F 511

Universidad Autónoma Agraria "ANTONIO NARRO"

COLEGIO DE GRADUADOS

FECHA DE ADQUIS	ICION
NUM, BE INVENTA	90950-
PROCEDENCIA_	LAAAN
NUM. DE CLASIFICA	ICION QR
PRECIO	.M37
DIST:	1981

"ANALISIS COMPARATIVO DEL METODO CLASICO Y EL METODO M G C
PARA RECUENTOS BACTERIANOS EN SUELOS AGRICOLAS"

TESIS

QUE PARA

OBTENER

GRADO

MAESTRO

EN

CIENCIAS

EN LA ESPECIALIDAD DE

SUELOS

PRESENTA

ERNESTO MARTINEZ MEZA

BUENAVISTA, SALTILLO, COAHUILA. 1981

CID UAAAN

Universidad Autonoma Agraria

"ANALISIS COMPARATIVO DEL METODO CLASICO Y EL METODO MGC PARA RECUENTOS BACTERIANOS EN SUELOS AGRICOLAS"

Tesis presentada por Ernesto Martínez Meza, como requisito parcial para optor el grado académico de Maestro en Ciencias.

Comité Examinador

Presidente del Jurado

Ing. f.C. Rommel de la Garza Garza

G.F.B. M.A. Mercedes de la Garza Curcho de de la Garza

Dr. Eduardo Narro Farías

Buenavith, Sattilly Cash, 27th, Ener 1981

RECONUCIL IENTOS

Mi más profundo agradecimiento y admiración a la Q.F.B. (.A. Mercedes de la Garza Curcho de de la Garza, por su dirección, colaboración y consejos para la realización del presente estudio.

Asímismo agradezco al Ing. C.C. Rommel de la Garza Garza y al Dr. Eduardo Narro Farías, por sus correcciones, sugerencias y amistad.

Mi reconocimiento al Colegio de Graduados de la Universidad Autónoma Agraria "Antonio Narro", por haberme brincado la e-portunidad de superación profesional. Igualmente al H. Cuerpo de Catedráticos, por el cúmulo de conocimientos transmitidos. Un especial reconocimiento a mi esposa. Sra. Ana Rosa Villal-pando de Cartínez, por el trabajo original de mecanografía. Finalmente hago patente mi agradecimiento a todas aquellas personas que de una u otra manera intervinieron para la realización de esta investigación.

DEDICATORIAS

Con profundo amor, por la motivación para buscar mi superación.

A mi esposa:

Sra. Profra. Ana Rosa Villalpando de Martínez

A mi hijo:

Ernesto Carlos Martínez Villalpando

Con respeto e inmensa gratitud.

A mis padres:

Sr. Gregorio Martinez Jiménez

Sra. Ma. Eugenia Meza de Martinez

Con especial afecto a:

Ris hermanos

Familiares y

Amigos

INDICE GENERAL

	Página
INDICE DE CUADROS	γi
INDICE DE CUADROS DEL APENDICE	vi i
I INTRODUCCION	1
II REVISION DE LITERATURA	3
III MATERIALES Y METODOS	11
3.1 Recolección de muestras de suelo	11
3.2 Preparación de muestras de suelo	11
3.3 Lavado y esterilización del material de laboratorio	12
3.4 Preparación del medio de cultivo	15
3.5 Preparación de diluciones	16
3.6 Siembra	17
3.6.1 Método clásico	17
3.6.2. Método MGC	18
3.7 Anālisis estadīstico	19
3.8 Recomendaciones generales	20
IV RESULTADOS Y DISCUSION	21
4.1 Conteo de colonias	21
4.2 Análisis Físico-químico de las muestras de suelo	23
4.3 Análisis estadístico de los resultados	26
V CONCLUSIONES	32
VI RESUMEN	36
VII BIBLIOGRAFIA	38
III APENDICE	42

INDICE DE CUADFICS

Cuadro	•	Págir
ı	Composición del medio de cultivo propuesto	
	por Thornton (1957)	15
2	Preparación de diluciones utilizadas en el	
	método clásico y el MGC	17
3	Resultados de la cuenta bacteriana en pla-	
	ca por los métodos clásico y MGC, con sus	
	respectivas diluciones empleadas	21
4	Resultados de los análisis granulométrico	
	(percientos de arena. limo y arcilla) y	
	contenidos de Materia orgánica (M.O), Ni-	
	tróceno total (N _t), Fósforo (F). Fotasio	
	(F). porcientos de Carbonatos totales	
	(C.T) y Humedad gravimétrica (H), pH con	
	relación de saturación 1:2, Conductividad	
	eléctrica (C.E). practicados en 40 mues-	
	Anna da sunta	24

IMDICE DE CUADROS DEL APENDICE

Suadro		Fágin
1 9	Frueba "t" de Student (Probabilidad≕0.05),	
	para los resultados del conteo de colonias	
	bacterianas. en las diluciones 1×10^{-7} y	
	1×10^{-6} , para los métodos clásico (A) y FGC	
	(F), respectivemente. 1980	43
21	Análisis de Varianza	45
3 A	Prueba "t" de Student (p=0.05), para los	
	resultados del contes de colonias bacteri <u>a</u>	
	nas, en las diluciones 1×10^{-6} y 1×10^{-5} , pa	
	ra los métodos clásico (A) y MGC (B), res-	
	pectivamente. 1980	46
44	Análisis de Varianza	46
5A	Frueba "t" de Student (P=0.05), para los	
	resultados del conteo de colonias bacteri <u>a</u>	
	nas, en las diluciones 1×10^{-5} y 1×10^{-4} , pa	
	ra los métodos clásico (A) y MGC (B), res-	
	pectivamente. 1980	49

6Λ	Análisis de Varianza	51
7A	Prueba "t" de Student (P=0.05), sin tomar	
	en cuenta los datos disparados del conteo	
	de colonias bacterianas, en las diluciones	
	lx10 ⁻⁷ y lx10 ⁻⁶ , para los métodos clásico	
	(1) y FGC (5), respectivaments. 1980	52
84	Análisis de Varianza	54
94	Prueba "t" de Student (P=0.05), sin tomar	
·	en cuenta los datos disparados del conteo	
	de colonias bacterianas, en las diluciones	
	l×10 ⁻⁶ y 1×10 ⁻⁵ , para los métudos clásico	
	(A) y MGC (B), respectivamente. 1980	55
104	Análisis de Varianza	57
114	Interpretación de los resultados de análi-	
	sis físico-químicos para los suelos estu-	
	diados. Laboratorio de Fertilidad de Sue-	
	los U.A.A.A.N. 1980	58

I. INTRODUCCION

La microbiología de suelos y especialmente la bacteriología de suelos, no es una disciplina nueva. Hace aproximadamente ocho décadas, se inició su estudio formal, por el interés de algunos investigadores de conocer las poblaciones bacterianas del suelo.

Los resultados de esos trabajos, sentaron las bases para su desarrollo científico e hicieron conocer que la corteza superficial de la tierra no es solamente una matriz físico-química estática, sino también un sistema biológico dinámico en equilibrio contínuo, en el cual algunas sustancias no asimilables por las plantas, son transformadas en utilizables a través de la actividad microbiana.

A pesar de la gran importancia que tienen los microorganismos en la fertilidad de los suelos, su estudio ha sido rele
gado a un segundo plano, posiblemente por lo laborioso, tar
dado, poco preciso y costoso de los métodos existentes de a
nálisis cuantitativo y clasificación de los microorganismos
del suelo.

El recuento bacteriano en cajas de Petri ó método de dilución en placa, ha sido la forma tradicional de realizar an<u>á</u> lisis cuantitativos de bacterias de suelos agrícolas; esta técnica tiene serias limitaciones de metodología y exactitud.

El método *MGC tiene su origen en bacteriología médica y es el resultado de una serie de modificaciones realizadas por la autora a la técnica de Kase para urocultivos hasta lle gar a recuentos bacterianos en medios líquidos (De la Garza y Zertuche, 1974). La técnica mencionada, por primera ocasión se utiliza en este tipo de trabajos, para conocer la población bacteriana en suelos agrícolas; esta adaptación nos presenta una alternativa para realizar dichos estudios bacteriológicos, con una mayor ventaja en cuanto a metodología y exactitud, lo que nos viene a abreviar tiempo, costos y un mayor rendimiento técnico, sin menoscabo de su calidad.

El objetivo del presente trabajo de investigación es hacer un análisis comparativo entre los métodos clásico y MGC propuesto, para observar las posibilidades de uso de éste último, para estudios cuantitativos de bacterias del suelo.

^{*} Las siglas MGC se refieren a Mercedes de la Garza Curcho, autora de este método.

II. REVISION DE LITERATURA

La microbiología, a pesar de ser una ciencia nueva, ha contribuído más que ninguna otra en beneficio de la humanidad. Con los procesos microbiológicos se mejora la producción agrícola por mayor fertilidad de los suelos; la cual depende de la actividad de los microorganismos y por el control de numerosos patógenos de las plantas. Asímismo, cuando una bacteria se siembra en un medio de cultivo conveniente, sólido ó semisólido y a una temperatura y grado de humedad adecuados, se multiplicará rápidamente, produciendo un cúmulo de organismos cuya formación se denomina "colonia". Esto sucede por lo general entre las 24 y 48 horas de incubación, aunque algunas bacterias requieren de mayor tiempo. Teórica mente se considera que una colonia es producto de una sola célula bacteriana (Divo, 1971).j

Sin un mecanismo de mineralización, la superficie de la tierra hace mucho tiempo que habría sido agotada en los sulfatos, nitratos y bióxido de carbono (elementos necesarios para el crecimiento de las plantas) y la vida sobre la tierra habría cesado. Sin embargo, tal mecanismo existe en la forma de actividades metabólicas de los microorganismos, así, el nitrógeno, el azufre y el carbono, constantemente pasan

por ciclos de transformación casi perfectos, de la forma oxidada inorgánica hacia la forma reducida orgánica, repitiéndose continuamente este proceso. Estos ciclos y de ahí toda la vida sobre la tierra, dependen parcialmente de la acción microbiana (Jawetz, Melnick y Adelberg, 1977). La fertilidad del suelo depende en gran parte de la actividad bacteriana. Las bacterias del suelo son esenciales para todos los procesos vitales, ya que sin los procesos de putrefacción, desintegración y mineralización, no habría descomposición de la materia vegetal y animal muerta, ni reduc ción de nitratos a nitritos y otros, respectivamente. La na turaleza y la magnitud de la población bacteriana del suelo dependen de las condiciones ambientales que la rodean. [El desarrollo y reproducción de microorganismos se puede reali zar en el laboratorio, utilizando medios de cultivo, a los cuales se les incorpora las sustancias nutritivas necesarias; con la humedad, presión osmótica, tensión superficial, que mejor convengan a los requerimientos específicos de las bacterias que se cultivan. Muchas bacterias requieran sólo los medios ordinarios de cultivo, otras necesitan medios e<u>s</u> peciales para ayudar a la identificación cuando las terísticas del cultivo y las reacciones específicas son los factores determinantes (Bryan y colaboradores, 1974).

Las bacterias del suelo, son los más pequeños y numerosos microorganismos que viven libremente en el suelo; tomados colectivamente, su serie de capacidades autotróficas y hete rotróficas no es igualada por ningún otro de los grupos principales de seres vivientes del suelo, generalmente, las bacterias del suelo son estudiadas teniendo en cuenta su participación en los ciclos del nitrógeno y del carbono o en otras transformaciones. También pueden realizarse estudios sobre su morfología y taxonomía, sus tolerancias bientales, su distribución en el suelo y desde el punto vista de sus relaciones bióticas con otros microorganismos o con plantas superiores. LCon la metodología existente, la población bacteriana no puede determinarse con precisión en ninguna muestra dada de suelo, por lo que se efectúan estimaciones, no mediciones. Estas estimaciones se realizan cultivos o mediante examen microscópico directo. El método que se emplea generalmente es la técnica de dilución en pla ca. Una primera suposición de la técnica, es que cada bacteria viable de la suspensión del suelo usada como inoculan te, desarrollará una colonia visible durante la incubación (Clark, 1971).

