CARACTERIZACIÓN FENOTÍPICA Y GENÉTICA DE LA CALIDAD DEL FRUTO EN PROGENITORES DE CHILE JALAPEÑO (Capsicum annuum L.) PARA NICHOS DE MERCADO FRESCO Y LA INDUSTRIA

JOSÉ ÁNGEL GARCÍA SANDOVAL

Tesis

Presentada como requisito parcial para obtener el grado de:

MAESTRO EN CIENCIAS EN FITOMEJORAMIENTO

UNIVERSIDAD AUTÓNOMA AGRARIA ANTONIO NARRO

PROGRAMA DE GRADUADOS

Buenavista, Saltillo, Coahuila, México Marzo 2006

UNIVERSIDAD AUTÓNOMA AGRARIA ANTONIO NARRO

SUBDIRECCIÓN DE POSTRADO

CARACTERIZACIÓN FENOTÍPICA Y GENÉTICA DE LA CALIDAD DEL FRUTO EN PROGENITORES DE CHILE JALAPEÑO (Capsicum annuum L.) PARA NICHOS DE MERCADO FRESCO Y LA INDUSTRIA

TESIS

POR

JOSÉ ÁNGEL GARCÍA SANDOVAL

Tesis elaborada bajo la supervisión del Comité Particular de Asesoría y aprobada por el mismo como requisito parcial para obtener el grado de:

MAESTRO EN CIENCIAS EN FITOMEJORAMIENTO

Comité Particular de Asesoría

Asesor Principal	Dr. Gaspar Martínez Zambrano
Asesor	Dr. Alfonso López Benítez
Asesor	M. C. Manuel Lujan Favela
Ascsol	W. C. Manuel Lujan Pavela
Asesor	M. C. Moisés Ramírez Meraz
Dr. Jeró	onimo Landeros Flores
Subd	irector de Postgrado

Buenavista, Saltillo, Coahuila, Marzo de 2006

AGRADECIMIENTOS

A DIOS, por haberme dejado culminar una meta más en mi vida.

A mis padres, por darme la vida y pedirle constantemente a DIOS que me cuide y guíe por buen camino.

A mi esposa e hijos, por su paciencia, apoyo y empuje durante en mi formación académica.

A mis hermanos que siempre se han preocupado por mí y mi familia.

Al Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) por confiar en mi para realizar estudios de Postgrado.

Al Consejo Nacional de Ciencia y Tecnología (CONACYT) por el apoyo económico durante los estudios de Postgrado.

A la Universidad Autónoma Agraria Antonio Narro (UAAAN) por aceptarme realizar estudios de postgrado.

A mi maestro y asesor Dr. Gaspar Martínez Zambrano por su enseñanza, amistad y motivación para concluir este trabajo de tesis

Al mi maestro y asesor Dr. Alfonso López Benítez por sus conocimientos y motivación para este trabajo.

A los compañeros y asesores M. C. Manuel Lujan Favela y M. C. Moisés Ramírez Meraz por su colaboración y apoyo.

Al M. C. Octavio Pozo Campodónico por su empuje para que realizará mis estudios de Postgrado.

A todos los maestros del departamento de Fitomejoramiento por sus enseñanzas, apoyo y comprensión.

A todos mis compañeros de generación: Daniel, Pancho, Carlos y Josué.

A mis amigos del departamento de Fitomejoramiento Moya, Luís, Juan, Toño, Carlos, Musito, Roberto, Ada, Elizabet, Rocio, Fraga, Parga, Perches, Arnulfo, Víctor, David, Cristina, Flavio, Margarito, Mirna.

A la familia Hernández Rentería por el desinteresado apoyo durante mi estancia en Saltillo, Coahuila.

A todos los compañeros del Campo Experimental Chetumal.

DEDICATORIA

A mis padres:

Manuel García Ramírez

Aurelia Sandoval Hernández

A mi Esposa:

María Elvira López García

A mis hijos:

Ángel Abraham García López

Jhosiel Manuel García López

Gemma Guadalupe García López

A mis Hermanos:

Gustavo

Manuel Catarino

Ramón

Víctor Manuel

José De Jesús

Ana Cecilia

Milagros del Carmen

A mis suegros:

Armando y Eloy

A mis Padrinos:

Amador (Q.E.P.D.) y Leticia

COMPENDIO

CARACTERIZACIÓN FENOTÍPICA Y GENÉTICA DE LA CALIDAD DEL FRUTO DE PROGENITORES EN CHILE JALAPEÑO (Capsicum annuum L.) PARA NICHOS DE MERCADO FRESCO Y LA INDUSTRIA

POR

JOSÉ ÁNGEL GARCÍA SANDOVAL

MAESTRÍA EN CIENCIAS FITOMEJORAMIENTO

UNIVERSIDAD AUTÓNOMA AGRARIA ANTONIO NARRO BUENAVISTA, SALTILLO, COAHUILA. MARZO 2006.

Dr. Gaspar Martínez Zambrano - Asesor Principal-

Palabras claves: Chile jalapeño, mestizos, probadores, aptitud combinatoria general, específica, grupos de mercado.

México tiene la mayor variabilidad genética de *Capsicum annuum* var. *annuum* la cual ha dado origen a gran número de tipos de chiles. Dentro de la diversidad de Capsicum, el tipo jalapeño ha ganado la atención de todos los sectores involucrados en

su cadena productiva y se ha mantenido como la principal especie de chile en México. La competencia entre los diversos nichos de mercado del chile jalapeño, demanda que los programas de mejoramiento cuenten con una base amplia de progenitores caracterizados fenotípica y genéticamente. La presente investigación se llevó a cabo durante los años 2004 y 2005 en las localidades de Delicias y Tampico. Se identificaron, caracterizaron y clasificaron 43 líneas con alto potencial para cinco tipos de mercado, así mismo, cuatro probadores. Los 162 mestizos fueron evaluados en las localidades de Delicias y Tampico, bajo el diseño estadístico bloques al azar con tres repeticiones. Para estimar los efectos genéticos de las diferentes variables de calidad en cada grupo de mercado, se recurrió al diseño de Línea x Probador. En todos los caracteres del fruto y el rendimiento, la magnitud de las varianzas genéticas varió entre los grupos comerciales y entre localidades, con valores intermedios a altos de la heredabilidad. El rendimiento de las líneas en los grupos comerciales presentó una expresión repartida entre los dos tipos de genes; La longitud de fruto, en Tampico, indica que en los grupos de mercado con frutos grandes es debida genéticamente a genes aditivos y en los grupos con fruto mediano-chico es debida a genes no aditivo. En Delicias el fondo genético de las líneas que integraron los grupos de calidad, afectó la expresión del carácter, ya que en el grupo con líneas de origen tropical (doble propósito), la longitud del fruto es debida a genes no aditivos, mientras tanto, en los grupos con líneas de origen templada (fresco, entero, nacho y chipotle) la expresión es responsabilidad de genes aditivos. Los resultados con el diámetro del fruto señalan, entre otras cosas, diferencias genéticas entre el grupo de calidad que demanda frutos de tamaño y diámetro grande (fresco) y el grupo de calidad que demanda frutos de tamaño grande y diámetro mediano (nacho). En la corchosidad del fruto, los resultados relacionan a los genes aditivos como el control genético en el grupo para nacho, que coincide con el mayor grado de acorchamiento y a los genes no aditivos con los grupos de acorchamiento bajo. El número de lóculos exhibe un comportamiento muy diferenciado entre los grupos de mercado, teniendo tanto a los genes aditivos, genes no aditivos como la actividad equilibrada de los dos tipos de genes como responsables de su expresión. En lo que se refiere al grado hueco del fruto, los resultados muestran efectos contradictorios entre ambientes, ya que en Tampico (trópico) el carácter en todos los grupos de mercado debe su expresión básicamente a los genes no aditivos, mientras que en Delicias (Templado) la mayoría de los grupos presenta dependencia a los genes aditivos. Finalmente, en el peso de fruto, el grado de dominancia indica, en forma general, a los genes aditivos como los responsables de este carácter en ambas localidades. Particularmente, se puede observar que el grupo para fresco es el único que genéticamente cambia su acción génica (no aditivos).

ABSTRACT

PHENOTYPIC AND GENETIC CHARACTERIZATION OF FRUIT QUALITY OF JALAPEÑO HOT PEPPER (Capsicum annuum L.) PARENTS FOR KINDS OF FRESH AND INDUSTRY MARKET

BY

JOSÉ ÁNGEL GARCÍA SANDOVAL

MASTER OF SCIENCES

PLANT BREEDING

UNIVERSIDAD AUTÓNOMA AGRARIA ANTONIO NARRO BUENAVISTA, SALTILLO, COAHUILA. MARCH 2006.

Dr. Gaspar Martínez Zambrano -Advisor-

Key words: Jalapeño hot pepper, testcrosses, testers, general combining ability, specific combining ability, niches of market.

Mexico has the greater genetic diversity of *Capsicum annuum* var. *annuum* which has caused great number of types of pepper. Inside the diversity of *Capsicum*, the type jalapeño pepper has earned the attention of all the sectors involved in its productive chain and has been maintained like the main specie of pepper in Mexico. The

competence among the diverse niches of market of the jalapeno pepper, demand that the programs of improvement include an extensive base of phenotypic parents characterized phenotypically and genetically. The present investigation was carried out during the years 2004 and 2005 in the localities of Delicias and Tampico. Forty-three lines were identified, characterized and classified with high potential for five types of market, thus same, four testers. The 162 top-crosses were evaluated in the localities of Delicias and Tampico, under the randomized complete block statistical design with three replications. To estimate the genetic effects of the different variables of fruit quality in each group of market, the Line-Tester design was used. In all the fruit and the performance characters, the magnitude of the genetic variances varied among the commercial groups and between localities, with intermediate to high values of the inheritability. The performance of the lines in the commercial groups presented an expression distributed between the two types of gene action; The fruit length in Tampico, indicates that the groups of market with large fruits this trait is genetically due to additive genes and the groups with medium-small fruit due to non additive genes. In Delicias the genetic fund of the lines that integrated the groups of quality, affected the expression of the character, since in the group with lines of tropical origin (double purpose), the length of the fruit is due to non additives genes, in the meantime, in the groups with lines of temperate origin (fresh, entire, nacho and chipotle) the expression is additives genes responsibility. The results with the diameter of the fruit indicate, among others things, genetic differences between the group of quality that demands fruits of large size and diameter (fresh) and the group of quality that demands fruits of large size and medium diameter (nacho). For cracking of the fruit, the results relate to the genes additives as the genetic control in the group for nacho that coincides with the major degree of cracking and to the genes non

additives with the groups of low cracking. The number of locules exhibits a behavior very differentiated among the groups of market, having both the genes additives and non additives as equilibrated activity of the two types of genes like responsible for its expression. In which refers al hollow degree of the fruit, the results show contradictory effects among environments, since in Tampico (tropic) the character in all the groups of market owes its expression basically to non additives genes, while in Delicias (Temperate) the majority of the groups presents dependence to the additives genes. Finally, for weight of fruit, the gene degree of dominance indicates, in general, to the additives genes as the responsible for this character in both localities. Particularly, it can be observed that the group for fresh is the unique one that genetically changes its gene action (non additives).

ÍNDICE DE CONTENIDO

Índice de cuadros	xiv
INTRODUCCIÓN	1
Objetivos	3
Hipótesis	4
REVISIÓN DE LITERATURA	5
Generalidades	5
Diseños Genéticos	7
Selección de probadores	9
Parámetros genéticos	10
Calidad del fruto	11
Herencia y tipo de acción génica	12
Heterosis	17
Mejoramiento para característica de calidad	21
MATERIALES Y MÉTODOS	22
Sitios de experimentación	22
Caracterización fenotípica y selección de líneas	23
Selección de probadores	25
Formación de mestizos	25
Evaluación de campo	26
Diseño experimental	27
Diseño genético	27
Caracteres evaluados	30
RESULTADOS Y DISCUSIÓN	31
Rendimiento	31
Longitud	47

Diámetro	64
Grosor de pericarpio.	81
Corchosidad del fruto	91
Número de lóculos	110
Grado hueco del fruto	126
Peso de fruto	143
CONCLUSIONES	161
RESUMEN	164
LITERATURA CITADA	

ÍNDICE DE CUADROS

Cuadro	Descripción	Pág
3.1	Características fenológicas de las líneas de chile jalapeño seleccionadas para formar los grupos de calidad comercial. INIFAP-CEDEL. 2004	24
3.2	Probadores utilizados para la formación de mestizos de chile jalapeño. INIFAP-CEDEL-CESTAM. 2005	25
3.3	Análisis genético-estadístico para el diseño genético Línea x Probador	27
4.1	Análisis de varianza para rendimiento de chile jalapeño en grupos y mestizos dentro de grupos de calidad comercial. Delicias, Chihuahua. 2005	32
4.2	Prueba de medias para rendimiento de grupos de calidad comercial de chile jalapeño. Delicias, Chihuahua. 2005	32
4.3	Análisis de varianza del rendimiento de chile jalapeño para grupos y mestizos dentro de grupos de calidad comercial. Tampico, Tamaulipas. 2005	33
4.4	Prueba de medias para rendimiento de grupos de calidad comercial de chile jalapeño. Tampico, Tamaulipas. 2005	34
4.5	Cuadrado medio del rendimiento de mestizos en cuatro grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005	34
4.6	Cuadrado medio del rendimiento de mestizos en cuatro grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005	35
4.7	Rendimiento y ACG de 39 líneas progenitoras de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005	36
4.8	Rendimiento y ACG de 39 líneas progenitoras de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005	37
4.9	Rendimiento y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005	38
4.10	Rendimiento y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005	38
4.11	calidades comerciales. Delicias, Chihuahua. 2005	40
4.12	calidades comerciales. Tampico, Tamaulipas. 2005	43

