible, by part (i), it 
follows that ρ is the unique solution of the equation 
x[I − P + J] = 1l. 
In the following section, the average cost criteria co
rresponding to the utilities in Example 2.1 and 3.1 
will be studied, and the analysis will be based on the 
following result which, together with (4.7), shows 
that the relations (4.11) remain valid if the expected 
averages are replaced by observed averages along the 
sample trajectories of the stateaction process.

Theorem 4.3. Under Assumptions 2.1 and 4.1 the 
following assertions (i) and (ii) holds: 
(i) For each x ∈ S,

lim
n

1
n

C
k=0

n 1

X t ,At( ) = g , Px
f

a.s.

where f is the stationary policy in (4.9).
(ii) For every π ∈ P and x ∈ S,

liminf
n

1
n

C
k=0

n 1

X t ,At( ) g , Px

a.s.

Via the bounded convergence theorem, the first part 
follows combining the ergodic property (4.7) with 
the riskneutral average optimality of the policy f. 
As for the second assertion, a proof can be found in 
Araphostatis et al. (1996).

5. Equality of Optimal Average Cost Functions
In this section the optimal average cost functions JU*

 

and JU*− will be determined for each one of the utili
ties in Example 2.1. As already noted, such utilities 
represent different assessments of a random costs. 
However, the rather surprising conclusion stated be
low establishes that both the superior and inferior 
average optimal value functions JU*

 and JU*− coinci
de with the optimal riskneutral average cost. This 
conclusion is stated in the corollary at the end of the 
section, and relies on the following result.

Theorem 5.1. Let U be any one of the utilities in 
Example 2.1, and let (g,h(·)) be a solution of the risk
neutral average cost optimality equation (4.8).
Let x ∈ S be arbitrary. Under Assumptions 2.1 and 
4.1,

JU−(π,x) ≥ g,   π ∈ P,   

and
JU(f,x) = g,

where f is the stationary policy in (4.9).
Proof. Keeping in mind that every utility U in Exam
ple 2.1 is continuous and strictly increasing on the 
nonnegative ray, it follows that for every bounded 
sequence (an) ⊂  [0,∞)

liminf
n

U an( )
n

= U liminf an( ),                                                                                    (5.3)

whereas if (an) is convergent, then

lim
n

U an( ) = U lim an
n

,( )                                                                                    (5.4)

Recall now that, when the system is driven by the po
licy π and X0 = x is the initial state,
JU,n(π,x) is the certainty equivalent of C

k=0

n 1
X t ,At( )

with respect to the utility U, so that

U Ju ,n ,x( )( ) = Ex U C X t ,At( )
t 0

n 1

 ;                                                                                                          (5.5)

see (4.1). Now, to establish the desired conclusions, 
a separate argument for each one of the utilities in 
Example 2.1 will be presented.

(5.1)

(5.2)
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(a) Let U = Uγ, the power utility with parameter γ. In 
this case (5.5) is explicitly given by

JU ,n ,x( )( ) = Ex C X t ,At( )
t=0

n 1

.

Dividing both sides of this equality by nγ it follows that

JU,n ,x( )
n

= Ex

C X t ,At( )t=0

n 1

n                                                                                    (5.6)

an equality that, after taking the inferior limit as n 
goes to ∞. leads to

liminf
n

JU ,n ,x( )
n

= liminf
n

Ex

C X t ,At( )t=0

n 1

n

Ex liminf
n

C X t ,At( )t=0

n 1

n

where the second inequality is due to Fatou’s lemma. 
From this point, (4.13) and Theorem 4.3(ii) together 
yield that

liminf
n

JU ,n ,x( )
n

Ex liminf
n

C X t ,At( )t=0

n 1

n
n

Ex g( ) = g

                                                                                          ,
and then

JU ,x( ) = liminf
n

JU ,n ,x( )

n
g ,

establishing (5.1). Now, set π = f in (5.6) to obtain

JU ,n f ,x( )
n

= Ex
f C X t ,At( )t=0

n 1

n                                                                              ;

taking the limit as n → ∞ in both sides of this equa
lity, Theorem 4.3(i) and the bounded convergence 
theorem together imply that limn→∞ (JU,n(f,x)/n)γ = gγ. 
It follows that (JU,n(f,x)/n) is a convergent sequence, 
and that g = limn→∞ JU,n(f,x) = J(f,x); see (4.2). This 
completes the proof for a power utility.

(b) Let U = log(x), the logarithmic utility. In this case 
(5.5) becomes

log JU ,n ,x( )( ) = Ex log C X t ,At( )
t=0

n 1
 

                                                                     ,

and adding −log(n) to both sides of this equality it 
follows that

log JU ,n ,x( )/ n( ) = Ex log C X t ,At( )/ n
t=0

n 1

;                                                                                         (5.7)

from this point, taking the inferior limit as n goes to 
∞, Fatou’s lemma yields to

liminf
n

log JU ,n ,x( )/ n( ) = liminf
n

Ex log C X t ,At( )/ n
t=0

n 1

Ex liminf log
n

C
t=0

n 1
X t ,At( )

n .
         