La capa superior del suelo fértil (los primeros centímetros de la superficie), se ha descrito como un verdadero universo, en donde incontables criaturas (bacterias verdaderas. actinomycetos, algas, etc), viven y mueren sólo para ser re emplazadas continuamente por sus descendientes, en un proce so que se ha ido repitiendo durante millones de años. especies de microorganismos que se pueden cultivar de muestra cualquiera de suelo y su número, varían considerablemente de acuerdo con las características del terreno, hu medad, alimento, etc. | Las distintas mezclas de sustancias nutritivas empleadas en el laboratorio para el cultivo microbios, se denomina genéricamente medios de cultivo. Los cultivos en agar u otros medios sólidos en cajas de Petri, se llaman cultivos en placa (placas vertidas, placas por es tría). Con frecuencia, cuando aludimos a las cajas de Petri, las llamamos simplemente placas (Burdon y Williams, 1978). Una célula viva se define como áquella capaz de dividirse. Generalmente se hace una enumeración viable determinando el número de células de una población capaces de dividirse y formar colonias. La enumeración viable se realiza tan fracuentemente en investigación y en la microbiología aplicada, que el conocimiento de este método es importante

todo microbiólogo. La enumeración en placas es muy sensible porque en principio, cualquier célula viable, cuando se coloca en un medio apropiado origina una colonia, además permite la identificación positiva del organismo que se cuenta y su diferenciación en cuanto a forma, tamaño, textura y color, ya que en una mezcla se pueden encontrar varios tipos de organismos. Las enumeraciones viables están habitual mente sujetas a errores grandes y una enumeración precisa requiere gran atención para normalizar todos los aspectos de la técnica. Sin embargo, como se ha indicado, este método aporta una información que no puede obtenerse de ninguna otra manera (Brock, 1976).

La porción viviente del suelo, constituye apreciablemente menos del 1% del volumen total, sin embargo, es indudablemente esencial para la producción y para la fertilidad del suelo. Una determinación del número de bacterias viables en cultivo puro, es un procedimiento relativamente simple, por medio del recuento en placas o por otros métodos. Se torna complicado cuando se trata de un medio tan heterogéneo como es el suelo, en donde las técnicas bacteriológicas convencionales estiman solamente una porción del número total de bacterias, debido a que los requisitos de crecimiento para

muchas cepas son desconocidos. Los métodos de examen del suelo para cuentas viables arrojan a menudo resultados variables y los errores en el muestreo y en la preparación de la muestra, son frecuentemente mayores que las variaciones inherentes al procedimiento de recuento. El recuento en placas probablemente subestima la densidad real de la población bacteriana, ya que muchas bacterias del suelo no se de sarrollan en los medios convencionales. Sin embargo, la viabilidad y el potencial bioquímico del microorganismo detectado como colonias sobre agar, es en la actualidad el modelo ecológico más útil (Alexander, 1977).

Son varios los factores que determinan la precisión del método del recuento bacteriano en placas, entre los que desta can principalmente: a) el uso de un medio adecuado, b) la temperatura de incubación debe ser cuidadosamente controlada, c) el tiempo de incubación y d) la manera de contar las colonias. Un medio de cultivo satisfactorio debe ser uniforme, debe dar resultados reproducibles y suprimir el desarro llo de las grandes colonias que se extienden por el mismo medio (Allen, 1957).

El número y la clase de los microorganismos del suelo dependen de la naturaleza del mismo, la profundidad, la estación

del año, la reacción pH, la cantidad de materia orgánica, la temperatura y la humedad, entre otros. Los microorganismos bacterianos se encuentran sobre todo en la capa de mate ria coloidal que envuelve las partículas de suelo. Las bac terias en contacto con los coloides del suelo adsorben cationes y es difícil eliminar ó separar los microorganismos de esta capa coloidal, es por éso que el número de colonias que aparezca en una placa de agar no nos da idea exacta de la población de una muestra de suelo. Así como tampoco hay un solo medio de cultivo satisfactorio para el desarrollo de todas las especies que el suelo contiene. Para la determinación cuantitativa de los microorganismos del suelo, se emplean generalmente dos métodos: el de la placa de agar y el del microscopio ó directo, el primero es el más usado. -El número de microorganismos de un suelo, incluso en una e<u>x</u> tensión pequeña, no es uniforme. Para aumentar la exactitud del análisis, hay que tomar varias muestras de una parcela y considerar como una cifra representativa el prome dio de todas las determinaciones. Un simple recuento puede considerarse desprovisto de valor para computar la población bacteriana del suelo examinado (Salle, 1961).

Por lo general, las cifras obtenidas con los métodos directos ó microscópicos de recuentos bacterianos, son mucho más altas que las obtenidas con los métodos indirectos. Debido a que en el primer caso se toman en cuenta todos los microcorganismos, sin diferenciar si se encuentran con vida o sin ella, no obstante las desventajas que presenta este método, las cuentas obtenidas con su ayuda son de gran utilidad y se consideran complementarias de las obtenidas con el método de placas, el cual los analistas consideran más satisfac torio para determinar la abundancia relativa de los microorganismos (Leal, 1955).

III. MATERIALES Y METODOS

El presente trabajo de investigación, se llevó a cabo en el laboratorio de Fertilidad de Suelos de la Universidad Autónoma Agraria "Antonio Narro", localizada en Suenavista, Saltillo, Coahuila, México.

3.1 Recolección de muestras de suelo.

Para este trabajo, se tomaron cuarenta muestras de suelo de diferentes terrenos agrícolas del área de influencia de la misma Universidad (bajío, sur de la estación agrometereológica, etc) en diferentes épocas del año recolectando cuatro muestras por semana a una profundidad de 30 cm, por ser esta zona donde ejercen más influencia los microorganismos.

3.2 Preparación de muestras de suelo.

Inmediatamente después de obtenidas las muestras, se trasla daron al laboratorio, donde se tamizaron con malla de 2 mm de diámetro. Posteriormente se pesaron dos muestras de 10 g de suelo, una de las cuales se usa en la inoculación y otra se pone a secar en la estufa a 110° C, por 24 horas, para determinar el porcentaje de humedad por el método gravimétrico (Narro, 1979). El resto de la muestra cribada, se uti

lizó para realizar los análisis fisico-químicos de rutina en el laboratorio (textura, N.C., pH, C.E, carbonatos tota-les, N, P y K), por métodos conocidos (Chapman y Pratt, 1979).

3.3 Lavado y esterilización del material de laboratorio.

Es imprescindible para el trabajo de investigación en micro biología, el lavar y esterilizar previamente el material y equipo de laboratorio que se va a utilizar, para evitar con taminaciones; los medios de cultivo empleados deben ser estériles también.

Primeramente, la cristalería usada se lava perfectamente con agua y jabón, es decir, tanto las cajas de Petri como las de Felsen, se lavan con jabón y en seguida se sumergen en una solución de hipoclorito de calcio, por 60 minutos, se sacan y se enjungan con agua corriente, se secan y se en vuelven en papel de estrasa. Asímismo se lavan las pipetas serológicas (10 ml y de l ml), de manera que no quede nada adherido en su interior, después se coloca un tapón de algo dón en la boquilla de cada una de las pipetas y se envuel ven en papel de estrasa. Igualmente los *boliagitadores se enjuagan en agua corriente y se colocan dentro de un tubo

^{*} El boliagitador es un invento de la autora del método MGC y su función es sustituir el asa de cultivo.

de ensayo, tapándolo con algodón. La punta esférica del boliagitador permite esparcir el inóculo de manera uniforme y sin hacer estrías sobre la superficie del medio de cultivo, en seguida se procede a esterilizar el material.

Existen diversos métodos para esterilizar (Divo, 1971), los aquí empleados fueron:

a) El del calor húmedo. Este tiene gran poder de penetración y causa la muerte de los microorganismos por coagulación de las proteínas y del protoplasma.

Procedimiento:

Una vez lavado el material de vidrio, se coloca sobre la parrilla de la olla de presión, la cual debe tener un poco de agua (que no sobrepase la parrilla), se tapa la olla y se coloca al fueço dejando abierta la válvula de escape de vapor, cuando el vapor salga uniforme y constante, se cierra la válvula y se deja que la presión suba a 15 libras por pulgada cuadrada. En este momento, se empieza a tomar tiempo, pues se debe mantener una presión de 15 libras por pulgada cuadrada durante 15 minutos. Para ésto, será necesario disminuir el fuego y vigilar cuidadosamente la presión a fin de que se mantenga constante; después del tiempo indica do se retira la olla del fuego y se espera a que baje la

presión a cero, se abre la válvula de escape de vapor y se quita la tapadera de la olla y se extrae el material ya esterilizado, en caso de que se humedezca la envoltura del papel de estrasa, se coloca el material en el horno a 60-70°C para secarlo y una vez seco está listo para utilizarlo.

b) Radiaciones ultravioleta. Este método actúa realizando modificaciones moleculares, con cambio de funcionalidad intracelular por absorción de la radiación electromagnética, especialmente al nivel de DNA nuclear y el RNA citoplasmático.

Procedimiento:

Una vez lavadas las cajas de Felsen, se colocan por espacio de 60-120 minutos en una cámara, donde se tiene una lámpara que emite radiación ultravioleta. Una vez pasado el tiempo indicado, se extraen las cajas y se tienen listas para usar. Este tipo de esterilización se utilizó preferentemente en cajas de Felsen desechables (material de plástico), para re cuperarlo y volverlo a utilizar, dando un buen resultado.

4 Preparación del medio de cultivo.

El medio de cultivo utilizado fue el de Thornton (Allen, 1957), cuya composición se describe en el cuadro 1.

Cuadro 1. Composición del medio de cultivo propuesto por Thornton (1957).

Fosfato de Potasio Dib ásico (K₂HPO₄)	1.0	g
Sulfato de hagnesio (MgSO $_4$.7 H_2O)	0.2	9
Cloruro de Calcio (CaCl ₂)	0.1	9
Cloruro de Sodio (NaCl)	0.1	g
Tricloruro de Fierro (FeCl ₃)	0.002	g
Nitrato de Potasio (KNO_3)	0.5	9
Asparagina	0.5	g
Mannitol	1.0	g
Agar	15.0	9
Agua destilada	1000 r	n 1

El procedimiento de preparación consiste en disolver el fos fato y el nitrato de potasio con la asparagina en un poco de agua destilada, se agrega el cloruro de calcio, el cloruro de sodio y el tricloruro férrico. Agregamos el agar, di-

solviéndolo por calentamiento a 100° C, dejándolo enfriar posteriormente a 60° C y se añade el mannitol. Ajustar con azul de bromotimol necesario para tener un pH de 7.4. Colocamos en frascos de 75 ml y se esteriliza por calor húmedo, como se describió anteriormente.

3.5 Preparación de diluciones.

Se toman los 10 g de suelo previamente pesados, de la muestra para análisis. Se prepara una seria de 7 botellas 90 ml de agua de grifo y estéril. En la primera botella se colocan los 10 g de suclo y se hace la primera suspensión y se agita por 3 minutos a 150 R.P.M. en un agitador mecánico para homogeneizarla. De la primera botella bien homogeneiza da se transfieren 10 ml. por medio de una pipeta serológica a una segunda botella, la cual se agita mecánicamente por 3 minutos. De esta segunda botella se toma la misma cantidad y se transfiere a una tercera y así sucesivamente, hasta ob tener una dilución 10⁻⁷ (cambiando pipeta en cada dilución y tomando las mismas precauciones de homogeneización).

Cuadro 2. Preparación de diluciones utilizadas en el mátodo clásico y el MGC.

Muestra de Suelo	H ₂ 0	Dilución
10 g	90 ml	=1:10 d 1x10
10 ml (1:10)+	90 ml	=1:100 & 1×10 ⁻²
10 ml (1:100)+	90 m1	=1:1000 & 1×10 ⁻³
10 ml (1:1000)	90 ml	1:10000 & 1x10 ⁻⁴
10 ml (1:10000)+	90 ml	=1:100000 & 1×10 ⁻⁵
10 ml (1:100000)+	90 ml	=1:10000000 & 1x10 ⁻⁶
10 ml (1:1000000)	90 ml	= 1:10000000 & 1×10 ⁻⁷

3.6 Siembra.

La siembra de los inóculos se realizó en forma simultánea para los dos métodos.