	Análisis genético de la varianza para rendimiento de fruto de chile
4.13	jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005
4.14	Análisis genético de la varianza para rendimiento de fruto de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005
4.15	Análisis de varianza para longitud de frutos en grupos y mestizos dentro de grupos de calidad comercial de chile jalapeño. Delicias,
7.13	Chihuahua. 2005
4.16	Prueba de medias para longitud de frutos en grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005
4.17	dentro de grupos de calidad comercial de chile jalapeño. Tampico, Tamaulipas. 2005
4.18	Prueba de medias para longitud de frutos en grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005
4.19	Cuadrado medio de la longitud de fruto en cuatro grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005
4.20	de chile jalapeño. Tampico, Tamaulipas. 2005 Longitud de frutos y ACG de 39 líneas progenitoras de chile jalapeño
4.21	para diferentes calidades comerciales. Delicias, Chihuahua. 2005 Longitud de frutos y ACG de 40 líneas progenitoras de chile jalapeño
4.22	para diferentes calidades comerciales. Tampico, Tamaulipas. 2005 Longitud de frutos y ACG de cuatro probadores de chile jalapeño para
4.23	diferentes calidades comerciales. Delicias, Chihuahua. 2005 Longitud de frutos y ACG de cuatro probadores de chile jalapeño para
4.24	diferentes calidades comerciales. Tampico, Tamaulipas. 2005 Longitud de frutos y ACE de mestizos de chile jalapeño para diferentes
4.25	calidades comerciales. Delicias, Chihuahua. 2005 Longitud de frutos y ACE de mestizos de chile jalapeño para diferentes
4.26	calidades comerciales. Tampico, Tamaulipas. 2005
4.27	jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005
4.28	jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005
4.29	Análisis de varianza para diámetro de frutos en grupos y mestizos dentro de grupos de chile jalapeño. Delicias, Chihuahua. 2005
4.30	chile jalapeño. Delicias, Chihuahua. 2005
4.31	dentro de grupos de chile jalapeño. Tampico, Tamaulipas. 2005
4.32	chile jalapeño. Tampico, Tamaulipas. 2005
4 33	Cuadrado medio del diámetro de fruto en cuatro grupos comerciales de

	chile jalapeño. Delicias, Chihuahua. 2005	68
4.34	Cuadrado medio del diámetro de fruto en cuatro grupos comerciales de	
4.34	chile jalapeño. Tampico, Tamaulipas. 2005	69
4.35	Diámetro de frutos y ACG de 39 líneas progenitoras de chile jalapeño	
7.33	para diferentes calidades comerciales. Delicias, Chihuahua. 2005	70
4.36	Diámetro de frutos y ACG de 40 líneas progenitoras de chile jalapeño	
4.30	para diferentes calidades comerciales. Tampico, Tamaulipas. 2005	70
4 27	Diámetro de frutos y ACG de cuatro probadores de chile jalapeño para	
4.37	diferentes calidades comerciales. Delicias, Chihuahua. 2005	71
4.20	Diámetro de frutos y ACG de cuatro probadores de chile jalapeño para	
4.38	diferentes calidades comerciales. Tampico, Tamaulipas. 2005	72
4.20	Diámetro de frutos y ACE de mestizos de chile jalapeño para diferentes	
4.39	calidades comerciales. Delicias, Chihuahua. 2005	73
4.40	Diámetro de frutos y ACE de mestizos de chile jalapeño para diferentes	
4.40	calidades comerciales. Tampico, Tamaulipas. 2005	76
	Análisis genético de la varianza para diámetro del fruto de chile	
4.41	jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua.	
	2005	79
	Análisis genético de la varianza para diámetro del fruto de chile	
4.42	jalapeño en diferentes tipos de calidad comercial. Tampico,	
	Tamaulipas. 2005	81
	Análisis de varianza para grosor de pericarpio de frutos para grupos y	
4.43	mestizos dentro de grupos comerciales. Delicias, Chihuahua.	
	2005	82
4 4 4	Prueba de medias para grosor de pericarpio de frutos en grupos	
4.44	comerciales de chile jalapeño. Delicias, Chihuahua. 2005	83
1 15	Cuadrado medio del grosor de pericarpio del fruto en cinco grupos	
4.45	comerciales de chile jalapeño. Delicias, Chihuahua. 2005	83
	Grosor de pericarpio de frutos y ACG de 39 líneas progenitoras de	
4.46	chile jalapeño para diferentes calidades comerciales. Delicias,	
	Chihuahua. 2005	84
	Grosor de pericarpio de frutos y ACG de cuatro probadores de chile	
4.47	jalapeño para diferentes calidades comerciales. Delicias, Chihuahua.	
	2005	85
4.48	Grosor de pericarpio de frutos y ACE de mestizos de chile jalapeño	
7.70	para diferentes calidades comerciales. Delicias, Chihuahua. 2005	87
	Análisis genético de la varianza para grosor de pericarpio del fruto de	
4.49	chile jalapeño en diferentes tipos de calidad comercial. Delicias,	
	Chihuahua. 2005	90
	Análisis de varianza para grado de corchosidad del fruto en grupos y	
4.50	mestizos dentro de grupos comerciales de chile jalapeño. Delicias,	
	Chihuahua. 2005	92
4.51	Prueba de medias para grado de corchosidad del fruto en grupos	
1.51	comerciales de chile jalapeño. Delicias, Chihuahua. 2005	93
	Análisis de varianza para grado de corchosidad del fruto en grupos y	
4.52	mestizos dentro de grupos comerciales de chile jalapeño. Tampico,	
	Tamaulipas. 2005	94

4.53	Prueba de medias para grado de corchosidad del fruto en grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005	94
4.54	Cuadrado medio para corchosidad del fruto de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005	95
4.55	Cuadrado Medio para corchosidad del fruto de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005	96
4.56	Grado de corchosidad del fruto y ACG de 39 líneas progenitoras de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005	97
4.57	Grado de corchosidad del fruto y ACG de 40 líneas progenitoras de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005	98
4.58	Grado de corchosidad del fruto y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005	99
4.59	Grado de corchosidad del fruto y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas.	
4.60	Grado de corchosidad del fruto y ACE de mestizos de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005	99
4.61	Grado de corchosidad del fruto y ACE de mestizos de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005	103
4.62	Análisis genético de la varianza para corchosidad del fruto de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005	106
4.63	Análisis genético de la varianza para corchosidad del fruto de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005	108
4.64	Cuadrado medio de líneas de chile jalapeño con alto y bajo grado de acorchamiento. Delicias, Chihuahua. 2005	109
4.65	Análisis genético de la varianza para líneas de chile jalapeño con alto y bajo grado de acorchamiento del fruto. Delicias, Chihuahua. 2005 Análisis de varianza para número de lóculos del fruto en grupos y	110
4.66	mestizos dentro de grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005	111
4.67	Prueba de medias para número de lóculos por fruto en grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005	112
4.68	Análisis de varianza para número de lóculos del fruto en grupos y mestizos dentro de grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005	112
4.69	Prueba de medias para número de lóculos del fruto en grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005	113
4.70	Cuadrado medio para número de lóculos por fruto de chile jalapeño en diferentes tipos de calidad comercial. Delicias. Chihuahua. 2005	114
4.71	Cuadrado medio para número de lóculos por fruto de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005	114
4.72	Número de lóculos del fruto y ACG de 39 líneas progenitoras de chile	

	jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005
	Número de lóculos del fruto y ACG de 40 líneas progenitoras de chile
4.73	jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005
	Número de lóculos del fruto y ACG de cuatro probadores de chile
4.74	jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005
	Número de lóculos por fruto y ACG de cuatro probadores de chile
4.75	jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005
	Número de lóculos por fruto y ACE de mestizos de chile jalapeño para
4.76	diferentes calidades comerciales. Delicias, Chihuahua. 2005
	Número de lóculos del fruto y ACE de mestizos de chile jalapeño para
4.77	diferentes calidades comerciales. Tampico, Tamaulipas. 2005
	Análisis genético de la varianza para número de lóculos por fruto de
4.78	chile jalapeño en diferentes tipos de calidad comercial. Delicias,
1.70	Chihuahua. 2005
	Análisis genético para número de lóculos por fruto de chile jalapeño en
4.79	diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005
	Análisis de varianza para grados huecos del fruto en grupos y mestizos
4.80	dentro de grupos comerciales de chile jalapeño. Delicias, Chihuahua.
1.00	2005
	Prueba de medias para grados huecos del frutos en grupos comerciales
4.81	de chile jalapeño. Delicias, Chihuahua. 2005
	Análisis de varianza para grados huecos del fruto en grupos y mestizos
4.82	dentro de grupos comerciales de chile jalapeño. Tampico, Tamaulipas.
	2005
4.02	Prueba de medias para grados huecos del frutos en grupos comerciales
4.83	de chile jalapeño. Tampico, Tamaulipas. 2005
4.0.4	Cuadrado Medio para grado hueco del fruto de chile jalapeño en
4.84	diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005
4.07	Análisis genético para grados huecos del fruto de chile jalapeño en
4.85	diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005
	Grados huecos del fruto y ACG de 39 líneas progenitoras de chile
4.86	jalapeño para diferentes calidades comerciales. Delicias, Chihuahua.
	2005
	Grados huecos del fruto y ACG de 40 líneas progenitoras de chile
4.87	jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas.
	2005
4.00	Grados huecos del fruto y ACG de cuatro probadores de chile jalapeño
4.88	para diferentes calidades comerciales. Delicias, Chihuahua. 2005
4.00	Grados huecos del fruto y ACG de cuatro probadores de chile jalapeño
4.89	para diferentes calidades comerciales. Tampico, Tamaulipas. 2005
	Grados huecos del fruto y ACE de mestizos de chile jalapeño para
4.90	diferentes calidades comerciales. Delicias, Chihuahua. 2005
4.91	Grados huecos del fruto y ACE de mestizos de chile jalapeño para

	diferentes calidades comerciales. Tampico, Tamaulipas. 2005	139
4.92	Análisis genético para grados huecos del fruto de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005	142
	Análisis genético para grados huecos del fruto de chile jalapeño en	142
4.93	diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005	143
4.94	Análisis de varianza para peso de fruto en grupos y mestizos dentro de	1 4 4
4.95	grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005 Prueba de medias para peso de fruto en grupos comerciales de chile	144
	jalapeño. Delicias, Chihuahua. 2005	145
4.96	Análisis de varianza para peso de fruto en grupos y mestizos dentro de	
, 0	grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005 Prueba de medias para peso de fruto en grupos comerciales de chile	146
4.97	jalapeño. Tampico, Tamaulipas. 2005	146
4.98	Cuadrado medio para peso de fruto de chile jalapeño en diferentes tipos	
4.70	de calidad comercial. Delicias, Chihuahua. 2005	147
4.99	Cuadrado medio para peso de fruto de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005	147
4.100	Peso de fruto y ACG de 39 líneas progenitoras de chile jalapeño para	17/
4.100	diferentes calidades comerciales. Delicias, Chihuahua. 2005	148
4.101	Peso de fruto y ACG de 40 líneas progenitoras de chile jalapeño para	1.40
	diferentes calidades comerciales. Tampico, Tamaulipas. 2005 Peso de fruto y ACG de cuatro probadores de chile jalapeño para	149
4.102	diferentes calidades comerciales. Delicias, Chihuahua. 2005	150
4.103	Peso de fruto y ACG de cuatro probadores de chile jalapeño para	
1.103	diferentes calidades comerciales. Tampico, Tamaulipas. 2005	151
4.104	Peso de fruto y ACE de 40 Mestizos de chile jalapeño en diferentes calidades comerciales. Delicias, Chihuahua. 2005	152
4.105	Peso de fruto y ACE de 40 Mestizos de chile jalapeño en diferentes	10_
4.103	calidades comerciales. Tampico, Tamaulipas. 2005	155
4.106	Análisis genético para peso del fruto de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005	158
	Análisis genético para peso del fruto de chile jalapeño en diferentes	1.00
4.107	tipos de calidad comercial Tampico Tamaulinas 2005	160

I. INTRODUCCIÓN

México tiene la mayor variabilidad genética de *Capsicum annuum* var. *annuum* la cual ha dado origen a gran número de tipos de chiles (serrano, jalapeño, anchos, pasillas, guajillo, de árbol etc.), los cuales se adaptaron a las diferentes condiciones agroecológicas y que son ampliamente usados en el país para el mercado tanto nacional como de exportación (Laborde y Pozo, 1984).

Dentro de los tipos de chile que posee México, el tipo jalapeño ha llamado la atención de todos los sectores involucrados en su cadena productiva y se ha mantenido como el principal tipo de chile en México. Lo anterior es sustentado en la superficie de siembra que rebasa las 40 mil hectáreas anuales, su volumen de producción que es de 950 mil ton y la disponibilidad de su fruto durante todo el año (SIAP, 2004). Por otro lado, además de que goza de una alta preferencia y consumo de la población, posee una gran versatilidad para la industria.

Se estima que de la producción total de chile Jalapeño en México, el 40 por ciento se destina a la industria para elaboración de encurtidos enteros, rajas, "nachos" (rodajas) cuadritos, salsas, etc.; 55 por ciento para el consumo en fresco y 5 por ciento para la elaboración de chipotle.

En México la oferta de semillas híbridas de hortalizas, es muy amplia y diversa, pero se encuentra en manos de compañías transnacionales, lo que significa dependencia, fuga de divisas, altos precios de la semilla y, en consecuencia, elevados costos de producción que debilitan la rentabilidad de los cultivos y ponen en riesgo esta actividad entre los productores de nuestro país.

Por otra parte, la apertura comercial ha dado un giro importante en las tendencias del mercado en cultivos como el chile jalapeño, donde el cambio en la calidad del producto se ha vuelto una situación muy dinámica y ha impuesto algunas modas en el mercado, las cuales han exhibido nuestro rezago en la generación de genotipos competitivos.

Dentro de los programas de mejoramiento es más común generar información agronómica y productiva de progenitores, híbridos y variedades que aquella se relaciona con los componentes genéticos que intervienen en la expresión de cada una de las características de interés como los caracteres que definen la calidad industrial, por ejemplo, para consumo en fresco, la industria de los enlatados (rajas, enteros, nachos, trozos, etc.) y el consumo de frutos secos.

La exigencia de los cambiantes y diversos nichos de mercado que experimenta el chile jalapeño, demanda que los programas de mejoramiento cuenten con una base amplia de progenitores caracterizados fenotípica (morfológica) y genéticamente (componentes genéticos de la varianza), así como clasificados por su potencial para

producir híbridos competitivos en una característica particular, o bien con propósitos múltiples de calidad (grupos de especialidad).

A pesar de la importancia de la calidad en la comercialización del fruto, es relativamente escasa la literatura científica respecto a los tipos de acción génica responsables de la expresión de las diversas características que componen la calidad de fruto en chile Jalapeño. Esta situación esta originando una disminución de la eficiencia de los programas de mejoramiento estimada en un 50 por ciento con el consecuente incremento de los costos de producción necesarios para la obtención de nuevas variedades e híbridos de chile. Con fundamento en lo anterior se planteó el presente trabajo de investigación, el cual tuvo como objetivos los siguientes:

- 1. Identificar y clasificar progenitores de chile jalapeño con alto potencial genético para manifestar caracteres de calidad comercial demandados en diferentes nichos de mercado.
- 2. Caracterizar fenotípica y genéticamente los progenitores y sus progenies o mestizos identificados sobre la base de la calidad de su fruto para el tipo de mercado.

Metas

 Disponer de progenitores con alto potencial productivo y de calidad comercial para formar híbridos competitivos para cada nicho de mercado y ambiente agroecológico de chile jalapeño.