Combining (4.13) with Theorem 4.3(ii) it follows 
that

log liminf
n

JU ,n ,x( )
n

Ex log liminf
n

C X t ,At( )t=0

n 1

n
Ex log g( ) = log g( )

                                                                                           ,
and then

JU ,x( ) = liminf
n

JU ,n , x( )
n

g ,

completing the proof of (5.1). Next, take π = f in (5.7) 
to obtain

log
JU ,n f ,x( )

n
= Ex

f log
C X t ,At( )t=0

n 1

n
 ;

after taking the limit as n → ∞ in both sides of this 
equality, via Theorem 4.3(i) and the bounded con
vergence theorem it follows that limn→∞ log(JU,n(f,x)/n) 
= log(g), which is equivalent to g = limn→∞ JU,n(f,x) = 
J(f,x), concluding the argument for the logarithmic 
utility.

(c) Let U = (x − a)3. In this framework, the equality 
(5.5) establishes that

JU ,n ,x( ) a( )3
= Ex C X t ,At( ) a

t=0

n 1 3

 ;

dividing by n3 in both sides of this relation it follows 
that

JU ,n ,x( )
n

a
n

3

= Ex
1
n

C X t ,At( ) a
nt=0

n 1 3

  
                                                                         ,         (5.8)
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a relation that, via Fatou’s lemma, leads to

liminf
n

JU ,n ,x( )
n

a
n

3

= liminf
n

Ex
1
n

C X t ,At( ) a
nt=0

n 1 3

Ex liminf
n

1
n

C X t ,At( ) a
nt=0

n 1 3

                                                                                         .

Using that x 7→ (x − a)3 is increasing, Theorem 4.3(ii) 
implies that

liminf
n

JU ,n ,x( )
n

3

Ex liminf
n

C X t ,At( )t=0

n 1

n

3

Ex g( )3 = g 3

,

so that

JU ,x( ) = liminf
n

JU ,n ,x( )
n

g .

To conclude, select π = f in (5.8) to obtain

 JU ,n f ,x( )
n

a
n

3

= Ex
f C X t ,At( )t=0

n 1

n
a
n

3

 ;

letting n increase to ∞, Theorem 4.3(i) and the 
bounded convergence theorem together imply that 
limn→∞ (JU,n(f,x)/n)3 = g3, which is equivalent to g = 
limn→∞ JU,n(f,x)/n = J(f,x). 

Corollary 5.1. For each one of the utility functions 
U in Example 2.1, the following assertions (i) and (ii) 
hold:
(i) For every x ∈ S, JU*

 (x) = JU*−(x) = g, where g is the 
optimal risk-neutral average cost.
(iii) A stationary policy f is U-average optimal if, and 
only if, f is risk-neutral average optimal.

Proof. (i) Combining (4.5) and (5.1), it follows that 

JU* _ x( ) = inf JU ,x( ) g ,x S
P

On the other hand, if f is as in (4.9), the relations 
(4.3) and (5.2) together yield that

JU*
 (x) ≤ JU(f,x) = g,x ∈ S.

These two last displays yield that JU*−(·) ≤ JU(·) = g, 
and the first assertion follows via (4.6).
Next, part (ii) follows from part (i).

6. The Cone Property
The result presented in this section can be briefly 
described as follows: If different utilities render the 
same average optimal value function, say J(·), and 
share an optimal stationary policy, then the optimal 
average index of any combination of those utilities 
also coincides with J. To state this result in a precise 
manner, let U0 be a fixed (continuous and strictly in
creasing) utility function defined on [0,∞) and assu
me that the following properties hold for U0:

JU*0−(x) = JU*0(x) ≡  J(x),x ∈ S,

and, for some policy f ∈ IF,

JU0
f ,x( ) = lim

n

1
n

JU0 ,n
f ,x( ) = J x( ), x S                                                                                    (6.2)

Note that, by Theorem 4.1, under Assumptions 2.1 
and 4.1 these conditions are satisfied if U0 is the iden
tity function.
Definition 6.1. The family U consists of all conti-
nuous and strictly increasing utility functions U on 
[0,∞) satisfying the following requirement:

JU* x( ) = JU* x( ) = J x( ), x S

and

JU f ,x( ) = lim
n

1
n

JU ,n f ,x( ) = J x( ), x S,

f is as in 6.2( ).

6.3( )

where

THEOREM 6.1. The family U is a cone, that is,

U U cU U for every c > 0,

and
U1U2 U U1 + U2 U.