3.6.1 Método clásico.

En el método clásico se siembran inóculos de 1 ml (con una pipeta serológica de 1 ml), de las diluciones 10^{-4} , 10^{-5} , 10^{-6} y 10^{-7} , estos inóculos se colocan en el fondo de las

cajas de Petri estériles, usando 4 cajas para cada dilución (repeticiones), sumando 16, en seguida se les vierte el medio de Thornton, previamente fundido en baño maría a 45° C de temperatura, aproximadamente, se agitan las cajas con movimientos circulares contrarios a las manecillas del reloj, hasta que se solidifique el medio de cultivo.

Se etiquetan las cajas y se ponen a incubar en una estufa bacteriológica a una temperatura entre 25 y 30° C, posteriormente se hacen recuentos de colonias (a simple vista ó con una lupa), desechando aquellos conteos marcados como inumerables (más de 300 colonias por caja).

3.6.2 Método MGC.

En el método MGC, se utilizan 4 placas de Felsen (una por cada cuatro de Petri, usadas en el método clásico), con el medio de Thornton servido e incubado cuando menos 24 horas antes de su utilización, para con ello comprobar su esterilidad. Utilizando pipetas de l ml en cada cuadrante (las cajas de Felsen están divididas en 4 cuadrantes), se siembra un inóculo de 0.1 ml de las diluciones 10^{-3} , 10^{-4} , 10^{-5} y 10^{-6} , esparciendo el inóculo con un boliagitador estéril, pudiendo utilizar únicamente uno por caja, si en ésta se pone una misma dilución en todos los cuadrantes, de otra mane

misma caja (una dilución diferente por cuadrante), si comen zamos a extender el inóculo del cuadrante en donde la dilución es mayor hasta el cuadrante donde la dilución es menor, siempre que el ejecutante tenga práctica para no salpicar los cuadrantes adjuntos.

Después de etiquetar las cajas, se colocan en donde se encuentran las cajas de Petri, ésto con el fin de que el tiem
po de incubación, temperatura y demás condiciones generales
sean las mismas para ambos métodos, asímismo el recuento de
colonias se realiza simultáneamente al método clásico, es
decir, en la misma fecha, desechando aquellos conteos marca
dos como inumerables.

Ambos métodos se basan en el hecho de que una célula bacteriana dará origen, al reproducirse, a una colonia bacteriana dicho de otra manera, que cada colonia derivará de una sola célula bacteriana.

3.7 Análisis estadístico.

El análisis estadístico para comparar ambos métodos, se realizó mediante una prueba de "t" de Student para una probabilidad de 0.05.

Se establecieron cuatro repeticiones para cada dilución empleada, en cada una de las cuarenta muestras de suelo recolectadas; efectuándose por lo tanto 640 observaciones para
cada uno de los métodos empleados, siendo un total de 1280
observaciones para los dos métodos.

3.8 Recomendaciones generales.

Se sugiere cuando se realicen trabajos subsecuentes de tipo comparativo en microbiología de suelos, realizar un control en:

- a. El lavado y esterilización del material que se vaya a $\underline{\mathbf{e}}$ plear.
- b. Contar con un sitio adecuado y exclusivo, donde se pueda realizar el trabajo experimental y que no influyan efectos de contaminación y otros en los resultados.

IV. FESULTADOS Y DISCUSION

4.1 Conteo de colonias.

Efectuadas las diluciones para cada muestra de suclo. se realizó la siembra del inóculo en sus respectivas placas (Felsen y Petri) y se colocaron éstas en incubación hasta comaletar un período de 120 horas. Una vez pasado el tiempo mencionado, se realizó el recuento del número de colonias tanto en las placas de Petri como en las de Felsen, para cada una de las repeticiones, por los métodos clásico y MGC, respectivamente; los resultados obtenidos para cada una de las diluciones utilizadas, con excepción de los recuentos denominados inumerables (aglomeración excesiva de colonias que impide contar), en ambas técnicas para cada una de las 40 muestras de suelo analizadas, se reportan en el cuadro 3.

Cuadro 3. Resultados de la cuenta bacteriana en placa por los métodos clásico y (GC, con sus respectivas di luciones empleadas.

No. de muestra de suelo	* Conto bacteri de Feti	lanas en	colonius placas	* Conte bacteri de Fels	lanas en	colonias placas
	E.	ilucione	S	0	ilucione	S
	1×10 ⁻⁷	1×10 ⁻⁶	1x10 ⁻⁵	1×10 ⁻⁶	1×10 ⁻⁵	1x10 ⁻⁴
1	3.50	18.50	103.00	2.00	3.50	27 .7 5
2	2.75	8 .7 5	92.25	0.75	26.75	28.00
3	3.00	15.75	154.25	0.00	3.25	48.00
4	1.25	25.50	182.50	0.50	15.75	124.25

Continuación Cuadro 3.

-				,		
5	14.50	26.25	114.50	1.75	7.25	75.50
6	14.50	2ნ .25	117.00	3.75	9.00	5 ε.2 5
7	14.25	24.00	95 .50	3.25	5.00	45.75
8	7.25	37.50	271.50	5 .7 5	19.00	108.25
9	5.00	41.75	225.50	7.0 6	16.00	139.00
10	15.25	26.25	183.50	8.50	16.50	86.25
11	10.25	23.25	151.75	2.75	9.00	62.50
12	7.00	24.75	228.75	3 .0 0	16.50	93 .7 5
13	1.25	12.25	118.75	1.00	7.25	39.25
14	4.25	28.75	197.50	1.75	8.75	50.25
15	2.00	16.75	110.50	2.00	3.00	36.25
16	4.75	14.25	170.25	2.25	4.50	56.00
17	5. 00	42.75	286.25	6.25	28.50	117.50
18	3.50	31.00	297.00	8.00	24.00	108.25
19	3.75	41.75	294.50	6.75	39.75	135.25
20	8.33	22.00	179.50	1.75	16.00	91.50
21	6.25	21.50	159.00	1.75	5.00	80.75
22	2.50	19.50	166.75	4.75	13.50	87.50
23	5.75	23.50	188.00	15.25	23.00	141.25
24	9.00	59.00	379.25	4.75	18.25	63.50
2 5	20.00	31.25	126.00	7.25	15.00	55.00
26	2.50	19.00	179.50	3.25	4.75	28.25
27	8.75	22.75	126.25	4.00	7.00	58.25
28	7.75	24.25	184.75	1.33	16.75	72.75
29	5.00	16.00	131.75	3.25	12.50	46.00
30	3.25	15.00	138.50	4.00	12.75	75.25
31	6.50	18.25	159.75	3.00	11.00	72.75
32	8.75	28.25	156.75	7.25	20.25	42.00
33	4.00	15.75	211.00	4.00	16.75	45.7 5
34	3.7 5	30.50	200.50	4.50	24.50	113.25
3 5	2.75	14.25	139.00	4.75	12.00	29.50
36	2. 00	20.25	182.50	4.50	15.25	72.75
37	7.25	34.50	228.25	.3.00	20.75	102.50
38	7.75	40.00	267.00	7.50	46.50	178.75
39	5.00	31.50	209.50	4.25	26.75	148.25
40	7.25	31,50	276.50	7.00	34.50	195.50

^{*} Cada valor es el promedio de 4 repeticiones por dilución

y por muestra. Las fracciones de los resultados no se redon dearon con el fin de ser más fidedignos en los cálculos estadísticos.

4.2 Análisis físico-químico de las muestras de suelo.

Conforme a lo semalado por la mayoría de los autores, sabemos de la influencia que ejercen las condiciones físicas y
químicas de los suelos sobre su población bacteriana y la
repercusión que tienen algunas de estas condiciones cuando
se realiza el recuento bacteriano por el método de dilución
en placa. Principalmente afectan las proporciones de arena,
limo y arcilla y el contenido de humedad del suelo.

El conocimiento de estos datos nos permitió tener más elementos de juicio al realizar el análisis comparativo efectuado en el presente trabajo de investigación. Las muestras
de suelo se tomaron de estratos 0-30 cm de profundidad, por
ser este horizonte donde ejercen más influencia y son más a
bundantes los microorganismos. Los resultados de los análisis físico-químicos practicados a las muestras de suelo bajo estudio, se presentan en el cuadro 4.

arcilla) y contenidos de Materia ergánica (M.O), Nitrógeno total (N.), Fésfero (P), Potasio (K), porcientos de Carbonatos totales (C.T) y flumedad gravimétrica (H), pH con relación de saturación 1:2, Conductividad eléctrica (C.E), practicados en 40 muestras de suelo. Resultados de los análisis granulométrico (percientos de arena, limo y Cuadro 4.

No. de muestra	Arena %	Limo	Arcilla	M.0	N Kg/ha	P Kg/ha	К Кg/hв	рН 1:2	T. 50.	C.E Manhos/cm	Humedad gravimé
T			•	1.6	38.4			8,0			trica.
ରୀ	•		20.5	1.4	33.6	1	į	8.1		! ! !	r C
က	•		•	1.6	38.4	i	ł	8,0	1		0, [
4	31.6	33,2	35.2	2.0	0.09	ŧ	1	0 8	ì	1 1	9 0
ນ	•		•	•	88.8	1	}	8,1	į	1	nt S
9	•		•	•	0.09	1	1	လ	•	1) e
۳	•		•	•	0.09	!	!	ଷ୍ଟ	1	!	, 4
∞			•	•	62.4	67.5	+900	7.5	36	1.8	. 4 . c
Ø.	•		•	•	52.8	45	+900	3,00	4) a	0
0	•		•	•	69.6	53.1	006+	7.4	84) လ	0
~	•		•	•	72.0	42.8	+900	8.1	43.55	. «	• •
≈	-		•	•	100.8	54.0	006+	0	47.5) 1C) <u>_</u>
හ #	22.0		•	5.1	122.4	67.5	006+	8	41.5	8,4	11.6
4.	40.0		•	•	103.2	86.4	006+	8.1	48,5	2,0	0.01
£ 54	22.0		25.0	•	84.8	57.8	006+	8.1		0.3	10.8
18	36.0		26.0	•	•	20.7	006+	7.3	0.5	0.85	17.9
21	40.0		32.0	_	17.5	20.7	+900	8.1	•	0.80	, e
89	38.0		•	_	•	23.8	+900	8.1	0.4	1,0	
6₹	36.0		•		23.5	16.6	+900	34 30	4 73	0 -	• • • •
03	54.0		20.0	_	52.8	34.6	+900	8°.8	48.5	0.10	* 0 * 8
											1