- 2. Conformar grupos genéticos diferenciales de materiales genéticos de chile jalapeño, para diferentes nichos de mercado, como una alternativa para mejorar la eficiencia en los programas de mejoramiento genético.
- 3. Que los grupos diferenciales contengan líneas con enfoque hacia caracteres de la calidad de fruto específico para los nichos de mercado en fresco y los tipos más importantes que se ubican dentro del mercado industrial.

Hipótesis

 Existe una amplia diversidad del chile Jalapeño la cual permite establecer grupos de progenitores con caracteres específicos útiles para satisfacer las demandas del mercado fresco, seco e industrial.

I. REVISIÓN DE LITERATURA

Generalidades

Una característica especial del tipo Jalapeño es la gran variabilidad, reconocida en la diversidad de subtipos. Pozo (1981a) establece que de acuerdo a las características de fruto y hábito de crecimiento de la planta, se reconocen los subtipos Morita, Típico o San Andrés, Espinalteco y Candelaria o Peludo, dentro de los cuales todavía pueden reconocerse variantes bien definidas, en número de dos a tres. Esta riqueza en variabilidad le confiere versatilidad para satisfacer los requerimientos de los diversos nichos de mercado; pero, esta importante condición podría convertirse en una desventaja si las nuevas variedades no son suficientemente uniformes tal y como exige el mercado actual de chiles en México y el extranjero.

Owens (1998) y Esquinas, (1982) señalan que un programa de mejoramiento es funcional a medida que genera y dispone de una base de líneas endocriadas o progenitores debidamente caracterizados y clasificados por su capacidad para formar híbridos competitivos de alta calidad específica o múltiple. Ante la globalización de los mercados resulta prioritario e impostergable para el sector hortícola, contar con genotipos productivos estables a factores bióticos y abióticos adversos y de alta uniformidad genética para ser competitivos.

En nuestro país la mayor mejora genética en chile se ha dado en el tipo serrano, donde se reportan los avances mas importantes en estudios sobre herencia de caracteres, distancias genéticas entre progenitores con marcadores moleculares, formación de variedades e híbridos, sin contar los estudios para mejorar la eficiencia en la producción, coinciden García *et al.* (2002) y Ramírez (1996).

Pozo (1981), Pozo y Ramírez (1994, 1998), Ramiro (1998) y Luján y Rodríguez (2000) estiman que la vida útil, en plenitud, de un genotipo mejorado es de cinco años, debido a que las necesidades del productor están regidas por los requerimientos del consumidor (frescos, deshidratados, encurtidos y extracción de oleorresinas). También remarcan que no hay que olvidar que se debe satisfacer las necesidades de toda la cadena productiva: el productor (rendimiento, resistencia a factores adversos, adaptación); el comercializador (calidad en apariencia, vida de anaquel); el procesador (rendimiento industrial) y el consumidor (aromas y sabores). Una combinación de estos caracteres se han usado para obtener los cultivares mejorados en México.

Para que la predicción del avance genético correspondiente a la aplicación de un método de selección sea útil es necesario que los componentes de varianza requeridos sean estimados en forma insesgada y con alta precisión. El método de análisis de varianza, frecuentemente utilizado por los fitomejoradores para estimar componentes de varianza genéticos, produce estimadores insesgados; sin embargo, de acuerdo con algunos resultados, el método carece de precisión, y es común obtener estimaciones negativas de la varianza de dominancia (Márquez-Sánchez y Hallauer, 1970; Hallauer y

Miranda, 1981; Wricke y Weber, 1986; Gouesnard y Gallais, 1992), Sin embargo, Castillo y Nevado (1980) como resultado de un estudió sobre el método de análisis de varianza y la probabilidad de obtener estimaciones negativas de componentes de varianza presentan una tabla de probabilidades a fin de decidir las acciones a seguir cuando ocurra una estimación negativa de la varianza. Concluye que conforme aumenta el número de tratamientos decrece la probabilidad de tener estimadores de varianza negativa.

Diseños genéticos

Existen varias técnicas genético estadísticas para el estudio de los efectos genéticos y sus varianzas como el análisis de medias generacionales (Mather y Jinks, 1977; Gardner y Eberhart, 1966), los diseños de cruzas dialélicas (Martínez, 1983), los diseños de Carolina (Hallauer y Miranda, 1981) y línea por probador (Singh y Chaudhary, 1977); sin embargo la característica fundamental de todos ellos es el uso de ciertas estructuras familiares que permiten interpretar sus varianzas del análisis estadístico, en términos de covarianzas de parientes apropiadas al diseño genético empleado.

Diseño II

El diseño de apareamiento factorial o Diseño II es una modificación del Diseño I de Carolina del Norte, propuesto por Comstock y Robinson (1948 y 1952). En este diseño se toman al azar de la población m machos y h hembras realizando m x h cruces,

resultando igual cantidad de familias de hermanos completos. Por consiguiente, es en esencia, un experimento factorial AxB, donde se utilizan dos factores, uno que representa a las líneas utilizadas como hembras y el otro a las líneas usadas como machos, el número de hembras puede ser igual al de machos, pero no es necesario que sea así (Singh y Chaudhary, 1977; Hallauer y Miranda, 1981; Marquez, 1985, Brewbaker; 1994).

Diseño Línea x Probador

El Diseño Línea por Probador es una extensión del método Top-Cross usado por Kempthorne (1957). Es un método de análisis de efectos genéticos sencillo y versátil muy similar al de Carolina del norte II, que permite el manejo de mayor número de progenitores que con cruzas dialélicas y proporciona información relevante sobre los efectos genéticos aditivos (ACG) y no aditivos (ACE), a partir de las covarianzas de Medios Hermanos y Hermanos Completos (Singh y Chaudhary, 1977).

El uso de este diseño no es tan popular como el diseño IV de Griffing; sin embargo, aunque no hay información sobre este diseño para estudios en el chile tipo jalapeño, la literatura lo reporta como una excelente opción metodológica en otros tipos de chile y cultivos como *Zea maiz* (Narro *et al.*, 2003, Joshi *et al.*, 2002), *Sesamum indicum* L (Sakila *et al.*, 2000), *Oriza sativa* (Singh y Kumar, 2004), *Cucurbita pepo* L. (Ahmed *et al.*, 2003), *Solanum tuberosum* L. (Upadhja y Cabello, 2000), *Xtriticosecale wittmack* (Marciniak *et al.*, 2003) y *Pearl Millet* (Latha y Shanmugasundaram, 1998).

Upadhja y cabello (2000) señalan que el método línea x probador se prefiere para la evaluación y selección de líneas paternas para obtener variedades de semilla híbrida en papa. Este diseño fue usado por los autores para generar dos grupos de familias. El primer grupo con dos líneas como probadores que se cruzaron con 39 líneas hembra para producir 78 familias híbridas. El segundo grupo comprendió nueve líneas machos que se cruzaron con seis líneas hembras para producir 54 familias híbridas. Estos autores indican que es el primer estudio en papa en el que se usa el método línea x probador en el que se hace un análisis de los datos que usan los caracteres de estabilidad para la selección de líneas paternas. Concluyen que el procedimiento es muy útil para la selección de líneas paternas potenciales para la producción de híbridos estables.

Selección de probadores

La selección de los mejores probadores es una condición muy discutida en la literatura, principalmente la generada en maíz. Mientras que para unos el mejor probador es una variedad de polinización abierta (Rawlings y Thompson, 1962), para otros debe ser una línea endocriada (Russell y Eberhart, 1975). También existe preferencia por los hibrido triple y simples (Horner *et al.*, 1976), así como utilizar variedades de bajo potencial productivo (Allison y Curnow, 1966).

Narro *et al.* (2003) en base a sus resultados consideran tanto a las variedades de polinización abierta, híbridos y líneas endocriadas como buenos probadores para generar sintéticos de maíz.

Matzinger (1953) en una investigación donde comparó tres tipos de probadores en maíz, señala que el probador deseado es aquel que combina mayor simplicidad con la máxima información sobre el rendimiento de las líneas cuando son utilizadas en otras combinaciones o en otros ambientes. Indica que el probador deseado depende de los objetivos que se persigan, si el interés es sustituir una línea en cierta combinación, la habilidad combinatoria específica es más importante; por lo tanto, el probador deseado son la cruza simple del híbrido doble o bien la línea endocriada, ya que los resultados indicaron alta interacción de estos tipos. En caso de interés en aptitud combinatoria general, señala que lo mejores probadores serian aquellos con una amplia base genética.

Parámetros genéticos ACG y ACE

Los términos de la aptitud combinatoria fueron definidos por Sprague y Tatum (1942), refiriéndose a la aptitud combinatoria general (ACG) como el comportamiento promedio de una línea en todas sus combinaciones híbridas y a la aptitud combinatoria especifica (ACE) como aquellos casos específicos en los que cierta combinación híbrida se comporta relativamente mejor o peor que las líneas involucradas en la cruza.

Griffing (1956), Falconer (1972) y Vencovsky y Barriga (1992) mencionan que como la ACG se considera asociada a acción génica de tipo aditivo y la ACE a la de tipo no aditivo (dominancia y sobredominancia), a través de la relación ACE/ACG se puede obtener una aproximación sobre la forma en que se hereda el carácter en estudio, lo que resulta importante para escoger el método de mejoramiento a seguir.

Griffing (1956) señala que los componentes aditivos y no aditivos de la varianza genotípica paterna son estimados al usar los componentes de varianza de las aptitudes combinatorias general y específica. Este autor desarrolla dos modelos diferentes de análisis dependiendo de los diferentes supuestos de muestreo: 1). Cuando se asume que las líneas paternas únicamente o el material experimental como un todo son una muestra aleatoria de alguna población sobre la cual se van a hacer inferencias y 2). Cuando se seleccionan las líneas deliberadamente y no pueden ser consideradas como una muestra al azar de alguna población, así que el material experimental constituye la población entera sobre la cual se van a hacer inferencias válidas. El primero conocido como modelo de efectos aleatorios y el segundo como modelo de efectos fijos.

Aspectos de la calidad del fruto

Owens (1998) y Esquinas (1982) coinciden en señalar que para iniciar y tener éxito en un programa de mejoramiento, lo primero es entender el mercado y sus requerimientos. De tal forma que las prioridades en dicho programa dependerán de como se usa cada tipo de chile, cómo y dónde es procesado.

Bosland (1993) hace referencia que el concepto de calidad del fruto de *Capsicum* difiere entre la gente, ya que los factores considerados como calidad importantes para un uso en particular no lo son para otros. Los diferentes aspectos de la calidad estándar varían de acuerdo al productor, importador, vendedor y consumidor. Mientras que el productor juzga la calidad en rendimiento, color de fruto y el daño de

plagas y enfermedades; para otros el movimiento a través de los canales de comercialización, la calidad de almacenaje, la calidad de proceso y la calidad nutricional son de mayor interés. La mayor disyuntiva en la perspectiva de calidad está en el consumo en fresco (hortaliza) y el procesado (especia). Como cada uno requiere diferentes calidades entonces es difícil obtener una definición de la calidad en *Capsicum*. Es muy común que un *Capsicum* deseable para fresco sea no apto para la industria del chile en polvo y viceversa.

Herencia y tipo de acción génica de la calidad y el rendimiento de fruto

Forma del fruto

Ben y Paran (2000) en un análisis genético de características cuantitativas en Capsicum annuum señalan que para la forma del fruto, la cual es definida como la proporción de longitud y diámetro, la alta estimación de la heredablidad (0.93) así como su alto coeficiente de variación genética, indican que esta característica presenta efectos mayoritariamente de tipo aditivo. Greenleaf (1986) refiere que la herencia de la forma del fruto es determinada por un par de genes dominante hacia oblongo y recesivo hacia alargado. Para Khambanonda (1950), la forma de fruto de Capsicum está determinada también por un solo par de genes pero con dominancia incompleta a la forma oblonga y con una heredabilidad de 68 por ciento. Por otra parte, Peterson (1959) reporta la existencia de ligamiento de tres loci (AOG) donde el loci O corresponde a la forma redonda Vs la forma elongada. También señala que este gen gobierna en forma dominante la forma del fruto y es independiente del tamaño. Agrega con respecto a

Khambanonda (1950) que en la forma de fruto existen otros genes que también han demostrado tener influencia en dicho carácter. Los resultados de Ben y Paran (2000) refuerzan lo indicado por Khambanonda (1950) y Peterson (1959) que la forma de fruto se debe a un gen dominante parcial. Finalmente McArdle y Brouwkamp (1983) atribuyen su control a una heredabilidad poligénica cuantitativa.

Tamaño del fruto

Greenleaf (1986) reporta que el tamaño de fruto se debe a poligenes, encontrando genes recesivos hacia tamaño alargado. Por otra parte, Luiz (2002) menciona que longitud de fruto está determinada preferentemente por genes de tipo no aditivo. Contrario a esto, Dorantes (2003), Patel *et al.* (1998), Ahmed *et al.* (1998) encontraron que esta característica es una expresión de tipo aditivo. Ben y Paran (2000) coinciden con los efectos aditivos y agrega que los valores altos de heredabilidad amplia (0.88) y estrecha (0.72) comprueban dichos efectos. Robledo (2005) concluye que longitud de fruto del chile tipo jalapeño, así como los tipos guajillo y serrano también son mayormente expresados por genes de tipo aditivo.

Color del fruto

Greenleaf (1986) reporta que la herencia del color de fruto maduro se debe a un gen dominante para rojo y recesivo para café, señala que la cruza amarillo x café muestra una segregación digénica típica, 9 para rojo, 3 para café, 3 para amarillo y 1 para verde. También, indica que el color inmaduro esta determinado por dos pares de

genes dominantes a verde oscuro. Al respecto, Peterson (1959) concluye la existencia de ligamiento de tres loci A, O y G, donde A corresponde al color de fruto púrpura Vs color de fruto no púrpura y G al color de fruto amarillo Vs color de fruto verde.

Diámetro del fruto

Tal y como se ha señalado en las características anteriores, existen resultados opuestos en cuanto al efecto génico que lo expresa. Esta diferencia en su acción es muy valida ya que generalmente se trata de géneros y especies diversas de *Capsicum*. Al respecto Dorantes (2003) y Luiz (2002) coinciden en reportar que el diámetro de fruto de *Capsicum* es mayormente atribuido a efectos no aditivos. Sin embargo, debido a efectos de tipo aditivo son mencionados por Ben y Paran (2000) y Robledo (2005). Particularmente, Ben y Paran (2000) agregan resultados de heredabilidad altos (0.99-0.96 a 0.95-0.92) en este carácter, lo cual es indicativo de este tipo de acción génica. Por otra parte, autores como Patel *et al.*, (1998) y Ahmed *et al.*, (1998), reportan para circunferencia del fruto la acción predominantemente del tipo aditivo.

Para Khambanonda (1950), en la expresión del diámetro de fruto actúan entre 20 a 33 genes, siendo dominantes para tamaño grande y con una heredabilidad de 64 por ciento. También señala que algunos de esos genes están ligados en fase de repulsión o con efectos epistáticos con otros genes.