Proof. As already noted in Section 3, the certainty 
equivalent of a random cost is not altered if the un
derlying utility function is multiplied by a positive 
constant. Therefore, form (4.1) it follows that if c > 0 
then JcU,n(x) = JU,n(x) for every state x. Hence, (4.2)–
(4.5) yield that JcU*

 
−(·) = JU*−(·) and JcU*

 (·) = JU*
 (·), and 

(6.4) follows from Definition 6.1. To establish (6.5), 
let U1,U2 ∈ U be arbitrary, and note the following 
facts (a)–(c):
(a) Let π ∈ P and x ∈ S be arbitrary. With respect to 
U1 + U2 the inferior average cost under policy π at 
state x satisfies

(6.1)

(6.4)

(6.5)
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J(U1+U2)−(π,x) ≥ J(x).

To establish this assertion, note that Definition 6.1 
and the inclusions U1,U2 ∈ U yield that, for i = 1,2,

                                                        .liminf
n

1
n

JUi ,n ,x( ) JUi
* x( ) = J x( )

Therefore, given ε ∈ (0,kCk), there exists a positive 
integer N such that

1
n

JUi ,n ,x( ) > J x( ) , n N, i =1,2 .                                                                                              (6.7)

Now, consider the certainty equivalent JU1+U2,n(π,x), 
which satisfies

Ui + U2[ ] JU1+U2 ,n
,x( )( ) = Ex U1 + U2[ ] C X t ,At( )

k=0

n 1

= Ex U1 C X t ,At( )
k=0

n 1

+ Ex U1 C X t ,At( )
k=0

n 1

= U1 JU1 ,n ,x( )( )+ U1 JU2 ,n
,x( )( ) .

Next, observe that (6.7) yields that

JU1,n(x) ≥ n[J(x) − ε]  and  JU2,n(x) ≥ n[J(x) − ε],    n ≥ N.

These two last displays yield that, for n ≥ N,

[Ui + U2](JU1+U2,n(π,x)) ≥ U1 (n[J(x) − ε]) + U1 (n[J(x) − ε])

                                         = [U1 + U2](n[J(x) − ε]),
that is,

JU1+U2,n(π,x) ≥ n[J(x) − ε],
and then

1
n

JU1+U2 ,n ,x( ) J x( ) , n N,     k=0

so that

J U1+U2( ) ,x( ) = liminf
n

1
n

JU1+U2 ,n , x( ) J x( ) ,

and (6.6) follows, since ε is an arbitrary number in 
(0,kCk).

(b) It will be shown that

lim
n

1
n

J U1+U2( ),n f ,x( ) = J x( ) .

To establish this assertion, set π = f in (6.8) to 
obtain
[Ui + U2](JU1+U2,n(f,x)) = U1(JU1,n(f,x)) + U2(JU2,n(f,x)).

On the other hand, since U1,U2 ∈ U the requi
rement (6.3) yields that, for each ε ∈ (0,kCk), there 

exists a positive integer N such that

J x( ) 1
n

JUi ,n f ,x( ) J x( )+ , i =1,2, n N.

Recalling the functions U1 and U2 are increasing, 
this last property and the previous display together 
yield that, for n ≥ N

[Ui + U2](JU1+U2,n(f,x)) ≥ U1(n[J(x) − ε)]) + U2(n[J(x) − ε)]) 
= [U1 + U2](n[J(x) − ε]) 

as well as

[Ui + U2](JU1+U2,n(f,x)) ≤ U1(n[J(x) + ε)]) + U2(n[J(x) + ε)]) 
= [U1 + U2](n[J(x) + ε]).

Therefore, since U1 + U2 is strictly increasing, for 
each n ≥ N,

n[J(x) − ε] ≤ JU1+U2,n(f,x) ≤ n[J(x) + ε],

and then

J x( ) 1
n

JU1+U2 ,n f ,x( ) J x( )+ , n N.

Since ε ∈ (0,kCk) is arbitrary, this relation yields 
that (6.9) holds. To conclude, observe that (6.6) im
plies that, for every x ∈ S,

J*
U1+U2( ) x( ) = inf

P
J U1+U2( ) ,x( ) J x( ) ,

whereas (6.9) yields that

J(x) = JU1+U2(f,x) ≥ JU*1+U2(x);

see (4.2) and (4.3). These two last display together 
imply that

J*
U1+U2( ) x( ) J x( ) JU1+U2

* x( ) ;

since, J*
U1+U2( ) x( ) JU1+U2

* x( )  it follows that

J*
U1+U2( ) x( ) = JU1+U2

* x( ) = J x( ), x S .

By Definition 6.1, this relation and (6.9) together 
imply that U1 + U2 ∈ U. 
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