continúa

28.0 28.0 28.0 34.0 1.3 31.2 65.7 +900 7.9 42.0 6.0 4.5 23. 43.6 24.4 32.0 3.2 76.8 49.0 +900 7.7 49.5 0.9 3.9 24. 41.6 24.4 34.0 0.48 11.5 41.4 +598 8.1 57.5 0.9 3.9 25 43.6 30.4 34.0 1.0 24.8 45.8 8.1 57.5 0.3 2.7 26 35.6 30.4 34.0 1.0 24.8 45.8 8.2 57.5 0.3 4.0 27 37.6 32.4 43.0 1.2 42.8 43.0 43.0 63.6 <t< th=""><th>7</th><th>46.0</th><th>52.0</th><th>32.0</th><th>2.3</th><th>64.8</th><th>45.0</th><th>006+</th><th>8.1</th><th>53.0</th><th>1,0</th><th>4.7</th></t<>	7	46.0	52.0	32.0	2.3	64.8	45.0	006+	8.1	53.0	1,0	4.7
23.6 44.4 32.0 3.2 76.8 49.0 +900 7.7 49.5 0.9 41.6 24.4 34.0 2.2 52.8 57.6 +900 8.3 57.5 0.3 43.6 32.4 24.0 0.48 11.5 41.4 +598 8.1 51.0 0.3 35.6 30.4 34.0 1.2 28.8 11.5 41.4 +598 8.1 51.0 0.3 37.6 32.4 34.0 1.2 28.8 49.0 +900 8.2 51.5 0.31 45.6 24.4 30.0 1.8 43.2 42.8 49.0 8.2 38.5 0.51 47.6 24.4 30.0 1.8 43.2 42.8 49.0 8.3 71.5 0.98 47.6 24.4 34.0 3.7 49.0 8.3 71.5 0.31 35.6 28.4 36.0 1.8 49.0 8.3 55.5	ଌ	38.0	28.0	34.0	J.3	31.2	65.7	+900	7.9	42.0	0°3	4.5
41.6 24.4 34.0 2.2 52.8 57.6 +900 8.3 57.5 0.3 43.6 32.4 24.0 0.48 11.5 41.4 +598 8.1 51.0 0.49 35.6 30.4 34.0 1.0 24.0 42.8 +54.4 8.2 61.5 0.37 37.6 32.4 30.0 1.2 28.8 23.7 +723 8.2 61.5 0.37 45.6 22.4 24.0 1.8 43.2 42.8 61.6 8.2 61.5 0.31 45.6 24.4 24.0 2.4 37.6 49.0 8.1 33.0 0.51 49.6 24.4 24.0 3.7 42.0 +900 8.2 57.5 1.5 45.6 28.4 36.0 3.7 88.8 103.5 +900 8.2 57.5 1.5 45.6 28.4 36.0 12.5 +900 8.2 50.5 1.5	23 23	23.6	44.4	32.0	ଅ . ଟ	76.8	49.0	+900	7.7	49.5	60	ຸດ ຕ
43.6 32.4 24.0 0.48 11.5 41.4 +598 8.1 51.0 0.49 35.6 30.4 34.0 1.0 24.0 42.8 +544 8.2 61.5 0.37 37.6 32.4 30.0 1.2 28.8 23.7 +723 8.2 58.5 0.31 45.6 22.4 30.0 1.8 43.2 49.0 +900 8.2 38.5 0.51 45.6 24.4 24.0 1.8 43.2 43.8 10.3 11.5 0.81 49.6 24.4 24.0 43.2 43.0 8.3 37.5 0.8 49.6 28.4 36.0 3.7 88.8 103.5 +900 8.3 37.5 1.5 35.6 28.4 36.0 3.7 88.8 112.5 +900 8.3 55.5 1.6 35.6 28.4 34.0 4.0 +900 8.3 55.5 1.8 <td< td=""><td>24</td><td>41.6</td><td>24.4</td><td>34.0</td><td>ત. સ</td><td>52.8</td><td>57.6</td><td>+900</td><td>8°</td><td>57,5</td><td>ກູດ</td><td>7</td></td<>	24	41.6	24.4	34.0	ત. સ	52.8	57.6	+900	8°	57,5	ກູດ	7
35.6 30.4 34.0 1.0 24.0 42.8 +544 8.2 61.5 0.37 37.6 32.4 30.0 1.2 28.8 23.7 +723 8.2 58.5 0.51 53.6 22.4 24.0 2.9 69.6 49.0 +900 8.2 38.5 0.51 45.6 24.4 22.4 30.0 1.8 43.2 42.8 +900 8.1 33.0 0.85 47.6 24.4 22.4 37.6 49.0 8.3 71.5 0.98 49.6 26.4 24.0 2.4 57.6 49.0 8.3 77.5 0.98 45.6 28.4 36.0 3.7 88.8 103.5 +900 8.2 53.5 1.5 35.6 28.4 36.0 1.8 43.2 49.0 +900 8.3 55.5 1.5 45.6 28.4 40.0 3.0 72.0 112.5 +900 8.3 55.5 1.5 35.6 24.4 44.0 0.68 16.3 49	23 53	43.6	32,4	24.0	0.48	11.5	41.4	+598	8,1	51.0	0.49	4.0
37.6 32.4 30.0 1.2 28.8 23.7 +723 8.2 58.5 0.51 53.6 22.4 24.0 2.9 69.6 49.0 +900 8.2 38.5 0.51 45.6 24.4 30.0 1.8 43.2 42.8 +900 8.1 33.0 0.85 47.6 24.4 28.0 2.4 57.6 49.0 8.3 71.5 0.98 49.6 26.4 24.0 2.4 57.6 49.0 8.3 71.5 0.98 49.6 28.4 36.0 3.7 88.8 103.5 +900 8.2 53.5 1.5 35.6 28.4 36.0 1.8 43.2 92.2 +900 8.3 55.5 1.5 45.6 28.4 26.0 3.0 72.0 112.5 +900 8.2 20.0 1.5 39.6 24.4 40.0 3.9 93.6 53.7 +900 8.2 20.0 1.5 39.6 30.4 44.0 0.68 16.3 49.0	83	35.6	30.4	34.0	1.0	24.0	42.8	+544	8	61.5	0.37	0 0
53.6 22.4 24.0 2.9 69.6 49.0 +900 8.2 38.5 0.81 45.6 24.4 30.0 1.8 42.8 +900 8.1 33.0 0.85 47.6 24.4 28.0 2.4 37.6 +900 8.3 77.5 0.98 49.6 26.4 24.0 2.4 57.6 49.0 8.3 37.5 0.71 35.6 28.4 36.0 3.7 88.8 103.5 +900 8.2 53.5 1.5 35.6 28.4 36.0 1.8 43.2 92.2 +900 8.2 59.5 1.5 45.6 28.4 36.0 3.7 88.8 112.5 +900 8.3 59.5 1.5 39.6 28.4 40.0 3.9 93.6 59.7 +900 8.2 20.0 0.73 39.6 24.4 40.0 3.9 93.6 59.7 +900 8.2 20.0 0.73 25.6 30.4 44.0 0.68 16.3 49.0 +90	22	37.6	32.4	30.0	7.	28.8	23.7	+723	ઝ સ	58.5	0.51	, 13 , 13 , 13
45.6 24.4 30.0 1.8 42.8 +900 8.1 33.0 0.85 47.6 24.4 28.0 2.4 37.6 57.6 +900 8.3 71.5 0.98 49.6 26.4 24.0 2.4 57.6 49.0 8.3 77.5 0.71 35.6 28.4 36.0 3.7 88.8 103.5 +900 8.2 53.5 1.5 35.6 28.4 26.0 3.7 88.8 112.5 +900 8.2 57.5 1.5 45.6 28.4 40.0 3.0 72.0 112.5 +900 8.3 55.5 1.6 35.6 24.4 40.0 3.9 93.6 53.7 +900 8.2 20.0 0.79 35.6 24.4 30.0 4.3 103.2 57.6 +900 8.2 20.0 0.79 25.6 30.4 44.0 0.68 16.3 49.0 +900 8.2 20.0 0.79 25.6 30.4 42.0 41.0 36.0	ଫ ଷ	53.6	22.4	24.0	୫ -ଅ	69.6	49.0	+900	સ 8	38,5	0.81	4.6
47.6 24.4 28.0 2.4 37.6 57.6 +900 8.3 71.5 0.98 49.6 26.4 24.0 2.4 57.6 49.0 +900 8.3 77.5 0.71 35.6 28.4 36.0 3.7 88.8 103.5 +900 8.2 57.5 1.5 35.6 28.4 26.0 3.7 88.8 112.5 +900 8.2 57.5 1.5 39.6 26.4 34.0 3.0 72.0 112.5 +900 8.3 55.5 1.6 35.6 24.4 40.0 3.9 93.6 53.7 +900 8.2 20.0 0.79 35.6 24.4 40.0 3.9 93.6 53.7 +900 8.2 20.0 0.79 25.6 30.4 44.0 0.68 16.3 49.0 +900 8.2 20.0 20.0 29.6 28.4 42.0 4.1 98.4 63.9 +900 8.2 24.5 2.6 39.6 30.4 30.0 3.	29	45.6	4.4	30.0	1.8	43.2	42.8	+900	8.1	33,0	0.85	3,7
49.6 26.4 24.0 2.4 57.6 49.0 +900 8.3 37.5 0.71 35.6 28.4 36.0 3.7 88.8 103.5 +900 8.2 53.5 1.5 35.6 28.4 36.0 1.8 43.2 92.2 +900 8.2 57.5 1.5 45.6 28.4 26.0 3.7 88.8 112.5 +900 8.3 59.5 1.5 39.6 26.4 34.0 3.0 72.0 112.5 +900 8.2 25.5 1.6 39.6 30.4 40.0 3.9 93.6 53.7 +900 8.2 20.0 0.79 25.6 30.4 44.0 0.68 16.3 49.0 +900 8.2 20.0 0.79 29.6 28.4 42.0 4.1 98.4 63.9 +900 8.2 24.5 2.6 39.6 30.4 30.0 3.4 81.6 112.5	30	47.6	24.4	28.0	2.4	37.8	57.6	+900	က ထ	71.5	86.0	4.0
35.6 28.4 36.0 3.7 88.8 103.5 +900 8.2 53.5 1.5 35.6 28.4 36.0 1.8 43.2 92.2 +900 8.2 57.5 1.5 45.6 28.4 26.0 3.7 88.8 112.5 +900 8.3 55.5 1.2 39.6 26.4 34.0 3.9 72.0 112.5 +900 8.2 55.5 1.6 35.6 24.4 40.0 3.9 93.6 63.7 +900 8.2 20.0 0.79 25.6 30.4 44.0 0.68 16.3 49.0 +900 8.2 20.0 0.79 25.6 28.4 42.0 4.1 98.4 63.9 +900 8.2 24.5 2.0 39.6 30.4 30.0 3.4 81.6 112.5 +900 8.2 24.5 2.6	31	49.6	56.4	24.0	7. 4.	57.6	49.0	+900	ာ့	37.5	0.71	9,0
35.6 28.4 36.0 1.8 43.2 92.2 +900 8.2 57.5 1.5 45.6 28.4 26.0 3.7 88.8 112.5 +900 8.3 59.5 1.2 39.6 26.4 34.0 3.0 72.0 112.5 +900 8.2 55.5 1.6 35.6 24.4 40.0 3.9 93.6 63.7 +900 8.2 20.0 0.79 25.6 30.4 44.0 0.68 16.3 49.0 +900 8.2 20.0 0.79 29.6 28.4 42.0 4.1 98.4 63.9 +900 8.2 24.5 2.0 39.6 30.4 30.0 3.4 81.6 112.5 +900 8.2 24.5 2.6	35	35.6	28.4	36.0	3.7	88.8	103.5	+900	α α	53.5	1,5	4.1
45.6 28.4 26.0 3.7 88.8 112.5 +900 8.3 59.5 11.2 39.6 26.4 34.0 3.0 72.0 112.5 +900 8.3 55.5 11.6 35.6 24.4 40.0 3.9 93.6 59.7 +900 8.2 30.5 1.8 39.6 30.4 44.0 0.68 16.3 49.0 +900 8.2 20.0 0.79 29.6 28.4 42.0 4.1 98.4 63.9 +900 8.2 13.5 2.0 39.6 30.4 30.0 3.4 81.6 112.5 +900 8.2 24.5 2.6 1	53	35.6	28.4	36.0	1.8	43.2	92.2	+900	α α	57.5	1.5	6,2
39.6 26.4 34.0 3.0 72.0 112.5 +900 8.3 55.5 1.6 35.6 24.4 40.0 3.9 93.6 59.7 +900 8.2 32.5 1.8 39.6 30.4 44.0 0.68 16.3 49.0 +900 8.2 20.0 0.79 29.6 28.4 42.0 4.1 98.4 63.9 +900 8.2 13.5 2.0 39.6 30.4 30.0 3.4 81.6 112.5 +900 8.2 24.5 2.6 1	34	45.6	28.4	26.0	3.7	88.8	112.5	006+	8.3	59.5	3	20.00
35.6 24.4 40.0 3.9 93.6 53.7 +90.0 8.2 32.5 1.8 39.6 30.4 44.0 0.68 16.3 49.0 +90.0 8.2 20.0 0.79 25.6 30.4 44.0 0.68 16.3 49.0 +90.0 8.2 8.5 2.0 1 29.6 28.4 42.0 4.1 98.4 63.9 +90.0 8.2 13.5 2.0 1 39.6 30.4 30.0 3.4 81.6 112.5 +90.0 8.2 24.5 2.6 1	35	39.6	26.4	34.0	3.0	72.0	112.5	+900	က ့	55.5	1.6	9.0
39.6 30.4 30.0 4.3 103.2 57.6 +900 8.2 20.0 0.79 25.6 30.4 44.0 0.68 16.3 49.0 +900 8.2 8.5 2.0 1 29.6 28.4 42.0 4.1 98.4 63.9 +900 8.2 13.5 2.0 39.6 30.4 81.6 112.5 +900 8.2 24.5 2.6 1	36	35.6	24.4	40.0	8°8	93.8	58°7	006+	8	32,55	3,8	4.4
25.6 30.4 44.0 0.68 16.3 49.0 +900 8.2 8.5 2.0 1 29.6 28.4 42.0 4.1 98.4 63.9 +900 8.2 13.5 2.0 39.6 30.4 30.0 3.4 81.6 112.5 +900 8.2 24.5 2.6 1	37	39.8	30.4	30.0	4.3	103.2	57.6	006+	8.2	20.0	0.79	8
29.6 28.4 42.0 4.1 98.4 63.9 +900 8.2 13.5 2.0 39.6 30.4 30.0 3.4 81.6 112.5 +900 8.2 24.5 2.6]	ဆ	25.8	30.4	44.0	0.68	16.3	49.0	006+	31	8 10.4	0.4	12.1
39.6 30.4 30.0 3.4 81.6 112.5 +900 8.2 24.5 2.6]	Ç,	29 . 6	28.4	42.0	4.1	98.4	63.9	+300	8	13.5	2.0	7.8
	9	39.6	30.4	30.0	3.4	81.6	112.5	+900	လ လ	24.5	0	12.3