Grosor de Pericarpio del fruto

Ahmed *et al.*, (1998), Luiz (2002), Ben y Paran (2000) reportan que la mayor variación expresada por el grosor de pericarpio es atribuida a la acción de genes de tipo aditivo. Ben y Paran (2000) agregan que los valores altos estimados de heredabilidad amplia (0.83) y estrecha (0.74), demuestran tal efecto. Contrario a ellos Fisher (1992) encontró en chile paprika que el pericarpio delgado se debe a la acción de 1 o 2 genes de tipo dominante.

Corchosidad del fruto

Johnson y Knaval (1990), en un estudio sobre la herencia del acorchamiento del fruto de *Capsicum annuum*, encontraron que este carácter ocurre con mas intensidad en los híbridos que en cualesquiera de sus padres con una clara expresión de sobredominancia. Los efectos estimados de la acción génica denotan que su variación fenotípica está más influenciada por genes de tipo no aditivo. Aunque también detectaron en dos de tres cruzamientos con serrano, efectos de tipo aditivo altamente significativo. El estudio también arrojó resultados donde el acorchamiento tiene efectos de tipo epistático aditivo x aditivo, aditivo x dominancia y dominancia x dominancia. Concluyen que el acorchamiento del fruto podría estar bajo control genético principalmente. Por otra parte, los autores señalan que aparentemente para que ocurra el acorchamiento se requiere de varias condiciones físicas del fruto controladas por genes dominantes. Indican que propiedades físicas del tejido cuticular, la pared celular y la

elasticidad del pericarpio, así como la presión interna aparentan ser más importantes en el acorchamiento que la misma forma del fruto.

Lóculos del fruto

Luiz (2002) consigna que el número de lóculos en el fruto de chile pimiento se debe a genes de acción aditiva.

Peso del fruto

Esta característica no es la excepción en cuanto a sus reportes tan opuestos en la literatura, ya que mientras Dorantes (2003) y Luiz (2002) coinciden en ubicar al peso de fruto como un carácter donde su mayor variación fenológica es debida a genes de acción no aditivo, autores como Patel *et al.*, (1998), Ahmed *et al.*, (1998) y Ben y Paran (2000) encontraron que este carácter esta determinado mayormente por genes de tipo aditivo. De hecho, mencionan que su alta heredabilidad (0.97 y 0.89) es un indicativo del poco efecto ambiental tal y como debe esperarse cuando la acción es de este tipo.

Rendimiento de fruto

De los caracteres de mayor interés en cualquier cultivo está el rendimiento, sin embargo, también es de los caracteres genéticos más complejos y difíciles de estudiar. En *Capsicum* la expresión del rendimiento no es la excepción, ya que mientras para Dorantes (2003) el rendimiento de fruto es un carácter determinado tanto por efectos

aditivos como de dominancia, siendo los del tipo aditivo 50 por ciento de los de dominancia; para Patel *et al.*, (1998) y Luiz (2002) su efecto es predominantemente aditivo. Con resultados opuestos, es decir, debido a efectos mayormente dominantes o no aditivos reporta Ahmed *et al.*, (1998). Takur (1987) trabajando con chile dulce menciona que los mejores híbridos presentan una heredabilidad en rendimiento por planta de 40.23 a 76.77 por ciento.

Heterosis

Para Comostock y Robinson (1952) la heterosis es el resultado de la dominancia parcial o completa, sobredominancia y epistasis, así como puede ser producto de la combinación de todas ellas. Virmani *et al.* (2003) hacen referencia de las hipótesis de dominancia (Davenport, 1908) y sobredominancia (East, 1908 y 1936) para explicar la base genética de la heterosis.

Hipótesis de la Dominancia. Este tipo de heterosis es debida a la acumulación de genes dominantes en un híbrido derivado de dos progenitores. Demostrado en un híbrido de chícharo en la cual los progenitores tenían diferentes genes de dominancia.

Hipótesis de la Sobredominancia. En este tipo el heterocigoto (Aa) es más vigoroso y productivo que cualquier homocigoto (AA o aa). Ha sido comprobado en características controladas por unos pocos genes.

También señalan que la heterosis pude deberse al efecto positivo del citoplasma del progenitor hembra sobre el componente nuclear del progenitor macho. La heterosis diferencial entre el polen del mismo progenitor y la línea con esterilidad citoplásmica masculina (CMS) de diferente fuente de citoesterilidad es un ejemplo de este tipo de heterosis. Odland y Porter (1941), Franceschetti (1971) y Pozo (1983) consignan que el chile, clasificado como una planta autógama, posee un porcentaje de polinización cruzada que oscila desde 9.1 por ciento a 54.9 por ciento, por lo que varios autores consideran al chile como una especie de polinización cruzada facultativa. La condición anterior permite explicar el porqué en chile se reportan efectos importantes de heterosis.

Tamaño del fruto

Dorantes (2003) trabajando con chile serrano encontró que la longitud de fruto expresó una heterosis positiva que varió de 11.7 a 23.85 por ciento. Luiz (2002), encontró en pimiento una heterosis máxima de 19.53 y una heterobeltiosis de tan sólo 15.74 por ciento. Chain (1987) trabajando con *Capsicum annuum* obtuvo una heterosis importante sobre el progenitor medio y mejor progenitor de 22.69 y 15.21 por ciento, respectivamente. Joshi *et al.*, (1991), trabajando con cruzas intervarietales para mejorar la producción de semilla reportan heterosis sobre el progenitor macho para longitud de fruto de 132.4 por ciento.

Es de notar en esta característica que a excepción de Joshi *et al.*, (1991), los reportes son muy similares al estimar magnitud moderada de este efecto.

Diámetro del fruto

Dorantes (2003) concluye que el diámetro de fruto en chile serrano presenta una heterosis entre 7.1 a 218.9 por ciento. Luiz (2002), en chile pimiento la ubica en 5.79 y 5.6 por ciento para el progenitor medio y el mejor progenitor, en forma respectiva. Joshi *et al.*, (1991), en un estudio intervarietal para mejorar la producción de semilla reportan heterosis sobre el progenitor macho de hasta 216.6 por ciento. Con resultados contrarios a estos autores Chain (1987) señala heterosis negativa con valores entre -3.95 a -15.2 por ciento.

Grosor de pericarpio del fruto

Para esta característica Luiz (2002) encontró una heterosis máxima de 9.38 por ciento con valores que fluctuaron de 0.09 a 9.38 por ciento, pero indica que más de la mitad de híbridos de pimiento exhibieron heterosis negativa con cifras entre -0.09 a -14.59. Chain (1987) obtuvo resultados mayormente negativos para grosor de pericarpio en cinco híbridos de *Capsicum annuum*, la heterosis para progenitor medio fue -6.82 y -14.68 por ciento para el mejor progenitor.

Lóculos del fruto

Miranda (1987) indica la existencia de heterosis en el número de lóculos en chile pimiento, ya que 12 de 15 híbridos la expresaron. También señala que la heterosis es baja pues los valores obtenidos fluctuaron entre 6.5 a 8.2 por ciento. Luiz (2002) en

su trabajo de tesis en este mismo tipo de chile obtuvo resultados similares, ya que en promedio la heterosis fue de 6.11 por ciento.

Peso del fruto

Dorantes (2003) en su trabajo de tesis encontró heterosis en chile serrano para peso de fruto con valores de 17.08 hasta 247 por ciento. Luiz (2002) señala que en peso promedio de fruto, la heterosis promedio fue 18.06 por ciento asimismo, reporta una heterobeltiosis de 10.37 por ciento. Opuesto a estos resultados Chain (1987) menciona heterosis negativa para peso de fruto con -17.36 por ciento para el progenitor medio y - 32.73 por ciento para el mejor progenitor.

Rendimiento de fruto

Dorantes (2003) en su trabajo de tesis encontró heterosis en chile serrano para rendimiento entre 11.69 a 127.41 por ciento. Luiz (2002) detectó heterosis sobre el progenitor medio en 18.11 por ciento. Singh (1987) en chile picoso consigna un incremento de 101 a 235 por ciento del rendimiento de fruto verde y entre 74.45 a 137 por ciento del rendimiento de fruto rojo sobre el progenitor estándar. Chain (1987) obtuvo una heterosis importante sobre el progenitor medio y mejor progenitor en rendimiento por planta (34.91 y 9.36). Takur (1987) trabajando con chile dulce detectó una heterosis en rendimiento de 36.84 a 128.49 por ciento sobre el progenitor medio y de 20.06 a 113.37 por ciento sobre el mejor progenitor. Joshi *et al.*, (1991) en un estudio intervarietal para mejorar la producción de semilla reportan heterosis sobre el progenitor

medio para rendimiento de fruto maduro por planta de 45.6 por ciento y concluyen que la heterosis en rendimiento de *Capsicum annuum* es debida principalmente a la heterosis combinada de altura de planta, tamaño y número de frutos por planta.

Mejoramiento para caracteres de calidad

Pozo y Ramírez (2000) mencionan que el conocimiento del tipo de acción génica de los caracteres es importante en la selección que se practica, ya que además del rendimiento, la precocidad y la concentración de la producción que se busca, la calidad del producto es primordial para la aceptación del nuevo genotipo, la cual esta dada por su apariencia (forma, tamaño, color inmaduro, color maduro, brillo) y larga vida de anaquel (grosor y solidez del pericarpio, distribución interna de la placenta). Con base en lo anterior es posible precisar la existencia de suficiente variabilidad genética aditiva para continuar el mejoramiento genético de Capsicum por métodos cuantitativos, pero también la existencia de efectos de dominancia que justifica la formación de híbridos para la explotación de la heterosis, confirmada la ventaja que tiene el vigor híbrido en chiles, al combinar genes dominantes útiles, contenidos en las líneas parentales homocigotos y optimizar la expresión de los genes en estado heterocigoto. Complementando lo anterior, Ahmed et al., (1998), Patel et al., (1998) y Joshi (1990) señalan que cuando las características medidas son determinadas por acción aditiva de los genes es más efectivo realizar su mejoramiento con métodos convencionales como pedigrí y selección masal. En cambio cuando en las características la acción es de tipo no aditivo o dominante la selección recurrente reciproca y la hibridación pudieran ser los métodos más efectivos para su mejoramiento.

III. MATERIALES Y MÉTODOS

El trabajo se dividió en tres etapas: la primera consistió en la selección de líneas con características de calidad para diferentes nichos de mercado; la segunda en la formación de mestizos en invernadero mediante el cruzamiento línea x probador y, finamente, la tercera en la evaluación de los mestizos en campo.

Para la identificación y jerarquización de las características de calidad comercial para los diferentes nichos de mercado, se recurrió a la información bibliográfica recabada e información proporcionada por investigadores dedicados al mejoramiento genético de este tipo de chile. Asimismo, a la escasa información disponible de las compañías industriales de México.

Sitios de experimentación

La investigación se llevó a cabo durante los ciclos agrícola Primavera-Verano 2004 y 2005 en la localidad de Delicias, Chihuahua, particularmente en las instalaciones del Campo Experimental Delicias (CEDEL) localizado en el Km 2 de la carretera Delicias-Rosales; así como en los ciclos agrícola Verano-Otoño 2004 y 2005 en Tampico, Tamaulipas, específicamente en el Campo Experimental Sur de Tamaulipas (CESTAM), localizado el km 55 de la carretera Tampico-Mante, con las coordenadas:

Latitud 22°34´ Norte y Longitud 98°05´ Oeste, y Altitud de 60 msnm, en la Huasteca al Nororiente de la Republica Mexicana.

Primera etapa

Caracterización fenotípica y selección de líneas

Esta fase fue esencial para el trabajo, ya que de aquí se derivaron las líneas progenitoras por grupo diferencial o nicho de calidad comercial. Se manejaron 128 líneas para la localidad de Delicias en Chihuahua. En esta etapa se identificaron, caracterizaron (fenotípicamente) y clasificaron 40 líneas con alto potencial para cuatro tipos de mercado (Cuadro 3.1).

Para la identificación y jerarquización de las características de calidad comercial para los diferentes nichos de mercado, se recurrió a la información bibliográfica recabada e información proporcionada por investigadores dedicados al mejoramiento genético de este tipo de chile. Asimismo, a la escasa información disponible de las compañías industriales de México.

En el caso de las líneas de chile jalapeño de la localidad en Tampico, Tamaulipas no se realizó selección de líneas como en la localidad de Delicias, ya que el investigador del programa de mejoramiento genético nos proporcionó en 3 líneas ya identificadas por sus características de calidad para doble propósito.

Cuadro 3.1. Características de fruto de las líneas de chile jalapeño seleccionadas para formar los grupos de calidad comercial. INIFAP-CEDEL. 2004.

N°	Línea	Tipo de mercado	Longitud	Diámetro	Corchosidad	Color	GP	GH
1	27	F	8.0	3.2	Baja	VI	4.6	3.3
2	28	F	9.0	3.0	Lisa	VI	4.8	3.6
3	43	F	7.9	3.5	Lisa	VC	5.0	3.3
4	46	F	7.7	3.2	Lisa	VI	4.5	3.2
5	51	F	7.6	3.1	Lisa	VI	4.1	3.6
6	107	F	10.5	3.6	Baja	VI	5.5	3.5
7	111	F	9.3	2.8	Baja	VI	4.4	3.6
8	120	F	7.0	3.2	Baja	VO	3.4	3.3
9	129	F	7.6	3.3	Baja	VC	4.8	3.3
10	251	F	10.5	3.6	Baja	VI	5.5	3.5
11	1	E	6.6	2.5	Lisa	VI	3.0	3.0
12	3	E	6.5	2.7	Lisa	VI	3.6	3.0
13	64	E	7.0	3.0	Media	VI	4.1	3.0
14	69	E	6.7	3.0	Baja	VI	3.9	3.5
15	76	E	6.0	2.8	Lisa	VI	4.4	3.5
16	82	E	6.2	3.0	Lisa	VO	3.9	3.0
17	88	E	5.6	2.9	Lisa	VI	3.9	3.6
18	116	E	5.6	2.8	Lisa	VI	3.0	3.8
19	118	E	6.2	2.8	Lisa	VI	3.8	3.7
20	121	E	6.3	3.0	Lisa	VO	4.0	2.0
21	11	N	7.7	2.7	Lisa	VI	3.6	3.5
22	35	N	6.4	3.1	Lisa	VI	4.5	3.5
23	47	N	8.0	3.5	Media	VC	4.7	3.0
24	52	N	8.9	3.1	Lisa	VI	4.0	3.0
25	81	N	6.8	2.9	Lisa	VI	3.9	3.1
26	85	N	7.2	3.0	Lisa	VI	3.9	3.5
27	94	N	7.0	2.8	Alta	VI	4.7	3.5
28	95	N	9.9	2.6	Media	VI	3.1	3.2
29	105	N	10.6	2.5	Alta	VI	4.0	3.0
30	110	N	11.8	2.8	Lisa	VI	3.6	3.6
31	14	CH	6.5	2.9	Baja	VI	3.7	3.8
32	31	CH	9.0	3.0	Lisa	VC	3.5	3.0
33	37	CH	6.2	2.9	Baja	VI	4.0	3.6
34	61	CH	7.6	3.4	Baja	VI	4.6	3.7
35	72	CH	7.7	2.7	Lisa	VI	3.7	3.7
36	97	CH	7.8	3.2	Lisa	VI	4.4	3.9
37	98	CH	7.7	3.1	Lisa	VI	4.2	3.7
38	99	CH	6.9	3.3	Lisa	VI	4.1	3.7
39	123	СН	6.7	3.2	Baja	VI	5.0	3.5

VI=Verde intermedio; VO= verde obscuro; VC= verde claro; F=fresco; E=entero; N=nacho; CH=chipotle; GP=grosor de pericarpio; GH= grado hueco.

Selección de probadores

Los probadores utilizados en el presente estudio fueron proporcionados por los programas de mejoramiento genético de chile de los Campos Experimentales de INIFAP en Delicias, Chihuahua y Tampico, Tamaulipas (Cuadro 3.2).

Cuadro 3.2. Probadores utilizados para la formación de mestizos de chile jalapeño. INIFAP-CEDEL-CESTAM. 2005.

Nº	Tipo	Procedencia	Genealogía
1	Línea	INIFAP-CEDEL	2279-3.1.1 a 2.16.1.2
2	Línea	INIFAP-CEDEL	2015-9.1.3. a 5.3
3	Variedad	INIFAP-CEDEL	Típico 1
4	Línea	INIFAP-CESTAM	Chijal 4-19

Segunda etapa

Formación de mestizos

Cada una de las líneas seleccionadas en las diferentes localidades se estableció en macetas y se desarrollaron en invernadero. En total, se obtuvieron tres y 18 plantas por línea o probador respectivamente para realizar los diferentes cruzamientos programados.

La formación de los mestizos, producto del cruzamiento de cada uno de los probadores con cada una de las líneas seleccionadas para cada grupo, fue realizada en los invernaderos ubicados en los campos Experimentales del INIFAP. Los cruzamientos

fueron en forma manual y siguiendo la metodología del propio INIFAP en cada Campo. En promedio se obtuvieron de 3 a 5 frutos por cruce.

Es importante indicar que el número final de mestizos de chile jalapeño evaluados en las localidades de Delicias y Tampico fueron 172 en total, 43 progenitores líneas y cuatro probadores.

Tercera etapa.

Evaluación de campo de los mestizos

El total de los mestizos obtenidos en ambas localidades fueron evaluados tanto en el CEDEL como en el CESTAM durante los ciclos agrícolas Primavera-Verano y Verano-Otoño 2005, respectivamente.

Previo al establecimiento definitivo en campo, las plántulas de cada mestizo fueron crecidas bajo condiciones de invernadero, en charolas de poliestireno y un manejo nutricional especializado para este tipo de chile. El periodo de almácigo en el CEDEL fue de febrero a abril y de junio a julio en el CESTAM.

La parcela de evaluación para cada mestizo consistió en una hilera de plantas de 3 metros de largo y con una distancia de 30 cm entre plantas. En promedio cada mestizo constó de 10 a 12 plantas.

El manejo agronómico del cultivo fue en base al paquete tecnológico sugerido por el INIFAP en cada una de las localidades en estudio.

Diseño experimental.

El diseño empleado en la investigación fue bloques al azar con tres repeticiones en cada una de las localidades. Los resultados se compararon mediante análisis de variación bajo el modelo matemático siguiente:

$$Y_{ijk} = \mu + \beta_i + \tau_j + \epsilon_{ijk}$$

Donde:

 μ = Media general del modelo

 β_i = Efecto del i-ésimo bloque

 τ_i = Efecto del j-ésimo tratamiento

 ε_{ijk} = Error experimental o efecto de variables no cuantificadas por el modelo.

Análisis genético

Después del análisis de varianza se dividió la fuente de tratamientos en los componentes debidos a Líneas, Probadores y Línea x Probador (Cuadro 3.3).

Cuadro 3.3. Análisis genético-estadístico para el diseño genético Línea x Probador.

FV	GL	ECM	Covarianza de parientes
Rep	r-1		
Mestizos	t-1		
L	1-1	$\sigma_e^2 + r \sigma_{lp}^2 + rp \sigma_l^2$	σ_{e}^{2} +r(Cov HC) -2CovMH + rp (CovMH ₁) σ_{e}^{2} +r(Cov HC) -2CovMH +
P	p-1	$\sigma_e^2 + r \sigma_{lp}^2 + r l \varsigma_p^2$	
l x p	(1-1)(p-1)	$\sigma_{e}^{2} + r \sigma_{lp}^{2}$ σ_{e}^{2}	rl (CovMH _{pr}) σ^2_e +r(Cov HC)-2CovMH
l x p Error	_	σ_{e}^{2}	

t=mestizos o tratamientos; l= líneas; p= probadores; lxt= interacción de línea x probador

Para estimar los efectos genéticos de las diferentes variables de calidad en cada grupo de mercado, se recurrió al diseño de Línea x Probador bajo el modelo propuesto por Singh y Chaudhary (1977):

$$Y_{ijk} = \mu + L_i + T_j + (LT)_{ij} + \varepsilon_{ijk}$$

Donde:

 Y_{ijk} = Valor fenotípico de la i-ésima línea, del j-ésimo probador y de la interacción del apareamiento ij

 μ = Media general

L_i = Efecto de la i-ésima línea

 T_i = Efecto del j-ésimo probador

(LT)_{ij} = Efecto de la interacción del apareamiento ij

 $\mathbf{\varepsilon}_{iik}$ = Efecto de la desviación del k-ésimo individuo del apareamiento ij

Con los efectos de aptitud combinatoria general (ACG) y específica (ACE) y la covarianza de parientes, medios hermanos (CovMH) y hermanos completos (CovHC) se estimaron varianzas genéticas aditiva (σ_A^2) y dominante (σ_D^2) para un valor del coeficiente de endogamia de F=1, respectivamente. En el caso de las estimaciones de Covarianzas para líneas y probadores no se probaron con el CM del error general, sino con el CM de la interacción (LxP) por considerarse modelo de efectos aleatorios.

Las fórmulas empleadas fueron:

$$CovMH_{_{L}} = \frac{CM_{_{1}} - CM_{_{LxT}}}{rT}$$

$$CovMH_{_{T}} = \frac{CM_{_{T}} - CM_{_{LxT}}}{rL}$$

$$CovMH_{_{PROM}} = \frac{1}{r(2LT - L - T)} \left[\frac{(L - 1)(CM_{_{L}}) + (T - 1)(CM_{_{T}})}{L + T - 2} - CM_{_{LxT}} \right]$$

$$CovHC = \frac{(CM_{_{L}} - CM_{_{E}}) + (CM_{_{T}} - CM_{_{E}}) + (CM_{_{LXT}} - CM_{_{E}})}{3(r)} + \frac{6(r)CovMH - r(L + T)CovMH}{3(r)}$$

$$\sigma_{_{ACG}}^{^{2}} = CovMH = \sigma_{_{L}}^{^{2}} \text{ o } \sigma_{_{T}}^{^{2}} = \frac{1+F}{4}\sigma_{_{A}}^{^{2}} = \frac{_{_{L}}}{^{_{2}}}\sigma_{_{A}}^{^{2}}$$

$$\sigma_{\text{ace}}^2 = CovHC = \sigma_{\text{lxt}}^2 = \frac{CM_{\text{lxt}} - CM_{\text{e}}}{r} = \left(\frac{1+F}{2}\right)^2 \sigma_{\text{d}}^2 = \sigma_{\text{d}}^2$$

donde:

CovMH_I = Covarianza de medios hermanos de líneas.

CovMH_T= Covarianza de medios hermanos de Probadores.

CovMHprom= Covarianza de medios hermanos promedio de líneas y probadores.

CovHC= Covarianza de hermanos completos.

 σ^2_{ACG} =Varianza de aptitud combinatoria general.

 σ^2_{ACE} =Varianza de aptitud combinatoria específica.

CM_E= Cuadrado medio del error.

CM_L= Cuadrado medio de líneas.

CM_T= Cuadrado medio de probadores.

CM_{LxT}= Cuadrado medio de la interacción.

Una vez determinados los componentes de la varianza genética de cada grupo se estimaron los tipos de heredabilidad amplia (H^2) y estrecha (h^2) . En este caso hubo necesidad de determinar la varianza fenotípica (σ_F^2) . Las formulas utilizadas fueron:

$$\sigma_F^2 = \sigma_A^2 + \sigma_D^2 + \sigma_E^2 \qquad H^2 = \frac{\sigma_A^2 + \sigma_D^2}{\sigma_F^2} \qquad \quad h^2 = \frac{\sigma_A^2}{\sigma_F^2}$$

Finalmente los valores estimados de varianza aditiva y varianza de dominancia fueron empleados para determinar el grado de dominancia (\overline{D}) propuesto por Kempthorne (1957) y con ello definir con más claridad el tipo de acción génica en cada una de los caracteres en evaluación, la expresión utilizada es: $\sqrt{\frac{\sigma_{\scriptscriptstyle D}^2}{\sigma_{\scriptscriptstyle L}^2}}$

Toda la información se analizó con el paquete estadístico SAS versión 8.0 (SAS, 1999). La programación con lenguaje SAS para el diseño línea x probador fue de acuerdo a Bartolome y Gregorio (2000), mismos que dan seguimiento paso a paso al procedimiento de Singh y Chaudhary (1977).

Caracteres de Calidad evaluados

Se tomaron datos de los caracteres del rendimiento total en verde (t ha-¹), peso de fruto (gr), tamaño de fruto (cm), diámetro de fruto (cm), forma de fruto, corchosidad de fruto (porciento), grosor de pericarpio (mm), grados huecos (escala 1-4 y porciento de espacio hueco) de cada uno de los padres y mestizos evaluados. Los datos de fruto se tomaron en una muestra de 5 a 10 frutos.

IV. RESULTADOS Y DISCUSIÓN

Rendimiento del fruto.

Aún cuando el rendimiento de las líneas de chile sometidas a evaluación no es parte crucial en la determinación de los tipos de calidad que existen en el mercado, éste adquiere relevancia para el mejorador al momento de seleccionar las mejores líneas progenitoras para iniciar el proceso de mejoramiento o formación de los mejores genotipos híbridos o de polinización libre.

Análisis estadístico

La alta significancia de grupos y mestizos dentro de grupos del análisis de varianza, con un CV de 17.55 por ciento, es indicativo de que existen diferencias genéticas entre y dentro de los grupos conformados por calidad comercial (Cuadro 4.1). Al fraccionar los mestizos por tipos de calidad, se prueba que las diferencias detectadas son debidas a la diversidad genética de las líneas que formaron la mayoría de los nichos de mercado, mayormente por la calidad para enteros (p≤0.01).

La prueba de medias de grupos de mercado al 5 por ciento de probabilidad (Cuadro 4.2) separó tres categorías estadísticas, quedando en primer lugar el grupo

fresco; en segundo lugar con una producción intermedia chipotle, nacho y enteros y por último, la calidad doble propósito como el menos productivo de todos. Es de notar que el de menor rendimiento corresponde a líneas cuyo origen es tropical y; por lo tanto, es muy probable que la baja producción se deba a la interacción desfavorable genotipo-ambiente.

Cuadro 4.1. Análisis de varianza para rendimiento de chile jalapeño (t ha⁻¹) en grupos y mestizos dentro de grupos de calidad comercial. Delicias, Chihuahua. 2005.

FV	GL	SS	CM	Valor de F	Pr > F
Grupos	4	23862.645	5965.661	82.36	<.0001
Rep (Grupos)	10	5605.082	560.508	7.74	<.0001
Mestizos (Grupos)	156	25814.99	165.480	2.28	<.0001
Fresco	38	7586.113	199.636	1.55	0.0415
Enteros	37	8769.545	237.0158	2.3	0.0007
Nachos	37	4040.562	109.204	1.45	0.0742
Chipotle	33	4013.896	121.633	1.53	0.0598
Doble P.	11	1387.244	126.113	2.07	0.0560
Error	312	22599.642	72.435		
Total	482	77870.755			
CV=17.55%					
Media = 48.48 t ha^{-1}					

Cuadro 4.2. Prueba de medias para rendimiento (t h⁻¹) de grupos de calidad comercial de chile jalapeño. Delicias, Chihuahua. 2005.

Grupo comercial	Media	Error Estándar
Fresco	54.293	0.786
Chipotle	50.345	0.842
Nachos	48.984	0.797
Enteros	47.705	0.797
Doble propósito	25.229	1.418
$\mathrm{DMS}_{0.05}$	2.672	

Los resultados de análisis de grupos de la localidad de Tampico se pueden ver en el Cuadro 4.3. La significancia (p≤0.01) de grupos y mestizos dentro de grupos también permite inferir diferencias genéticas entre y dentro de los grupos conformados por su calidad comercial. Al fraccionar los mestizos por tipos de calidad se prueba que las diferencias (p≤0.01) detectadas son debidas a la diversidad genética de las líneas que formaron los cuatro nichos de mercado. En magnitud del cuadrado medio (CM) sobresalen por su aportación los grupos para chipotle y nachos.

Cuadro 4.3. Análisis de varianza del rendimiento de chile jalapeño (t h⁻¹) para grupos y mestizos dentro de grupos de calidad comercial. Tampico, Tamaulipas. 2005.

FV	GL	SS	CM	Valor de F	Pr > F
Grupos	3	464.465	154.822	20.39	<.0001
Rep (Grupos)	4	307.902	76.976	10.14	<.0001
Mestizos (Grupos)	156	11011.697	70.588	9.30	<.0001
Fresco	39	2628.407	67.395	8.12	<.0001
Enteros	39	1934.203	49.545	12.05	<.0001
Nachos	39	3155.522	80.911	12.14	<.0001
Chipotle	39	3293.934	84.460	7.63	<.0001
Error	156	1184.428	7.593		
Total	319	12968.492			
CV= 8.25%					
Media=32.074 t ha ⁻¹					

En esta localidad la prueba de medias separó estadísticamente los grupos, quedando el grupo para la calidad nacho como el más productivo y viceversa al grupo entero con la menor productividad de todos (Cuadro 4.4). Se observa que las medias de rendimiento difieren entre grupos de calidad comercial y entre las localidades en estudio. En este caso, el ambiente de Delicias fue más favorable que el ambiente de Tampico, ya que la media general fue superior en 29.48 por ciento. Cabe señalar que este carácter no

fue criterio para diferenciar los grupos de mercado en estudio, por lo tanto, las diferencias expresadas son producto del potencial de las líneas que integran cada nicho comercial y de los efectos genotipo-ambiente.