Analizando el Cuadro 4, se puede observar que las texturas varían de migajón arcilloso a migajón arcillo-arenoso, con algunas excepciones en que son francos, es decir, la mayoría de los suelos tienen un porcentaje considerable de arcilla, siendo suelos en su gran mayoría de textura fina.

En lo que se refiere a la M.C ésta varía de 0.40% hasta 5.1%, con una media de 2.52%, por lo que se consideran suelos medianamente ricos.

Respecto al contenido de nitrógeno en general, los suclos son ricos en este elemento con algunas excepciones. Asímismo son medianos en contenido de fósforo y extremadamente ricos en rotasio.

El contenido de carbonatos totales varía de medio a muy alto.

El pH de los suclos muestreados es en general medianamento alcalino.

La determinación de la conductividad eléctrica en las muestras nos señala que, son suelos sin problemas de salinidad.

4.3 Análisis estadístico de los resultados.

Los resultados del análisis estadístico se muestran en los cuadros 1A, 3A y 5A del apéndice.

Una vez realizada la prueba de "t" de Student para un nivel

de probabilidad de 0.05 (Allen, 1957), sobre el promedio del número de colonias bacterianas resultantes en ambos pro cedimientos (efectuado en forma separada para cada dilución). encontramos que existe significancia entre ambos (cuadros 24. 4A y 6A del apéndice), es decir, a que aparentemente el *método l es significativamente mejor que el *mé todo B, sin embargo, esta aparente significancia no es debi da a que el método B comparado no funciona, más bien se debe a que hubo una influencia mayor de contaminación del material empleado en el método 1, lo que lo favoreció en la prueba "t", debido a que el lavado y esterilización no se a fectuaren adecuadamente en algunos casos, además de otros aspectos que se mencionarán posteriormente. Hay que hacer notar que la condición de esterilidad es indispensable los trabajos de investigaçión en microbiología.

El métudo 8 propuesto es de mayor fineza microbiológica por que permite tener la plena certeza de que el material de la boratorio empleado (cajas de Felsen, medio de cultivo, etc) es estéril, lo que se comprueba incubándose 48 horas como mínimo antes de su utilización y desechando el material que presenta indicios de contaminación.

^{* 3}e llama A al método clásico y 8 al método MGC.

La falta de seguridad en la esterilidad del material emples do es una de las limitantes del método A. Además, es mayor la influencia ejercida por las condiciones ambientales del lugar en qua se llevó a cabo el experimento, donde hubo constante presencia de partículas de suelo diseminadas en el ambiente, producto del contínuo análisis físico-químico de muestras ajenas al experimento y que el desarrollo de la técnica favorece al someter el material utilizado a un mayor trasieço, pues las cajas se destapan en mayores ocasiones, provocando que los recuentos de colonias sean más altos, por lo que la significancia que se presenta en favor del método A no es confiable.

Si eliminamos los recuentos de colonias bacterianas cuyos datos están disparados del promedio muestral en ambos proce dimientos (A y B), salvo algunas excepciones coinciden cuan do menos en 2 de las comparaciones efectuadas, como se puede observar en los cuadros 7A y 9A del apéndice.

Al realizar la prueba de "t" para una probabilidad de 0.05, eliminando los datos disparados (cuadros 8A y 10A del apéndice), observamos que no existe diferencia significativa en tre las dos medias de ambas técnicas.

Naturalmente, el método B tiene sus limitaciones, ya que

cuando se emplean suspensiones cuya dilución es mínima y cu ya textura de la muestra de suelo en suspensión es considerada como "fina", es decir, con un porcentaje alto de arcilla coloidal como lo muestra el cuadro llA del apéndice, es lógico suponer que el empleo de 1 ml de suspensión en el mé todo 4 (dilución 1x10⁻⁴), contendrá un mayor porcentaje de partículas de arcilla coloidal que los 0.1 ml empleados el método B (dilución 1x10⁻³) y por consecuencia, mayor con centración de células bacterianas adsorbidas, fenómeno que va disminuyendo conforme se diluye la suspensión empleada. Este hecho nos comprueba otra de las teorías más aceptadas, en relación a la atracción que ejercen las partículas de ar cilla coloidal, más que ninguna otra, sobre las células bac terianas en la solución del suelo, debido a las cargas eléc tricas existentes entre ambas y por la mayor área superficial que presenta la arcilla coloidal.

La limitación antes expuesta nos hace pensar que, las mayores diluciones de la suspensión a emplear cuando se trabaje con el método A, podrán ser las: 1×10^{-4} y 1×10^{-5} , aunque se rá preciso realizar más investigación para tener mayor certeza.

- El método P ofrece las siguientes ventajas:
- a. Permite confirmar la esterilidad del material de laboratorio. ya que éste se debe incubar durante 46 horas antes de su utilización, para obtener una superficie seca
 y absorbente, aumentando su exactitud.
- b. Es mís rápido porque, las placas se preparan de antemano, tardando menos tiempo al desarrollar el trabajo.
- c. Es más económico porque, se utiliza menos material (placas, medios de cultivo) y no requiere de aparatos especiales.
- d. Ocupa menos espacio en la estufa incubadora, lo que nos permite trabajar mayor número de muestras ó repeticiones al mismo tiempo.
- e. Es más práctico porque, no es necesario tener medios de cultivo fundidos a una temperatura de 45° C, ni hay que agitar las plucas para que se mezcle el inóculo.
- f. El recuento de colonias bacterianas es más fácil porque, éstas crecen en un mismo plano. ya que la siembra se practica en la superficie.
- c. Permite hacer estudios posteriores. Si nos interesa estudiar la morfología colonial o las formas microbianas, podemos ver a las primeras directamente, ya que están en

la superfici y en el segundo caso, podemos tomar muestras con el asa de cultivo para hacer frotes y colorearlos para hacer observaciones microscópicas. Además, en
caso de que nos interese un determinado microorganismo,
podemos hacer subcultivos a partir de una sola colonia.

Considerando las ventajas enumeradas anteriormente, podemos decir que, el método B propuesto se puede considerar como una alternativa más y desde un punto de vista práctico, al realizar trabajos encaminados a conocer la población bacteriana del suelo.

Asímismo, de manera complementaria y en base a las determinaciones obtenidas en el laboratorio de las diferentes mues tras de suelo estudiadas y que se muestran en el cuadro 11A del apéndice, se hizo el dictamen de las demás condiciones generales que no influyeron en el estudio comparativo 11eva do a cabo, pero que sin embargo, juegan un papel importante en la productividad de los suelos, por formar parte de su matriz físico-química y que para otro tipo de trabajos de investigación en el campo de la microbiología de suelos es necesario considerar.

V. CONCLUSIONES

Conforme a las condiciones en que se desarrolló el presente trabajo de invertigación, a los resultados obtenidos y a la discusión que de ellos se hace. se derivan las siguientes conclusiones:

- l. La significancia encontrada al analizar estadísticamente (prueba "t" de Student p=0.05), los resultados encontrados con los métodos clásico y NGC nos dice que ambas téc nicas no son iguales.
- 2. El método clásico tiene una mayor influencia a la contaminación ejercida por las condiciones ambientales, lo que provoca una sobrestimación en el número de colonias bacterianas observadas.
- 3. El método FGC por ser de una mayor fineza microbiológica, permite tener la plena certeza de esterilidad, por lo que el conteo de colonias bacterianas es más real.
- 4. El método NGC, permite comprobar la teoría relacionada con la atracción que ejerce la arcilla, más que otras partículas del suelo, sobre las células bacterianas en suspensión.

- 5. En lo que se refiere a las ventajas del método MGC sobre el clásico, se observaron las siguientes:
- a. En exactitud. Permite confirmar la esterilidad plena del material de laboratorio, ya que éste se debe incubar du-rante 48 horas antes de su utilización, para obtener una superficie seca y absorbente, aumentando su exactitud.
- b. En rapidez. Esta técnica es más rápida porque, al tener preparado el material necesario de antemano, el tiempo <u>u</u> tilizado es monor, de 15-20 minutos aproximadamente por cada muestra.
- c. En facilidad. El recuento de colonias bacterianas es más fácil porque, éstas crecen en un mismo plano ya que la siembra se practica en la superficie.
- d. Más práctico. Es más práctico porque, no es necesario te ner medios de cultivo fundidos a una temperatura de 45°C, ni hay que agitar las placas para que se mezcle el inócul lo y se solidifique el medio.
- e. En economía. 1) Es más económico porque, se utiliza menos material (placas, medios de cultivo) y no requiere
 de aparatos especiales y 2) ocupa menos espacio en la es
 tufa de incubación, lo que nos permite colocar un mayor

número de repeticiones al mismo tiempo.

- f. Otras ventijas. 1; Permite evaluar la eficiencia del auxiliar de laboratorio, en lo que se refiere a la calidad del lavado y esterilización del material empleado.
 - 2) Fermite hacer estudios posteriores. Si nos interesa estudiar la morfología colonial o las formas microbianas, podenos ver las primeras directamente, ya que están en la superficie y en el segundo caso, podemos tomar muestras con el asa de cultivo para hacer frotes y colorearlos y efectuar observaciones microscópicas. Además en el caso que nos interese un determinado microorganismo, podemos hacer subcultivos a partir de una sola colonia.
- 6. Considerando sus ventajas y tomando en cuenta sus limita ciones podemos decir que, para fines prácticos el método MGC tiene posibilidad de tomarse en cuenta como una alternativa más para realizar trabajos cuyo objetivo sea conocer la población bacteriana de los suelos agrícolas, con fines de productividad.

Como corolario al presente trabajo, creemos necesario decir que, por la estrecha relación que tiene la actividad de los microorganismos, aunado a las diversas características edáficas, hidrológicas y climáticas, en relación a la fertilidad de los suelos, cualquier inversión y esfuerzo que se realice en el campo de la investigación de la microbiología de suelos, se justifica ampliamente por la perspectiva que nos presenta, de conocer la influencia que ejerce sobre la productividad de los suelos agrícolas.

The state of the s

and tarnal agreementation, necessity

and the state of t

The state of the s

The state of the s

to the state of th

and the state of t

the state of the s

and a court test of the terminal of the tenth of the tent

and the maintain a

the state of the s

the state of the s

El presente trabajo fue conducido en el laboratorio de Fertilidad de Suelos de la U.A.A.A.N. durante los meses de julio a dicientre de 1980, para evaluar las posibilidades del método PGC utilizado hasta hoy en Bacteriología Clínica, como un recurso para realizar estudios conducentes a conocer la población bacteriana de los suelos agrícolas.

La prueba experimental se realizó en forma comparativa, entre el método mencionado y el método clásico de dilución en
placa, desarrollando ambas técnicas en forma simultánea y
bajo iguales condiciones generales de temperatura, tiempo
de incubación, medio de cultivo y muestra de suelo.

Las muestras de suelo utilizadas fueron colectadas en terre nos agrícolas dentro del área de influencia de la misma uni versidad.

En el análisis estadístico de los métodos probados (prueba de "t" de Student p=0.05), se encontró diferencia significa tiva en el número de colonias contado, lo cual fue debido a condiciones de contaminación y otros aspectos y no a la bon dad de la metodología empleada, como se comprobó posterior—mente.

Las ventajas que presenta el método MGC sobre el método cla sico son: economía, rapidez, exactitud, facilidad de manejo y otras.

Su limitación principal se observa cuando se trabaja con suelos cuya textura es muy fina y la dilución empleada es muy concentrada o poco diluída.

Se concluyó que, para fines prácticos, dadas las ventajas que ofrece, el método MGC tiene buenas posibilidades para trabajos en que se requiera conocer la población bacteriana de los suelos agrícolas.

VII. BIBLIOGRAFIA

- 1. Alexander, M. 1977. Introduction to Soil Microbiology.

 John Wiley and Sons. Inc. New York. P. 16-33.
- 2. Allen, C.N. 1957. Experiments on Soil Bacteriology.
 Burgess Publishing Co. Minnesota. P. 5, 77.
- 3. Brock, T.D. 1976. Biología de los Microorganismos. Edi ciones Omega, S.A. Barcelona. P. 179-181.
- 4. Bryan. A.H., CH.A., Bryan y CH.G., Bryan. 1974. Bacteriología. C.E.C.S.A. México. P. 97-169.
- 5. Burdon. L.K. y F.R., Williams. 1978. Microbiología. Pu blicaciones Cultural. México. P. 82-91.
- 6. Burgues, A. y F.R., Clark. 1971. Biología del Suelo.
 Ediciones Omega, S.A. Barcelona. P. 27-29.
- 7. Carpenter, C.F. 1969. Microbiología. Editorial Interamericana. México. P. 20, 93, 278.
- 8. Carroll, W., J., Frazier y S., Wilson. 1965. Microbiología General y Aplicada. Ediciones Salvat. México. P. 242.
- 9. Chapman, H.D. y F.P., Pratt. 1979. Métodos de Análisis para Suelos, Plantas y Aguas. Editorial Tri-llas, S.A. México.

- 10. De la Carza Juraba, M. 1974. Modificación I.M.S.S. a la Técnica de Kass en brocultivos. Rev. Méx. de Urolocía. 35:2. 181-186.
- ll. De la Carza Curcho, M. y M.M., Zertuche. 1973-1974.

 Técnica MCC para recuentos bacterianos en medica líquidos. Inédito.
- 12. Divo, 1. 1971. Microbiología Médica. Editorial Interamericana. México. P. 8-33, 414-415.
- in Microbiology. Ac. Press. London, New York.
- 14. Jawetz, E., J.L., Melnick y E.A., Adelberg. 1977. Manual de Cicrobiología Médica. Editorial El Manual Mederno. México. P. 77-103.
- 15. Leal, 3.3. 1955. Análisis Microbiológicos de Suclos,

 Tesis Profesional. Facultad de Ciencias Químicas. Universidad de Nuevo León. P. 11, 12.
- 16. Martinez. M.E. 1975. El Compost. su valor como material orgánico y la importancia de su aplicación en suelos agrículas. Tesis Profesional. Escuela de Agricultura. Universidad de Guadalajara. p. 5-19.

Beer were

- 17. Marro, F.L. 1979. Apuntes del curso de Física de Suelos. Cologio de Graduados U.A.A.A.N. Inédito.
- 18. Ostle, E. 1977. Estadística Aplicada. Editorial Limusa,
 3.4. México. P. 131-184.
- 19. France, D. and E.C., Schidt. 1965. Experimental Soil Microbiology. Burgess Publishing Co. Minnesota.
- 20. Reyes, C.I. 1980. Diseño de Expérimentos Aplicados.

 Editorial Trillas. México. P. 83-93.
- 21. Salle, W.B. 1961. Bacteriología. Editorial Gustavo Gili. España. P. 239-246.
- 22. Sistrom, W.R. 1973. Vida Microbiana. C.E.C.S.A. México. F. 161-166.
- 23. Skinner, F.A. and J.G., Carr. 1976. Microbiology in Agriculture, Fisheries and Food. Academic Press, London, New York. p. 19-81.
- 24. Snedecor, W.G. y W.G., Cochran. 1979. Métodos Estadísticos. Compañía Editorial Continental, S.A. México. P. 123-156.
- 25. Wilson, W.P. and G.S., Knight. 1947. Experiments in Bacterial Phisology. Burgess Publishing Co. Minnesota. p. 27, 51-57.

26. William, G.W. y P.R., Mc. Bee. 1965. Microbiología General. Editorial Continental, S.A. México. p. 61-167. VIII. APENDICE

Cuadro 1A. Prueba "t" de Student (Probabilidad=0.05), para los resultados del conteo de celonias bacterianas, en las diluciones lx10-7 y lx10-6, para los métodos clásico (A) y MGC (B), respectivemente, 1980.

														•	43
$(\mathbf{X} - \mathbf{\bar{x}})^{2}$	4 .8488	11,9163	17.6568	13,7048	6,0123	0.2043	0.9063	2,3963	7.8288	18.4728	2,1083	1.4448	10.2528	8.0193	4.8488
(X-ĭ)	-2,2020	-3,4520	4.2020	-3.7020	-2,4520	-0.4520	-0.9520	1.5480	2,7980	4.2980	-1.4520	0808.1	0606 8	0.274	2020-7-
$(\mathbf{x} - \mathbf{\bar{x}})^2$	8.5673	13,5203	11.7443	26,8013	65,1733	65,1733	61,1993	0,6773	2,0363	77.8453	14.6153	0.3283	26.8013	4.7393	19,5983
(X-X)	-2,9270	-3.6770	-3.4270	-5,1770	8,0730	8.0730	7.8230	0.8230	-1.4270	8.8230	3.8230	0.5730	-5.1770	-2,1770	-4.4270
+No. de colo nias bacte- rianas pla- cas de Felsen Método B	2,0000	0.7500	000000	0.5000	1.7500	3.7500	3,2500	5.7500	7.0000	8.5000	2,7500	3,0000	1.0000	1,7500	2.0000
+No. de colo nias bacte- rianas pla- cas de Petri Método A	3,5000	2,7500	3.0000	1.2500	14.5000	14.5000	14.2500	7.2500	5.0000	15.2500	10.2500	7.0000	1.2500	4.2500	2.0000
No. de muestra	~	a l	es	4	ъ	₩	£-a	∞	\$	10		2	13	4	15