Cuadro 4.4. Prueba de medias para rendimiento (t ha⁻¹) de grupos de calidad comercial de chile jalapeño. Tampico, Tamaulipas. 2005.

Grupo comercial	Media	Error Estándar
Nachos	33.608	0.3081
Fresco	32.610	0.3081
Chipotle	31.757	0.3081
Enteros	30.323	0.3081
$\mathrm{DMS}_{0.05}$	0.861	

En el cuadro 4.5 se muestran los componentes de la partición de mestizos para rendimiento en la localidad de Delicias, es posible observar que la variación exhibida por los mestizos del grupo de calidad para entero y doble propósito es debida a líneas y probadores. En los grupos para fresco y chipotle la variación es más confusa y se considera el papel de las tres fuentes.

Cuadro 4.5. Cuadrado medio del rendimiento (t ha⁻¹) de mestizos en cuatro grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005.

		(Cuadrado Medio		
FV	Fresco	Entero	Nacho	Chipotle	Doble
	TTESCO	Linero	Naciio	Cilipotie	Propósito
Mestizos	199.625 *	237.015 **	109.204 ns	121.633 *	126.113 *
Líneas	236.477 ns	339.669 *	115.597 ns	132.164 ns	438.226 **
Probador	287.414 ns	799.257 **	198.550 ns	167.308 ns	85.749 ns
LxP	176.094 ns	137.630 ns	97.373 ns	110.145 ns	42.257 ns
Error	128.501	103.158	75.286	79.755	60.949
CV (%)	23.000	22.240	18.660	18.850	28.420

Con base en la magnitud del CM es posible clasificar a las líneas y probadores como responsables de la diferencia que manifiestan los mestizos en los cinco nichos de mercado.

Los resultados en la localidad de Tampico se pueden ver en el Cuadro 4.6. Con base en la significancia es evidente la consistencia de la interacción sobre la varianza de los mestizos en todos los grupos de calidad. Analizando desde el punto de vista aportación al CM, líneas contribuye más en los grupos fresco y nachos, en tanto probadores lo hace en chipotle y enteros.

Cuadro 4.6. Cuadrado medio del rendimiento (t ha⁻¹) de mestizos en cuatro grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005.

FV	Cuadrado Medio									
Г۷	Fresco	Entero	Nacho	Chipotle						
Mestizos	67.395 **	49.595 **	80.911 **	84.460 **						
Líneas	153.406 **	39.018 ns	204.903 **	116.076 *						
Probadores	95.761 ns	129.279 *	30.240 ns	324.850 **						
LxP	35.573 **	44.267 **	45.210 **	47.211 **						
Error	8.298	4.117	6.664	11.068						
CV (%)	9.010	6.790	7.850	10.670						

Análisis genético

La información agronómica y genética de líneas de la localidad de Delicias se observa en el Cuadro 4.7 y permite distinguir que la calidad fresco (35.780 t ha-¹) y enteros (42.540 t ha-¹) son los que presentan el menor y mayor rendimiento en forma

respectiva con una diferencia de 15.89 por ciento. Con relación a la ACG se clasifica a las líneas 8 (4.360) y 9 (3.445) como sobresalientes para fresco; 13 (7.831**) y 14 (7.793**) para enteros; 29 (2.713) y 30 (3.100) para nachos y finalmente las 35 (2.519) y 36 (6.567*) para chipotle con valores positivos y mas altos; por lo tanto, potenciales portadores de genes aditivos a explotar en este carácter.

Cuadro 4.7. Rendimiento (t ha-¹) y ACG de 39 líneas progenitoras de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Líneas ¹	Fresco		Ente	Entero		Nacho		Chipotle	
Lineas	Media	ACG	Media	ACG	Media	ACG	Media	ACG	
1	37.988	-1.570	44.494	-3.092	31.488	-6.409	32.679	-1.000	
2	34.405	-1.704	35.000	2.652	41.042	-2.146	26.405	-2.528	
3	43.304	2.750	46.845	7.831	35.952	1.219	52.857	-5.129	
4	25.238	2.619	46.131	7.793	61.875	-2.674	45.893	-1.197	
5	19.732	-4.100	58.839	3.173	47.351	1.157	51.429	2.519	
6	34.095	1.887	43.810	-3.338	44.435	-1.826	50.714	6.567	
7	41.458	2.820	47.111	-4.005	49.673	2.453	40.863	0.726	
8	47.857	4.360	36.131	-6.247	34.018	2.423	33.869	-2.647	
9	41.577	3.445	31.964	-5.875	41.042	2.713	43.571	1.396	
10	32.173	-10.034	35.060	0.770	32.768	3.100	ND	ND	
Media	35.780	0	42.540	0	41.960	0	42.030	0	
$DMS_{0.05}$	16.238	6.479	14.988	5.805	10.104	4.960	17.207	5.120	

las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle); ND = no disponible.

En la localidad de Tampico, considerando líneas, se observa que los grupos nacho (33.608 t ha-¹) y entero (30.323 t ha-¹) presentan el mayor y menor rendimiento en forma respectiva (Cuadro 4.8). Con relación a la ACG se detectaron a las líneas 5 (3.787**), 7 (5.184**) y 10 (2.832**) para fresco; 18 (4.040**) y 20 (1.515*) para enteros; 24 (4.954**), 27 (9.042**) y 28 (4.970**) para nachos y finalmente las 33 (5.227**), 35 (3.824**) y 39 (5.064**) para chipotle como candidatas a explotar en este carácter.

Cuadro 4.8. Rendimiento (t ha-¹) y ACG de 40 líneas progenitoras de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Líneas ¹	Fre	sco	Ent	ero	Nacho		Chipotle	
Lineas	Media	ACG	Media	ACG	 Media	ACG	Media	ACG
1	25.795	-6.814	25.925	-4.398	30.586	-3.022	31.311	-0.446
2	35.272	2.663	30.699	0.376	30.630	-2.977	30.368	-1.389
3	33.751	1.142	31.191	0.868	32.332	-1.275	36.984	5.227
4	34.435	1.826	30.766	0.443	38.561	4.954	29.887	-1.869
5	36.396	3.787	29.502	-0.821	29.684	-3.924	35.581	3.824
6	31.020	-1.589	28.598	-1.725	26.293	-7.315	27.389	-4.368
7	37.793	5.184	30.933	0.610	42.649	9.042	30.095	-1.661
8	24.785	-7.824	34.363	4.040	38.577	4.970	33.167	1.410
9	31.404	-1.205	29.415	-0.908	31.047	-2.560	36.820	5.064
10	35.441	2.832	31.838	1.515	35.716	2.108	25.964	-5.792
Media	32.609	0	30.323	0	33.608	0	31.757	0
$DMS_{0.05}$	6.119	1.996	6.825	1.406	6.898	3.577	7.049	2.305

Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle).

Aún cuando nuestro objetivo son las líneas más que los probadores, ya que como su nombre lo indica solamente son utilizados para probar la capacidad productiva de las líneas, se presenta el comportamiento que tuvieron los cuatro probadores utilizados en esta investigación

En los probadores evaluados en Delicias se obtuvo una media de 34.20 ton ha⁻¹ y ubica al probador 3 con la menor capacidad productiva (Cuadro 4.9). La ACG que manifiesta efectos positivos y significativos para rendimiento en los grupos nacho y chipotle es el probador 1 y en el grupo entero el probador 4. También se observa que el probador tres es el más inconsistente de los cuatro.

Cuadro 4.9. Rendimiento (t ha-¹) y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

	_	ACG						
Probadores	Media	Erosco	Entoro	Nacho	Chipotle	Doble		
		Fresco Entero		Naciio	Chipotie	Propósito		
1	35.863	3.710	1.337	4.242	4.048	2.688		
2	38.750	-3.289	-2.900	-1.576	-1.235	-4.326		
3	24.019	-1.869	-5.519	-0.501	-0.604	1.626		
4	38.184	1.261	6.241	-1.316	-1.827	0.011		
Media	34.204	0	0	0	0	0		
$_{\rm DMS_{0.05}}$	25.844	4.098	3.672	3.137	3.413	4.170		

Por otra parte, los probadores en Tampico tuvieron una media de 25.524 ha⁻¹, la cual resultó inferior un 25.37 por ciento al comportamiento expresado en la localidad de Delicias. Es de señalar diferencias importantes en el comportamiento de los probadores entre las localidades en evaluación, principalmente en los probadores 1, 2 y 4. La ACG indica efectos positivos y significativos para rendimiento con el probador 4 en los cuatro grupos de calidad. Coincidentemente es el probador de origen tropical. Los demás probadores tuvieron una expresión inconsistente entre los cuatro grupos y solamente el 1 para chipotle y el 2 para entero muestran ACG positiva y significativa (Cuadro 4.10).

Cuadro 4.10. Rendimiento (t ha-¹) y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Probadores	Media —	ACG					
Fiouadores	Wiedia —	Fresco	Entero	Nacho	Chipotle		
1	19.148	-1.007	-1.1907	-0.202	2.765		
2	26.810	-0.211	1.2286	-1.513	-0.465		
3	24.347	-1.898	-2.8881	0.250	-5.522		
4	31.792	3.115	2.8502	1.465	3.222		
Media	25.524	0	0	0	0		
$\mathrm{DMS}_{0.05}$	6.684	1.262	0.889	1.131	1.458		

Los mestizos evaluados en la localidad de Delicias, se presentan en el Cuadro 4.11, donde se aprecian diferencias importantes en la media entre grupos de calidad, sobre todo entre la calidad doble propósito y la calidad para fresco que se ubicaron como el peor y mejor grupo respectivamente. Las combinaciones que expresaron los valores de ACE mas altos y positivos con potencial para mejorar el rendimiento mediante la hibridación son 2x4 (8.590), 3x4 (8.484), 5x4 (8.605), 6x1 (7.312), y 10x1 (12.240) para la calidad fresco; 11x4 (8.521), 12x1 (11.104), 14x2 (9.664), 19x3 (8.243) y 20x2 (7.997) para la calidad enteros; 22x4 (5.907), 24x4 (12.656*), 25x3 (6.580), 29x2 (9.106), y 30x1 (5.639) para la calidad nachos; 31x2 (7.574), 33x1 (8.547), 33x3 (4.465), 38x1 (8.432), y 39x1 (8.228) para la calidad chipotle y por último 41x4 (4.636), 42x1 (1.940) y 43x1 (3.249) para la calidad doble propósito.

Con respecto a la localidad de Tampico los mestizos muestran ligeras diferencias de rendimiento en la media entre grupos de calidad, señalando en este caso al grupo para calidad nachos (33.608 ton h⁻¹) y al grupo para calidad enteros (30.323 ton h⁻¹) como los mejores y peores respectivamente (Cuadro 4.12). Las combinaciones que expresaron los valores de ACE positivos y mayores son 2X1 (7.436**), 7x2 (5.522*), 10x2 (4.714*), 10x3 (4.212*), y 5x4 (6.244**) para la calidad fresco; 11x4 (4.557**), 13x1 (6.982**), 13x3 (6.273**), 15x2 (8.579**) y 16x3 (6.027**) para la calidad enteros; 21x2 (7.811**), 23x1 (5.527**), 28x3 (5.718**), 29x3 (7.567**) y 30X4 (5.683**) para la calidad nachos y por último 31x1 (8.359**), 32x2 (10.778**), 35x4 (5.550*), 36x4 (5.875*) y 37x2 (4.667*) para la calidad chipotle.

Cuadro 4.11. Rendimiento (t ha-¹) y ACE de los mestizos de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Mestizo ¹	Fres	sco	Ente	ero	Nacl	10	Chipo	otle	Doble Pro	pósito
Mesuzo	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE
1x1	51.012	-5.421	44.405	-1.545	45.982	-0.834	48.845	-6.548	24.196	-5.190
1x2	51.667	2.232	43.185	1.472	44.435	3.436	55.685	7.574	22.917	0.545
1x3	47.560	-3.294	31.488	-7.606	37.827	-4.246	43.036	-5.706	28.333	0.009
1x4	60.655	6.670	59.375	8.521	42.054	0.796	51.816	4.297	31.345	4.636
2x1	50.357	-5.942	62.798	11.104	54.821	3.742	-	-	23.215	1.940
2x2	47.946	-1.354	-		35.774	-9.488	48.750	2.168	14.435	0.174
2x3	49.613	-1.107	39.405	-5.433	45.327	-1.009	49.673	2.459	21.905	1.692
2x4	62.441	8.590	48.869	-7.729	51.428	5.907	45.030	-0.961	14.792	-3.806
3x1	45.714	-15.039	52.887	-3.985	54.613	0.169	57.812	8.547	36.339	3.249
3x2	59.631	5.876	53.929	1.293	49.256	0.629	36.607	-7.374	25.357	-0.719
3x3	56.042	0.868	57.768	7.752	47.887	-1.814	49.077	4.465	30.328	-1.701
3x4	66.786	8.481	57.560	-4.217	49.053	0.167	37.369	-6.020	29.583	-0.830
4x1	56.905	-3.717	51.190	-5.644	-	-	44.363	-8.834		
4x2	53.810	0.186	62.262	9.664	42.738	-1.996	52.202	4.289		
4x3	57.798	2.755	44.405	-5.574	38.542	-7.267	52.321	3.776		
4x4	59.137	0.963	64.137	2.397	57.649	12.656	47.708	0.386		
5x1	53.363	-0.540	56.429	4.214	48.095	-6.288	51.220	-5.693		
5x2	41.042	-5.863	48.601	0.624	50.446	1.881	52.857	1.228		
5x3	46.310	-2.015	46.190	0.832	56.220	6.580	53.125	0.864		
5x4	60.059	8.605	52.292	-4.828	45.804	-3.021	54.256	3.218		
6x1	67.202	7.312	46.607	0.903	56.815	5.416	57.708	-3.252		
6x2	45.268	-7.624	45.982	4.515	41.399	-4.183	59.375	3.698		
6x3	-	-	38.214	-0.634	48.601	1.945	51.786	-4.523		
6x4	56.071	-1.371	46.667	-3.942	41.815	-4.026	58.780	3.695		
7x1	67.887	7.064	45.923	0.886	49.345	-6.333	53.006	-2.114		
7x2	51.458	-2.321	29.732	-11.068	54.464	4.604	52.440	2.604		
7x3	50.923	-4.321	-	-	54.018	3.083	48.125	-2.343		

Cuadro 4.11.....continuación.