-1,6770 2.8123 -1,4270 2.0363 -2,9270 8,5673 -2,9270 7,1663 1,9030 3,6214 -0,1770 0,0313 -9,9270 15,4213 -0,6770 0,4583 2,5730 6,6203 13,5730 184,2263 -3,9270 15,4213 2,3230 5,3963 -1,4270 2,0363 -2,4270 1,1663 -2,4270 7,1663 -2,4270 7,1663 -3,6770 13,5203 -4,4270 13,5203 -4,4270 0,6773 1,3230 1,7503	44	0.0023 7.8288 323.0600	0.0480	2,0363 0,6773 721,2000	-1,4270	7,0000 168,0800 4,2020	7.2500 257.0800 6.4270
-1,6770 2,8123 -1,9520 -1,4270 8,5673 2,0480 -2,9270 8,5673 3,7980 1 1,9030 3,6214 -2,4520 -0,1770 0,0313 -2,4520 -3,9270 15,4213 0,5480 12 -3,9270 15,4213 0,5480 13,5730 6,6203 0,5480 13,5730 6,6203 0,5480 13,5730 184,2263 3,0480 -3,9270 15,4213 -0,9520 -3,9270 15,4213 -0,9520 -3,1770 10,0933 -0,2020 0,0730 0,0053 -1,2020 2,3230 5,3963 -0,2020 -2,4270 5,8903 -0,2080 -2,4270 7,1663 0,2980 -2,4270 13,5203 0,2980		10.8768	3.2980	1,7503	1.3230	7.5000	
-1,6770 2,8123 -1,9520 -1,4270 8,0363 2,0480 -2,9270 8,5673 3,7980 1 -2,9270 7,1663 2,5480 1,9030 3,6214 -2,4520 -3,9270 0,0313 -2,4520 -3,9270 0,0313 -2,4520 -3,9270 0,4583 11,0480 12 2,5730 6,6203 0,5480 13,5730 6,6203 0,5480 13,5730 15,4213 -0,9520 2,3230 5,3963 -0,2020 1,3230 1,7503 -0,2020 -1,4270 2,0363 -0,2020 2,3230 5,3963 3,0480 2,3230 5,3963 -0,2020 2,4270 5,8903 0,2980 -2,4270 7,1663 0,2980		0,0888	0,2980	19,5983	4,4270	4.5000	
-1,6770 2,8123 -1,9520 -1,4270 8,0363 2,0480 -2,9270 8,5673 3,7980 1 -2,6770 7,1663 2,5480 1,9030 3,6214 -2,4520 -0,1770 0,0313 -2,4520 -0,6770 0,4583 11,0480 12 2,5730 6,6203 0,5480 13,5730 6,6203 0,5480 13,5730 15,4213 -0,9520 2,3230 5,3963 -0,2020 1,3230 1,7503 -2,8720 -1,4270 0,0053 -0,2020 0,0730 0,0053 -1,2020 2,3230 5,3963 3,0480 2,3230 5,3963 3,0480 -2,4270 7,1663 0,2980		0,3003	0.5480	13,5203	-3,6770	4.7500	
1,6770 2,8123 -1,9520 -1,4270 2,0363 2,0480 -2,9270 8,5673 3,7980 1,9030 3,6214 -2,4520 -0,1770 0,0313 -2,4520 -0,1770 0,4583 11,0480 12 2,5730 6,6203 0,5480 12 13,5730 6,6203 0,5480 12 13,230 1,4213 -0,9520 0 2,3230 5,3963 -0,2020 0 1,3230 1,7503 -2,8720 0 -1,4270 2,0363 -0,9520 0 -3,1770 10,0933 -0,2020 0 2,3280 5,3963 -0,2020 0 2,3280 5,3963 -0,2020 0 2,3280 5,3963 -0,2020 0 2,3280 5,3963 -0,2020 0 2,3280 5,3963 -0,2020 0 2,3280 5,3963 -0,2020 0 2,3280 -0,2020 0 0 2,3280 -0,2020		0.0888	0.2980	7,1663	-2,6770	4.5000	
1,6770 2,8123 -1,9520 -1,4270 2,0363 2,0480 -2,9270 8,5673 3,7980 1,9030 3,6214 -2,4520 -0,1770 0,0313 -2,4520 -3,9270 15,4213 0,5480 2,5730 6,6203 0,5480 13,5730 6,6203 0,5480 2,3230 5,3963 -0,9520 1,3230 1,7503 -2,8720 1,3230 1,7503 -2,8720 -1,4270 2,0653 -0,2020 0,0730 0,0053 -1,2020 2,3230 5,3963 -0,2020 2,3230 5,3963 3,0480		0,0408	-0.2020	5,8903	-2,4270	4.0000	
1,6770 2,8123 -1,9520 -1,4270 2,0363 2,0480 -2,9270 8,5673 3,7980 1 -2,9270 3,6214 -2,4520 -0,1770 0,0313 -2,4520 -3,9270 15,4213 0,5480 2,5730 6,6203 0,5480 13,5730 184,2263 3,0480 2,3230 5,3863 -0,9520 1,3230 1,7503 -2,8720 -1,4270 2,0863 -0,2020 -3,1770 10,0933 -0,2020 0,0730 0,0053 -1,2020		9,2903	3.0480	5,3963	2,3230	7,2500	
-1.6770 2.8123 -1.9520 -1.4270 2.0363 2.0480 -2.9270 8.5673 3.7980 1 1.9030 3.6214 -2.4520 -0.1770 0.0313 -2.4520 -3.9270 15.4213 0.5480 0.5530 6.6203 0.5480 13.5730 6.6203 0.5480 13.5730 15.4213 -0.9520 13.3230 1.7503 -0.9520 -3.9270 15.4213 -0.9520 -3.9270 15.4213 -0.9520 -3.9270 15.4213 -0.9520		1,4448	-1,2020	0,0053	0.0730	3,0000	
-1,6770 2,8123 -1,9520 -1,4270 2,0363 2,0480 -2,9270 8,5673 3,7980 1 1,9030 3,6214 -2,4520 -0,1770 0,0313 -2,4520 -3,9270 15,4213 0,5480 2,5730 6,6203 0,5480 13,5730 184,2263 3,0480 -3,9270 15,4213 -0,9520 2,3230 5,3963 -0,2020 1,3230 1,7503 -2,8720 -1,4270 2,0363 -0,9520		0,0408	-0.2020	10.0933	-3,1770	4.0000	
-1,6770 2,8123 -1,9520 -1,4270 2,0363 2,0480 -2,9270 8,5673 3,7980 1 1,9030 3,6214 -2,4520 -0,1770 0,0313 -2,4520 -3,9270 15,4213 0,5480 2,5730 6,6203 0,5480 13,5730 6,6203 0,5480 -3,9270 15,4213 -0,9520 13,5730 5,3963 -0,2020 1,3230 1,7503 -2,8720 8		0,9063	-0.9520	2.0363	-1,4270	3,2500	
-1,6770 2,8123 -1,9520 -1,4270 2,0363 2,0480 -2,9270 8,5673 3,7980 1 1,9030 3,6214 -2,4520 -0,1770 0,0313 -2,4520 -3,9270 15,4213 0,5480 2,5730 6,6203 0,5480 13,5730 6,6203 0,5480 13,5730 15,4213 -0,9520 2,3230 5,3963 -0,2020		8,2484	-2.8720	1,7503	1.3230	1,3300	
-1,6770 2,8123 -1,9520 -1,4270 2,0363 2,0480 -2,9270 8,5673 3,7980 1,9030 7,1663 2,5480 -0,1770 0,0313 -2,4520 -3,9270 15,4213 0,5480 2,5730 6,6203 0,5480 13,5730 184,2263 3,0480 -3,9270 15,4213 -0,9520		0,0408	-0.2020	5,3963	2,3230	4.0000	
-1,6770 2,8123 -1,9520 -1,4270 2,0363 2,0480 -2,9270 8,5673 3,7980 1 1,9030 3,6214 -2,4520 1 -0,1770 0,0313 -2,4520 15,4213 0,5480 -0,6770 0,4583 11,0480 12 2,5730 6,6203 0,5480 13,5730 13,5730 184,2263 3,0480		0,9063	-0.9520	15,4213	-3.9270	3,2500	
-1,6770 2.8123 -1.9520 -1,4270 2.0363 2.0480 -2,9270 8.5673 2.5480 1,9030 3.6214 -2.4520 -0,1770 0,0313 -2.4520 -3,9270 15,4213 0.5480 2,5730 6,6203 0,5480		9,2903	3.0480	184.2263	13,5730	7,2500	
-1,6770 2.8123 -1.9520 -1,4270 2.0363 2.0480 -2,9270 8.5673 3.7980 1,9030 7.1663 2.5480 -0,1770 0.0313 -2.4520 -3,9270 15,4213 0.5480 -0,6770 0,4583 11,0480		0°3003	0.5480	6.6203	2,5730	4.7500	
-1,6770 2,8123 -1,9520 -1,4270 2,0363 2,0480 -2,9270 8,5673 3,7980 -2,6770 7,1663 2,5480 1,9030 3,6214 -2,4520 -0,1770 0,0313 -2,4520 -3,9270 15,4213 0,5480		122,0583	11,0480	0.4583	-0.6770	15,2500	
-1,6770 2,8123 -1,9520 -1,4270 2,0363 2,0480 -2,9270 8,5673 3,7980 -2,6770 7,1663 2,5480 1,9030 3,6214 -2,4520 -0,1770 0,0313 -2,4520		0.3003	0.5480	15,4213	-3,9270	4,7500	
-1,6770 2,8123 -1,9520 -1,4270 2,0363 2,0480 -2,9270 8,5673 3,7980 1 -2,6770 7,1663 2,5480 1,9030 3,6214 -2,4520		6,0123	-2,4520	0.0313	-0.1770	1,7500	
-1,6770 2,8123 -1,9520 -1,4270 2,0363 2,0480 -2,9270 8,5673 3,7980 1 -2,6770 7,1663 2,5480		6,0123	-2,4520	3,6214	1,9030	1,7500	
-1,6770 2,8123 -1,9520 -1,4270 2,0363 2,0480 -2,9270 8,5673 3,7980 1		6,4923	2.5480	7,1663	-2,6770	6,7500	
-1,6770 2,8123 -1,9520 -1,4270 2,0363 2,0480		14,4248	3,7980	8,5673	-2,9270	8,0000	
-1,6770 2,8123 -1,9520		4,1945	2,0480	2,0363	-1,4270	6,2500	
	~	3,8103	-1.9520	2,8123	-1,6770	2,2500	

⁺ Promedio de 4 repeticiones.

Cuadro 2A. Análisis de Varianza

++ Resultados altamente significativos (P=.05).

bacterianas, en las diluciones lx10-6 y lx10-5, para los métodos clásico Cuadro 3A, Prueba "t" de Student (P=,05), para los resultados del centee de celenias (A) y MGC (B), respectivemente, 1980.

o e	+No. de colo	+No. de colo		¥		
200	rianas pla-	rianas pla-	(x-x)	$(x-x)^2$	(X-X)	(X-X)
	cas de Petri	cas de Felsen	4		, a	
	Método A	Método B				
red	18,5000	3,5000	-7,1125	50,5877	-12,4000	153,7600
c/1	8,7500	26,7500	-16.8525	284,3439	10,8500	117-7225
ෆා	15.7500	3,2500	-9,8625	97.2689	-12,6500	160.0225
4	25,5000	15,7500	-0,1125	0,0127	-0,1500	0,0225
ъс.	26.2500	7.2500	0.6375	0.4064	-8.6500	74,8225
8	26.2500	000000	0.6375	0,4064	-6.9000	47,6100
2	24.0000	5.0000	-1.6125	2,6002	-10.9000	118,8100
රව	37,5000	19.0000	11,8875	141,3127	3,1000	9.6100
ට	41.7500	16,0000	16,1375	260,4189	0,1000	0,0100
10	26.2500	16,5000	0.6375	0.4064	0.6000	0.3800
prod prod	23,2500	0000°6	-2.3625	5,5814	-6.9000	47-8100
12	24.7500	16.5000	-0.8625	0,7439	0.8000	0.3800
13	12,2500	7.2500	-13,3625	178,5564	-8.6500	74 8995
14	28,7500	8,7500	3,1375	9,8439	-7,1500	21 100 E
15	16.7500	3.0000	-8.8625	78,5439	-12,9000	166,4100

Continuación Cuadro 3A.

3910,1000	18,6000	34,6627	5,8875	34,5000 836,0000 15,9000	.5000 .5000 6125 repeticiones.
117,7225	10,8500	34,6627	5,8875		26,7500
936,3600	30,6000	207,0002	14,3875		46,5000
23,6225	4.8500	78,9877	8,8875		20,7500
0,4225	-0.6500	28,7564	-5,3825		15,2500
15,2100	-3,9000	129,1064	-11,3625		12,0000
73,9600	8,6000	23,8877	4,8875		24.5000
0,7225	0,8500	97,2689	-9,8625		16,7500
18,9225	4,3500	6,9564	2,6375		20,2500
24,0100	4.9000	54,2064	-7.3825		11,0000
9,9225	-3,1500	112,6252	-10,6125		12,7500
11,5600	-3,4000	92,4002	-9,6125		12,5000
0,7225	0.8500	1,8564	-1,3625		16,7500
29,2100	-8.9000	8,1939	-2,8625		7,0000
124,3225	-11,1500	43,7252	-6,6125		4.7500
0,8100	-0.9000	31,7814	5,6375		15,0000
5,5225	2,3500	1114,7252	33,3875		18,2500
50,4100	7,1000	4.5527	-2,1125		23,0000
5,7600	-2,4000	37,3527	-6,1125		13,5000
118,8100	-10,9000	16,9127	-4.1125		5,0000
0.0100	001100	13,0502	-3.6125		16,0000
568,8225	23,8500	260.4189	16,1375		39,7500
65,6100	8,1000	29,0252	5,3875		24,0000
158,7600	12,6000	293,6939	17,1375		28,5000
	-11,4000	129,1054	17,382,5		4,5000

Cuadro 4A. Análisis de Varianza

1.9900	4,3142++	2 .251	1,5832	1,6005 1,5832	10,0129	10,1222	15,9000	25,6125
		Sd		1				
P = .05	t calculada P=.05	diferencia	Sx(B)	SX(A)	S(B)	S(A)	x(B)	X(A)
ta, 78 gl		dar de la					ŧ	-
		Error Estan	standar	Errer Estandar	es tanda r	Destracton	BOTA DES TE STAGE	3

++ Resultades altamente significatives (P = .05).

bacterianas en las diluciones lx10 -5 y lx10 -4, para los métodos clásico (A) Cuadro 5A. Prueba "t" de Student (Pz.05), para los resultados del conteo de colonias y MGC (B), respectivamente, 1980.

rianas pla-
LIA
Método B
27,7500
28,0000
48,0000
124,2500
75,5000
58,2500
45,7500
108,2500
139,0000
86,2500
62,5000
93,7500
39,2500
50,2500
36,2500

	627,5025	1328,6025	739,8400	2937,6400	109.2025	0060-0	41 8095	3624 0400	308,0095	8 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	000000000000000000000000000000000000000	00400011	00% 640	0088.8800	1228.5025	33,6400	68.8900	1524,9025	1246,0900	1036,8400	2657,4025	68.8900	480 1008	20001000	9045.2900	4515,8400	13328,7025	69230,6520
	-25,0500	36,4500	27,2000	54,2000	10,4500	-0,3000	6.4500	60.2000	-17.5500	-26.0500	0008 64-	0008 66	3000	24 OEOO	0000 .000	-5.8000	-8.3000	-39,0500	-35,3000	32,2000	-51,5500	-8.3000	21.4500	97,7000	67-2000	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	440.2000	
	209,3462	10308,5846	12807,0879	12051,9119	27,2359	661,4567	300000000000000000000000000000000000000	10,7663	37842,3878	3447,8975	27,2359	3418.6006	0.0010	2805,6938	9138	011100077	623,4410	182.2538	690.7015	249,0463	2090,2081	4,9231	1894,9654	6770,1959	614,1079	8499 7887	184948 9700	001110011101
e de la companya de l	-14,4688	101,5312	112,2812	109,7812	-5,2188	-25,7188	-17.9688	3,2812	194,5312	-58.7188	-5.2188	-58.4688	0.0312	-52,9688	46.2188	94 0890	107000000000000000000000000000000000000	000000000000000000000000000000000000000	2707.00	7189.01	-45,7188	7.2	43,5312	82,2812	24.7812	91,7812		
	56,0000	117,5000	108,2500	135,2500	91,5000	80,7500	87,5000	141,2500	63,5000	55,0000	28,2500	58.2500	72,7500	46,0000	75,2500	72,7500	42,0000	45.7500	113 9500	0000	20 2000	2000	102,5000	178.7500	148,2500	196,5000	3242,0000	81,0500
én Cuedre 5A.	170,2500	286,2500	297,0000	294,5000	179,5000	159,0000	166,7500	188,0000	379,2500	126,0000	179.5000	126,2500	184.7500	131,7500	138,5000	159,7500	156,7500	211,0000	200.5000	139,0000	182.5000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	267,0000	209,5000	276,5000	7388.7520	de 4 repeticiones.
Centinuación Cuadre	16	E-o best	70 e-4	57	20	~ ~	23	c.3 c.3	4.	22	58	63	00	50	30	CO	63 89	හ	34	සා වෙ	88	7.00	- 0 - c	900	යි	40	Sumateria	Media x

Cuadre 6A. Análisis de Varianza

++ Resultados altemente significativos (P = .05).