Mestizo ¹	Fres	sco	Ente	ro	Nacl	10	Chipo	otle	Doble Pro	pósito
Mestizo	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE
7x4	58.185	-0.190	55.447	5.505	47.917	-2.203	50.714	1.470		
8x1	65.179	2.816	43.274	0.479	54.167	-1.481	60.179	8.432		
8x2	61.369	6.004	32.976	-5.582	48.988	0.842	39.792	-6.672		
8x3	58.512	1.728	36.815	0.877	55.833	4.929	_	-		
8x4	49.553	-10.361	52.768	5.068	46.637	-3.453	43.125	-2.747		
9x1	62.202	0.755	36.786	-6.381	-	-	64.018	8.228		
9x2	55.852	1.503	33.006	-5.924	59.226	9.106	44.286	-6.220		
9x3	57.827	1.959	44.554	8.243	49.762	-1.433	50.792	-0.346		
9x4	54.970	-4.029	52.976	4.905	46.101	-4.279	47.869	-2.045		
10x1	60.208	12.240	50.119	0.308	61.964	5.639	_	-		
10x2	41.905	0.934	53.571	7.997	47.351	-3.156	_	-		
10x3	47.232	4.843	40.833	-2.122	50.804	-0.778	-	-		
10x4	27.690	-17.830	49.375	-5.341	48.214	-2.553	_	-		
Media	54.291	0.000	47.705	0.000	48.983	0.000	50.404	0.000	25.229	0.000
$DMS_{0.05}$	17.350	12.959	14.770	11.611	12.940	9.818	12.310	10.240	9.755	8.834

¹ las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle, 40-43 doble propósito)

Parámetros genéticos

En el cuadro 4.13 se muestran los resultados del análisis genético del rendimiento para los cinco grupos de calidad comercial en la localidad de Delicias. Considerando los valores estimados para las varianzas genéticas de los dos tipos de progenitores, es deducible que el rendimiento es mayormente atribuido a los genes de tipo no aditivo (Ahmed *et al*, 1998) para fresco, nacho y chipotle y aditivo para entero y doble propósito.

Es primordial indicar que el grupo de calidad doble propósito es el único que difiere con los resultados anteriores, esto tal vez debido a que las líneas que lo integran proceden de ambiente tropical y por ende su fondo genético es diferente. Tomando en cuenta la información genética exclusiva de las líneas, el comportamiento difiere no sólo en magnitud del grado de dominancia de las calidades para fresco, nachos, chipotle y doble propósito, sino también en la acción de los genes, ya que el nicho de calidad para enteros que su expresión era debida a la acción de los genes no aditivos, ahora en las líneas cambia a la acción de genes aditivos (Patel *et al.*, 1998 y Luiz, 2002).

La heredabilidad para rendimiento en función del promedio de los dos tipos de progenitores en la localidad de Delicias es muy baja en todos los grupos de calidad y tiende a mejorar ligeramente conforme disminuye el grado de dominancia producto de las varianzas genéticas aditiva y dominante. Los resultados obtenidos en el grupo doble propósito permiten comprobar la dependencia de este parámetro a los genes aditivos o heredables, ya que el máximo valor se presentó en este grupo (0.117) donde el rendimiento es preferentemente debido a genes de acción aditiva.

Cuadro 4.12. Rendimiento (t ha⁻¹) y ACE de los mestizos de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Mestizo ¹ -	Fresco	О	Enter	ю	Nach	0	Chipot	le
Mestizo -	Media	ACE	Media	ACE	Media	ACE	Media	ACE
1x1	25.850	1.062	21.801	-2.933	23.707	-6.677	42.434	8.359
1x2	23.318	-2.267	24.530	-2.624	36.884	7.811	21.555	-9.291
1x3	25.330	1.433	24.037	1.000	34.712	3.876	23.606	-2.184
1x4	28.681	-0.229	33.332	4.557	27.040	-5.010	37.648	3.116
2x1	41.701	7.436	28.037	-1.472	29.506	-0.923	26.419	-6.714
2x2	33.928	-1.134	32.208	0.281	29.674	0.557	40.681	10.778
2x3	27.672	-5.702	26.644	-1.167	27.345	-3.535	25.167	0.321
2x4	37.788	-0.600	35.908	2.358	35.996	3.902	29.205	-4.385
3x1	36.263	3.519	36.982	6.982	37.388	5.257	43.259	3.510
3x2	32.708	-0.832	31.915	-0.504	30.094	-0.725	36.230	-0.289
3x3	30.207	-1.647	34.576	6.273	25.825	-6.757	30.161	-1.300
3x4	35.826	-1.040	21.291	-12.751	36.022	2.225	38.284	-1.921
4x1	34.712	1.284	30.872	1.297	40.108	1.749	30.093	-2.559
4x2	33.886	-0.339	34.627	2.633	37.699	0.650	32.605	3.182
4x3	33.261	0.723	24.377	-3.500	38.031	-0.781	26.767	2.401
4x4	35.882	-1.668	33.187	-0.429	38.407	-1.619	30.085	-3.024
5x1	36.839	1.450	24.861	-3.450	28.633	-0.849	39.529	1.183
5x2	31.799	-4.386	39.310	8.579	33.207	5.036	30.779	-4.337
5x3	31.190	-3.308	24.950	-1.664	23.370	-6.563	27.663	-2.396
5x4	45.755	6.244	28.888	-3.464	33.525	2.377	44.353	5.550
6x1	27.317	-2.695	26.433	-0.974	26.435	0.344	28.020	-2.133
6x2	30.152	-0.657	21.321	-8.505	21.129	-3.651	21.021	-5.904
6x3	33.051	3.929	31.737	6.027	27.113	0.570	24.030	2.162
6x4	33.558	-0.577	34.900	3.452	30.493	2.736	36.485	5.875
7x1	34.087	-2.699	31.426	1.684	46.394	3.947	31.788	-1.072
7x2	43.105	5.522	31.975	-0.186	41.056	-0.081	34.298	4.667
7x3	32.471	-3.424	23.296	-4.749	40.757	-2.142	25.039	0.466

Cuadro 4.12.....continuación.

Mestizo ¹ -		Fresco		Entero		Nacho		Chipotle
WIESUZO	Media	ACE	Media	ACE	Media	ACE	Media	ACE
7x4	41.509	0.601	37.034	3.251	42.389	-1.725	29.256	-4.061
8x1	26.421	2.642	30.814	-2.358	36.234	-2.142	39.130	3.199
8x2	22.684	-1.891	36.652	1.061	34.918	-2.146	29.742	-2.960
8x3	26.779	3.892	32.761	1.286	44.545	5.718	24.843	-2.802
8x4	23.258	-4.643	37.225	0.012	38.612	-1.430	38.953	2.564
9x1	29.426	-0.971	28.258	0.034	31.806	0.961	37.692	-1.893
9x2	32.462	1.269	30.210	-0.433	28.147	-1.388	38.315	1.959
9x3	29.399	-0.107	24.841	-1.686	38.864	7.567	32.865	1.567
9x4	34.328	-0.191	34.350	2.085	25.372	-7.140	38.409	-1.633
10x1	23.405	-11.029	31.839	1.192	33.848	-1.666	26.848	-1.881
10x2	39.944	4.714	32.766	-0.300	28.140	-6.063	27.694	2.195
10x3	37.755	4.212	27.129	-1.821	38.013	2.047	22.209	1.766
10x4	40.659	2.103	35.618	0.929	42.864	5.683	27.106	-2.080
Media	32.609	0.000	30.323	0.000	33.608	0.000	31.757	0.000
$DMS_{0.05}$	5.850	3.992	4.082	2.812	5.132	3.577	6.858	4.610

las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle)

Con respecto a las líneas, la heredabilidad mantuvo el comportamiento de incrementar y disminuir con la acción de los genes, pero se observa un fuerte aumento en su expresión que coincide con la magnitud de la varianza aditiva de las líneas. Los valores mas altos fueron generados por las líneas de origen tropical o sea el grupo para doble propósito y luego el grupo para enteros donde la acción de los genes es predominantemente aditiva. La heredabilidad expresado por el rendimiento entre grupos es indicativo de las diferencias intrínsecas de sus líneas que los conformaron y aunque que este carácter es de los mas complejos y difíciles de manejar genéticamente (Hallauer y Miranda, 1981), también se reportan algunos resultados con alto porcentaje de heredabilidad (Takur, 1987).

En el cuadro 4.14 se presentan los resultados del análisis genético del rendimiento en la localidad Tampico. Tomando los valores promedio estimados para las varianzas aditivas genéticas, el rendimiento es mayormente atribuido a los genes de tipo no aditivo. Sin embargo, tomando en cuanta la información de líneas, el comportamiento difiere tanto en magnitud como en la acción de los genes como ocurrió en la localidad de Delicias en Chihuahua, en los nichos de calidad para fresco, nacho y chipotle donde su expresión era debida a la acción de los genes no aditivos, ahora cambia a la acción de genes aditivos en los dos primeros, lo que coincide con Patel *et al.* (1998) y Luiz (2002) y a una acción equilibrada de los dos tipos de genes en el tercero que coincide con Dorantes (2003).

Cuadro 4.13. Análisis genético de la varianza para rendimiento de fruto de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005

Parámetro		Nichos de calidad comercial						
genético	Fresco	Entero	Nacho	Chipotle	Doble propósito			
ACG Líneas	5.032 ±3.270	16.837 ±2.930	1.519 ±2.500	1.835 ±2.580	32.997 ±2.250			
ACG Probador	3.711 ± 2.080	22.054 ± 1.850	3.373 ± 1.580	2.117 ± 1.720	4.832 ± 2.600			
ACG Promedio	0.369 ± 2.675	1.601 ± 2.390	0.197 ± 2.040	0.179 ± 2.15	3.617 ± 2.425			
ACE	15.864 ± 2.940	11.490 ±5.860	7.362 ± 5.010	10.130 ± 5.160	-6.231 ±4.510			
σ^2_A Líneas	10.064 ± 18.489	33.673 ± 24.880	3.037 ± 9.255	3.670 ± 11.089	65.995 ±51.765			
σ^2_A Probador	7.421 ± 12.504	44.109 ±33.786	6.745 ± 8.543	4.234 ± 8.158	9.665 ± 12.934			
σ^2_A Promedio	0.739 ± 15.783	3.201 ± 29.669	0.394 ± 8.906	0.357 ± 9.734	7.235 ± 37.729			
$\sigma^2_{ m Dominancia}$	15.864 ± 17.346	11.490 ±13.635	7.362 ± 9.715	10.130 ± 11.440	-6.231 ±10.060			
\overline{D} Líneas	1.260	0.580	1.560	1.660	0			
¬ Probador	1.462	0.510	1.045	1.547	0			
□ Promedio	4.630	1.890	4.330	5.330	0			
h ² Líneas	0.065 ± 0.120	0.227 ± 0.168	0.035 ± 0.108	0.039 ± 0.119	0.547 ± 0.429			
h ² Probador	0.049 ± 0.082	0.278 ± 0.213	0.075 ± 0.096	0.045 ± 0.087	0.150 ± 0.201			
h ² Promedio	0.005 ± 0.103	0.027 ± 0.193	0.005 ± 0.102	0.004 ± 0.104	0.117 ± 0.408			

 $[\]sigma_{\text{Lineas}}^2$ $\sigma_{\text{Probadore}}^2$ varianza aditiva de líneas, probadores y promedio de líneas y probadores, respectivamente. σ_{D}^2 evarianza de dominancia. $\overline{D}_{\text{Iineas}}$, $\overline{D}_{\text{promedio}}$ = promedio de dominancia con base en varianzas aditivas de líneas, probadores y el promedio de ellos, respectivamente. σ_{D}^2 evarianza de dominancia. $\overline{D}_{\text{Iineas}}$, $\overline{D}_{\text{promedio}}$ = heredabilidad con base en varianzas aditivas de líneas, probadores y el promedio de ellos, respectivamente.

Cuadro 4.14. Análisis genético de la varianza para rendimiento de fruto de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005.

Parámetro	Nichos de calidad comercial						
genético	Fresco	Entero	Nacho	Chipotle			
ACG Líneas	14.729 ±1.018	-0.656 ±0.717	19.962 ±0.913	8.608 ±1.176			
ACG Probador	3.009 ± 0.644	4.251 ± 0.454	-0.749 ± 0.577	13.882 ± 0.744			
ACG Promedio	0.784 ± 0.831	0.131 ± 0.585	0.879 ± 0.745	0.917 ± 0.960			
ACE	13.637 ± 2.037	20.075 ±1.435	19.273 ±1.825	18.071 ± 2.352			
σ^2_A Líneas	29.458 ±16.519	-1.312 ± 5.074	39.923 ±22.043	17.216 ±13.384			
σ^2_A Probador	6.019 ± 6.128	8.501 ± 8.259	-1.497 ±2.251	27.764 ±22.874			
σ^2_A Promedio	1.567 ±12.459	0.262 ± 6.854	1.758 ±15.668	1.834 ± 18.740			
$\sigma^2_{\mathrm{Dominancia}}$	13.637 ±4.796	20.075 ±5.838	19.273 ±6.001	18.071 ± 6.724			
\overline{D} Líneas	0.680	0	0.695	1.025			
¬ Probador	1.505	1.537	0	0.807			
D Promedio	2.950	8.747	3.311	3.139			
h ² Líneas	0.573 ± 0.321	-0.057 ± 0.222	0.606 ± 0.335	0.371 ± 0.289			
h ² Probador	0.215 ± 0.219	0.260 ± 0.253	-0.061 ± 0.092	0.488 ± 0.402			
h ² Promedio	0.067 ±0.314	0.011 ±0.247	0.063 ±0.347	0.059 ± 0.363			

 σ^2_{Lineas} $\sigma^2_{Probador}$ $\sigma^2_{Probador}$ $\sigma^2_{Probadores}$ = varianza aditiva de líneas, probadores y promedio de líneas y probadores, respectivamente. σ^2_D = varianza de dominancia. \bar{D}_{lineas} , $\bar{D}_{probadores}$, $\bar{D}_$

En esta localidad la heredabilidad para rendimiento en función al promedio de los dos tipos de progenitores es muy baja y tiende a mejorar substancialmente conforme cambia el grado de dominancia o la acción de los genes, al igual que en la localidad de Delicias. Con respecto a las líneas y probadores, los valores de hasta 0.60 indican que es un carácter de buena heredabilidad, similar a lo consignado por Takur (1987).

Longitud de fruto

La longitud es de los caracteres que más incide o hace la diferencia entre algunos de los principales mercados que existen a nivel nacional e internacional.

Análisis estadístico

En el Cuadro 4.15 se muestra el ANVA sobre grupos diferenciales de calidad para esta característica en la localidad de Delicias. Los resultados manifiestan diferencias altamente significativas (p≤0.01) para grupos y mestizos dentro de grupos con un coeficiente de variación confiable de 10.59 por ciento y una media entre grupos de 8.07 cm. La partición de la fuente mestizos dentro de grupos indica diferencias significativas (p≤0.01) en los cinco tipos de calidad, es decir las diferencias dentro de cada grupo explican la variación manifiesta de los mestizos.

Cuadro 4.15. Análisis de varianza para longitud de frutos (cm) en grupos y mestizos dentro de grupos de calidad comercial de chile jalapeño. Delicias, Chihuahua. 2005.