Cuadro 7A. Prueba "t" de Studeut (P=.05), sin tomar en cuenta los datos disparados del conteo de colonias bacterianas, en las diluciones lx10-7 y lx10-6 para los métodos clásico (A) y MGC (B), respectivamente. 1980.

(X-X)	4,2448	10,9581	12,6757	2,8551	8.6418	9,3654	5,3375	4.2448	3,2772	4.7948	15,5212	7,2345	0.4757	0.4757
E (Mand	-2,0603	-3,3103	-3,5603	1,6897	2,9397	-3,0603	-2,3103	-2,0603	-1,8103	2,1897	3.9397	2,6897	0.6897	0.6897
(X-X)	1,1986	3,4033	11,1877	7.0501	0,1642	11,1877	0.1189	6.7330	0.0241	0,1642	1,1986	0,7137	4,3882	19,4058
A(z-1)	-1,0948	-1,8448	-3,3448	2,6552	0,4052	-3,3448	-0.3448	-2.5948	0.1552	0,4052	-1,0948	-0.8448	-2.0948	4,4052
+No. de cole nias bacte- rianas pla- cas de Felsen Método B	2.0000	0.7500	0.5000	5,7500	7,0000	1,0000	1,7500	2,0000	2,2500	6,2500	8,0000	6,7500	4.7500	4.7500
hias bacterians pla-	3,5000	3 0000	1.2500	7,2500	5,0000	1,2500	4.2500	2,0000	4.7500	5,0000	3,5000	3,7500	2,5000	00000°6
No. de muestra	p=4 (24 63	4	∞	6	C.J.	40	15	16	free free	18	13	\$3 \$3	2.4

Continuación Cuadre 7A.

141,7065		149.4271		117.7500	133,2500	Sumateria
8.6418	2,9397	7,0501	2,6552	7.0000	1,6000) r
0,0360	0.1897	0,1642	0,4052	4.2500	5.0000) 4)) (
11,8315	3,4397	9,9553	3,1552	7.5000	0001.1	9 6
1,1242	-1,0603	7.0501	2,6552	2,0000	00000	000
0,1933	0.4587	0000	01.00	0000	0026.7	2.0
9		0	0 5040	4.5000	2,0000	36
0 4759	0.6897	3,4033	-1.8448	4,7500	2,7500	10 00
0,1933	0.4397	0,7137	-0.8448	4,5000	3,7500	ずつ
0,0036	-0.0603	0,3538	-0.5948	4,0000	4,0000	3
10,1742	3,1897	17,2657	4,1552	7.2500	0.000	§ 5
1,1242	-1,0603	3,6298	1,9052	3.0000	000000	4 0
0.0036	-0,0603	1,8085	-1,3448	4,0000	0003.5	5 6
0.6566	-0.8103	0.1642	0.4052	00070	0 0	0 %
00000	>			00 20	5 0000	67
0.0038	0,0603	17,2657	4,1552	4.0000	8,7500	C)
0.8588	-0.8108	4,3882	-2.0948	3,2500	2.5000	58

+ Premedio de 4 repeticiones.

Cuadro 8A. Análisis de Varienza

t 4, 36 gl	الا الا الا الا	2,003
·	t calculada	1.9478 N.S.
Brrer Baten der de la	1	0.5101
tandar	Sk (B)	0.3557
Errer Estander	S _X (A)	0,3656 0,3557
Es tanda r	S(B)	2.2497
Desviación Es	S(A)	2,3101
zaética	x̄(B)	4,0603
Media Aritmética	^x (A)	4,3948 4,0603
No. de	de sue-	53

N.S.= Resultados no significativos (Pa.05).

Cuadro 9A. Prueba "t" de Student (P=.05), sin tomar en cuenta los datos disparados del conteo de colonias bacterianas, en las diluciones $lxl0^{-3}$ y $lxl0^{-5}$ para les métodos clásico (A) y MCC (B), respectivamente. 1980.

No, de muestra	+No. de cele nias bacte- rianes pla- cas de Petri Método A	+No. de colonias bacterrianas pla- cas de Felsen Método B	$(X-\overline{x})_{\mathbf{A}}$	$(x-\overline{x})^{\frac{2}{A}}$	(x-x̄)	$(x-\bar{x})^{\frac{2}{B}}$
ત્રા	8.7500	26.7500	-14.4038	207,4695	8.3173	69,1775
നാ	15,7500	3.2500	-7.4038	54.8163	-15,1827	230,5144
4	25,5000	15.7500	2,3462	5.5047	-2,6827	7,1969
10	26,2500	16.5000	3,0962	9,5865	-1.9327	3,1453
75	24,7500	16.5000	1.5962	2,5479	-1.9327	3,7353
133	12,2500	7,2500	-10.9038	118,8929	-11,1827	125,0528
15	16,7500	3,0000	-6.4038	41,0087	-15.4327	238,1682
18	14,2500	4.5000	-8.9038	79,2777	-13.9327	194,1201
18	31,0000	24,0000	7,8462	61,5629	5,5673	30,9948
13	41.7500	39,7500	18,5962	345.8187	21,3173	454,4273
50	22,0000	16,0000	-1,1538	1,3313	-2,4327	5.9180
ଷ	19,5000	13,5000	-3.6538	13,3503	-4.9327	24.3318
233	23,5000	23.0000	0.3462	0.1199	4.5873	20.8809
38	24,2500	16,7500	1.0962	1.2017	-1.6827	2000 S
651	16.0000	12,5000	-7,1538	51,1769	-5.9327	35,1969

Centinuación Cuadro 94.

		•		98	+ Premedio de 4 repeticiones.	+ Premedie d
				18,4327	23,1538	Media I
2736,8195		1858,5108		479,2500	602,0000	Suma teria
258,1581	16,0673	69,6591	8,3462	34.5000	31,5000	40
51,2840	7,5673	69.6591	8.3462	26.0000	31,5000	39
787,7733	28,0673	283 , 7945	16.8462	46.5000	40°0000	38
5,3699	2,3173	128,7363	11,3462	20,7500	34,5000	ය දී
10,1296	-3,1827	8,4321	8:06.2	15,2500	20,2500	၁၉
41,3796	-6.4327	19,2777	8.9038	12.0000	14,2500	35
36,8121	6.0673	53,9967	7,3462	24.5000	30,5000	34
2,8315	-1,8827	54,8163	-7.4038	16.7500	15,7500	33
3,3026	1,8173	25,9713	2980°5	20,2500	28,2500	35
55,2450	-7.4327	24,0473	4.9038	11.0000	18,2500	31
32,2931	-5.6827	66,4845	-8,1538	12,7500	15,0000	30

Cuadro 10A. Análisis de Varianza

,	t ₹ , 30 g1	2.008
	t calculada	1.7756 N.S.
Errer Batan	diferencia Sd	2,6589
tendar	Sĸ(B)	5.0520
Error Estendar	Sx̄(A)	1.6909 2.0520
Es ten da r	S(B)	10,4629
Desviación Estondar	S(A)	8.6221
tmética	x(B)	18,4327
Media Aritmética	x(A)	23.1538
No. de	de sue-	5

N.S. = Resultados no significatives (Pa.05).

Cuadro 11A. Interpretación de los resultados de análisis físico-químicos para los

		suelos		estudiados. Laboratorio de Fertilidad de Suelos. U.A.A.A.N. 1980.	ilidad de Suelos	s. U.A.A.A	.N. 1980.	
Ne. de	Textura	R	Ъ	М	koʻ.	Hď	ភ	Bol
muestra		total aprov.	asimilable	intercambiable	de	2		0° H
		Kg/he	Кg/hа	Kg/ha	Carbenates			
 4	æ	ပ	69	ŧ	ı		ı	ပ
જા	αş	a	ī	· r	0	•	i	ပ
က	ਠਾ	ပ	ı	î	9	·	1	ပ
₹*	œ	ರ	•	8	t	م	ı	w
ņ	43	ರ	ı	ı	1		ì	6 ⊷
9	t)	೪	6	ì	ŧ.	ئا. (ı	ø
t- -	Ç.	ಆ	8	ī	•	,	•	ø
œ	i.	ರ	Ð	ы	~4	o -r-i	M	Ð
ල ා	÷	ъ	ပ) Pi	7		- - 34	a
10	43	್	ပ) b £	11	5 4	الخر !	. 0
ا إسم إ	4	ಌ	ပ) 5 0	-	ما	1	6 4
()) p=4 (Ω,	~	ဎ) 5 0		ن. د	, <u>1</u> 2	ı tı
e ;	Ω,	ਾਰ '	Ð	<i>5</i> 0		و (**	0 Pi
전 ⁶ 1	ক্য	-ರ '	で	ь0	~ 4	٠,٠٠٦	14) t
G 9	വ	್ -	Φ.	ъD	-		አ	0 49
7 0	og t	ca d	Ω 4	b 0	0	epel	Ħ	ပ
- 80	n so	# .F	2,2	5 .0 ∣	o	. ت.	, 124	Ω
19) Ø	ם נ	ם, נ	50 F	e c	ف	نو ځخ	ں ہ
70	42	v	ပ	0 50	S prof	ביי כ	* ' *	ထ စ

让在民民政策队员民民民民民民民民民民民民民民民民民民民民民民民民民民民民民民民民民民	
فدا، فناء فناء فناء فناء فناء فناء فناء فناء	
දට ලබ දට පත දව	salino o alto lio o lio r bajo silla sajón arenoso gajón arcilloso gajón arcilloso
က တ ပ စ ပ ပ သ ပ ပ စ ပ က က က က စ စ စ တ စား စ စ စ စ စ စ တ တ တ တ တ တ တ တ တ တ တ တ တ	K = Ne sa. I = Alto Il = Huy a. n = Bajo o = Huy b. p = Arcil q = Migaj r = Migaj t = Migaj
တာ တာ တာ တာ တာ တာ လာ	e pobre pobre rico te rico te alcalino alcalino
, a m m m m m m m m m m m m m m m m m m	emadamente anamente ano anamente rice emadament ligerament
24 24 24 24 24 24 24 24 24 24 24 24 24 2	es = Extre es = Pobre c = Media d = Rico e = Media f = Muy r g = Extre h = Muy l i = Ligeri j = Media

Centinuación Cuadro 11A.

Férmulas utilizadas. (Allen, 1957).

1. Desviación Estandar (S)

$$S = \sqrt{\frac{\left(X - \overline{x}\right)^2}{n-1}}$$

De donde: S = Desviación Estandar

= Sumatoria

x = Media Aritmética

X = Una determinación individual

m = Número de observaciones

2. Error Estandar (Sx)

$$S_{\overline{n}} = \frac{\text{Desviación Estandar}}{\sqrt{n}} \delta \frac{S}{\sqrt{n}}$$

3. Error Estandar de la diferencia (Sd)

Sd
$$\sqrt{\text{Error Estandar}}^2 + \left(\text{Error Estandar}\right)^2 \delta \sqrt{\left(\text{S$\overline{x}}\right)_A^2 + \left(\text{S$\overline{x}}\right)_B^2}$$
Método A Método B

4. "t" calculada (tc)

"t" = diferencia entre las medias aritméticas