FV	GL	SC	СМ	Valor de F	Pr > F
Grupos	4	88.273	22.068	30.21	<.0001
Rep (Grupos)	10	160.756	16.076	22.00	<.0001
Mestizos (Grupos)	156	354.071	2.270	3.11	<.0001
Fresco	38	81.923	2.156	6.54	<.0001
Enteros	37	55.196	1.492	3.89	<.0001
Nachos	37	113.798	3.076	4.96	<.0001
Chipotle	33	37.059	1.123	4.38	<.0001
Doble Propósito	11	16.749	1.523	3.18	0.0060
Error	312	227.935	0.730		
Total	482	830.091			
CV=10.59%					
Media =8.071					

La prueba de media conformó tres grupos de tratamientos estadísticamente diferentes, ubicando en el primero a nichos que basan su diferenciación en el tamaño grande de fruto, es decir, los grupos nacho (8.45 cm) y fresco (8.43 cm), en el segundo a

los nichos chipotle (7.91 cm) y enteros (7.80 cm) que exigen mas frutos de tamaño mediano-chico y finalmente en el tercero a doble propósito (6.93 cm) con el menor tamaño de fruto (Cuadro 4.16).

Cuadro 4.16. Prueba de medias para longitud de frutos (cm) en grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005.

Grupo comercial	Media	Error Estándar
Nachos	8.452	0.080
Fresco	8.436	0.079
Chipotle	7.919	0.085
Enteros	7.809	0.080
Doble Propósito	6.933	0.142
$DMS_{0.05}$	0.268	

Con relación a la localidad de Tampico (Cuadro 4.17), los resultados manifiestan diferencias significativas (p≤0.01) para grupos y mestizos dentro de grupos con un coeficiente de variación confiable de 1.27 por ciento y una media entre grupos de 7.930 cm, longitud menor en 1.73 por ciento a la obtenida en Delicias. La partición de la fuente mestizos dentro de grupos indica diferencias significativas (p≤0.01) en los cuatro tipos de calidad, es decir las diferencias dentro de cada grupo explican la diferencia de los mestizos. En aportación al CM se observa una ligera superioridad de nachos y chipotle y, viceversa, a entero con el valor más bajo.

La prueba de medias conformó grupos de tratamientos estadísticamente diferentes, ubicando en primer lugar al grupo fresco (8.370 cm) y a la calidad chipotle (7.549 cm) como el de menor longitud. En forma general, los grupos disminuyeron su

longitud con respecto a Delicias, pero conservaron la posición y agrupamiento estadístico de los grupos (Cuadro 4.18).

Cuadro 4.17. Análisis de varianza para longitud de frutos (cm) en grupos y mestizos dentro de grupos de calidad comercial de chile jalapeño. Tampico, Tamaulipas. 2005.

FV	GL	SC	CM	Valor de F	Pr > F
Grupo	3	41.365	13.788	1356.30	<.0001
Rep (grupo)	4	0.090	0.022	2.21	0.0705
Mestizos (grupo)	156	165.064	1.058	104.08	<.0001
Fresco	39	38.757	0.994	87.63	<.0001
Enteros	39	33.857	0.868	110.81	<.0001
Nachos	39	47.115	1.208	97.46	<.0001
Chipotle	39	45.270	1.161	103.55	<.0001
Error	156	1.586	0.010		
Total	319	208.104			
CV=1.27%					
Media=7.930					

Cuadro 4.18. Prueba de medias para longitud de frutos (cm) en grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005.

Grupo comercial	Media	Error Estándar
Fresco	8.370	0.011
Nachos	8.198	0.011
Enteros	7.603	0.011
Chipotle	7.550	0.011
$\overline{\mathrm{DMS}}_{0.05}$	0.032	

En el Cuadro 4.19 se aprecia la descomposición de mestizos en líneas, probadores e interacción de la localidad de Delicias. Se observa que la significancia (p≤0.01) de los mestizos en los grupos de mercado fresco, entero, nacho y chipotle es explicada en todos ellos por los efectos estadísticos de líneas y en enteros y chipotle por los de probadores. En el caso de la interacción se nota que participa significativamente en cuatro de los cinco grupos de mestizos, solo en nachos muestra no significancia. En el grupo para doble propósito la variación de sus mestizos es explicada sólo por la

interacción. Analizando la aportación al CM resulta evidente la importancia que tienen los probadores en cuatro de los cinco grupos de calidad, ya que sólo en la calidad para nachos es superado por líneas. En este sentido, la interacción sobresale por su baja aportación al CM en todos los grupos de mercado.

Cuadro 4.19. Cuadrado medio de la longitud de fruto (cm) en cuatro grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005.

	Cuadrado Medio						
FV	Fresco	Entero	Nacho	Chipotle	Doble		
	Tieseo Effecto		raciio	Строне	Propósito		
Mestizos	2.156 **	1.492 **	3.076 **	1.123 **	1.523 **		
Líneas	4.041 **	2.103 **	9.027 **	1.711 **	1.109 ns		
Probadores	9.399 **	7.173 **	1.845 ns	3.513 **	2.342 ns		
LxP	0.561 *	0.544 ns	1.083 *	0.550 **	1.251 *		
Error	0.330	0.384	0.620	0.257	0.479		
CV (%)	6.810	8.070	9.210	6.490	9.840		

En la localidad de Tampico se observa que la significancia de los mestizos (p≤0.01) es explicada por los efectos significativos de los tres componentes, con excepción del grupo enteros donde es debido únicamente a la interacción (Cuadro 4.20). En función de la magnitud del CM se puede observar que sobresalen los probadores y líneas más que la interacción en todos los grupos evaluados.

Cuadro 4.20. Cuadrado medio de la longitud de fruto (cm) en cuatro grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005.

FV	Cuadrado Medio					
1 · V	Fresco	Entero	Nacho	Chipotle		
Mestizos	0.994 **	0.868 **	1.208 **	1.161 **		
Líneas	2.109 **	1.132 ns	3.107 **	2.014 *		
Probadores	2.227 **	1.128 ns	2.264 **	2.226 *		
LxP	0.485 **	0.752 **	0.458 **	0.758 **		
Error	0.011	0.008	0.012	0.011		
CV (%)	1.290	1.170	1.380	1.410		

Análisis genético

Los resultados agronómicos y genéticos obtenidos para longitud de fruto en líneas en la localidad de Delicias se pueden ver en el Cuadro 4.21. Se observa que longitud varía desde 7.58 cm hasta 9.37 cm entre los grupos de calidad comercial. Los grupos fresco y nachos presentan tamaño de fruto grande, en tanto entero y chipotle un tamaño pequeño, estas diferencias son atribuidas a las características exigidas por cada grupo de calidad.

Cuadro 4.21. Longitud de frutos (cm) y ACG de 39 líneas progenitoras de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Línea ¹	Fresco		Entero		Nac	Nacho		Chipotle	
	Media	ACG	Media	ACG	Media	ACG	Media	ACG	
1	8.767	-0.211	6.993	-0.360	7.960	-1.271	7.147	-0.190	
2	7.927	-0.616	7.293	-0.064	10.073	-1.226	9.433	0.731	
3	9.493	0.403	9.307	0.880	9.727	0.774	7.807	0.535	
4	8.793	0.179	7.673	-0.588	7.820	0.159	7.573	-0.482	
5	7.880	-0.370	7.193	-0.141	8.280	-0.666	7.087	-0.344	
6	10.853	1.366	7.333	-0.365	10.407	0.356	6.913	-0.152	
7	9.807	0.561	7.687	0.544	9.293	1.093	7.533	0.203	
8	9.117	0.131	8.067	0.142	11.467	0.073	7.540	-0.271	
9	8.420	-0.263	6.993	-0.070	12.107	0.652	7.247	0.086	
10	7.687	-0.839	7.560	0.142	6.653	0.671	ND	ND	
Media	8.874	0	7.610	0	9.379	0	7.587	0	
$DMS_{0.05}$	1.049	0.328	0.835	0.354	1.203	0.450	0.625	0.290	

¹ Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle); ND=no disponible.

Los efectos de ACG permiten seleccionar dentro de cada grupo aquellas con el mayor potencial como progenitoras para aprovechar la aditividad positiva o negativa de los genes según sea la necesidad del grupo comercial con respecto a este carácter, en este sentido, para la calidad fresco con exigencia de fruto grande sobresalen las líneas 3 (0.403*), 6 (1.366**) y 7 (0.561**); para la calidad enteros con demanda de fruto

mediano-chico las líneas 11 (-0.360*), 14 (-0.588**), y 16 (-0.365*); para la calidad nachos con exigencia en fruto grande las líneas 23 (0.774**), 27 (1.093**) y 30 (0.671**) y por último, la calidad chipotle con demanda de fruto mediano-chico las líneas 34 (-0.482**), 35 (-0.344*) y 38 (-0.271).

Los resultados para la localidad de Tampico se presentan en el Cuadro 4.22 y se observa que los grupos fresco y nachos presentan el tamaño de fruto más grande y los grupos para entero y chipotle el más pequeño, este comportamiento de los grupos es similar al obtenido en la localidad de Delicias. Con respecto a los efectos de ACG fue posible seleccionar como mejores opciones en fresco a las líneas 3 (0.274**), 6 (1.079**) y 7 (0.259**); para la calidad enteros a las líneas 11 (-0.450**), 15 (-0.279**), y 16 (-0.484**); para la calidad nachos a las líneas 24 (0.325**), 27 (0.892**) y 30 (1.109**) y por último para la calidad chipotle a las líneas 31 (-0.507**), 36 (-0.500**) y 40 (-0.375**).

Cuadro 4.22. Longitud de frutos (cm) y ACG de 40 líneas progenitoras de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Líneas ¹	Fresco		Entero		Nac	Nacho		Chipotle	
	Media	ACG	Media	ACG	Media	ACG	Media	ACG	
1	8.118	-0.251	7.152	-0.450	7.680	-0.517	7.041	-0.507	
2	7.853	-0.516	7.396	-0.206	7.563	-0.633	7.256	-0.293	
3	8.644	0.274	7.530	-0.073	8.250	0.053	8.540	0.991	
4	8.397	0.028	7.477	-0.125	8.522	0.325	7.651	0.102	
5	8.363	-0.007	7.323	-0.279	7.708	-0.488	7.542	-0.007	
6	9.448	1.079	7.118	-0.484	7.570	-0.627	7.041	-0.508	
7	8.629	0.259	7.841	0.239	9.088	0.892	7.539	-0.010	
8	8.438	0.068	8.031	0.428	7.972	-0.224	7.436	-0.113	
9	8.287	-0.083	8.044	0.441	8.308	0.111	8.269	0.720	
10	7.518	-0.851	8.112	0.509	9.306	1.109	7.174	-0.375	
Media	8.370	0	7.602	0	8.197	0	7.549	0	
$DMS_{0.05}$	0.714	0.074	0.890	0.061	0.695	0.077	0.893	0.073	

¹ Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle).

El comportamiento de los probadores evaluados en Delicias (Cuadro 4.23) muestran que estadísticamente la longitud de fruto es igual entre los cuatro probadores, con una media de 7.32 cm, es decir, un tamaño considerado como mediano-grande. Con relación a los efectos de ACG se aprecia que todos los probadores fueron muy consistentes en su comportamiento entre los grupos de calidad, pero, el potencial como progenitor para mejorar positivamente la longitud de fruto en fresco y nachos es el probador 4, cuyo origen es tropical. En cambio, para disminuir longitud como en los grupos para enteros y chipotle los probadores de origen templado 3 y 1 son la mejor alternativa. En particular con el grupo para doble propósito se observa inconsistencia de los probadores en relación a los otros grupos de mercado; sin embargo, como en este grupo el mayor interés es ganar longitud, por lo tanto, los probadores 2 y 3 se convierten en la mejor opción.

Cuadro 4.23. Longitud de frutos (cm) y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

	_			ACG		
Probadores	Media	Fresco	Entero	Nacho	Chipotle	Doble
		TTESCO	Elitero	Naciio	Chipotie	Propósito
1	7.293	-0.248	-0.163	-0.028	-0.283	-0.560
2	7.480	-0.248	-0.159	-0.201	-0.176	0.604
3	7.833	-0.414	-0.459	-0.130	-0.135	0.202
4	6.707	0.869	0.719	0.354	0.547	-0.247
Media	7.328	0	0	0	0	0
$DMS_{0.05}$	1.300	0.208	0.224	0.285	0.194	0.471

El comportamiento que tuvieron los cuatro probadores en la localidad de Tampico se muestra en el Cuadro 4.24. Es posible observar una longitud media de 6.89, es decir, un tamaño considerado como mediano chico. En este sentido vale la pena

indicar que el comportamiento de los probadores difiere entre las dos localidades, ya que la longitud de fruto promedio en la localidad de Delicias fue mayor en un 6.35 por ciento en relación a la localidad de Tampico. También es factible ver que los probadores de procedencia templada bajaron su media en ambiente tropical y, viceversa, el probador tropical en ambiente templado.

Cuadro 4.24. Longitud de frutos (cm) y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Probadores	Media —		AC	G	
riobadoles	wiedia —	Fresco	Entero	Nacho	Chipotle
1	6.566	-0.133	0.029	-0.126	-0.143
2	6.901	-0.350	-0.113	-0.124	-0.066
3	6.760	0.045	-0.234	-0.247	-0.274
4	7.334	0.438	0.318	0.497	0.483
Media	6.890	0	0	0	0
$DMS_{0.05}$	0.430	0.047	0.039	0.049	0.046

Con relación a los efectos de ACG se aprecia que para mejorar longitud mediante aditividad positiva de genes en los grupos fresco y nacho, el probador mas indicado es el cuatro de origen tropical. Sin embargo, para mejorar en forma negativa principalmente en los grupos enteros y chipotle el probador 3 de origen templado es el más recomendado.

Los resultados de la evaluación de mestizos en la localidad de Delicias (Cuadro 4.25) indican, en forma general, que los grupos fresco y nachos mantienen el mayor tamaño de fruto y doble propósito el fruto más chico. Tomando en cuanta los efectos de ACE, es decir, potenciales portadores de genes no aditivos para mejorar positiva o negativamente la longitud de fruto mediante la hibridación, es factible clasificar a los

Cuadro 4.25. Longitud de frutos (cm) y ACE de mestizos de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Mestizo ¹	Fres	co	Ente	ro	Nach	10	Chipo	otle	Doble pro	pósito
Mestizo	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE
1x1	7.877	-0.100	7.087	-0.112	7.407	0.254	7.300	-0.146	5.727	-0.938
1x2	8.203	0.226	7.127	-0.076	7.613	0.632	8.107	0.553	7.840	0.011
1x3	7.633	-0.177	7.047	0.144	7.020	-0.032	7.397	-0.198	7.567	0.139
1x4	9.187	0.093	8.187	0.106	6.687	-0.849	8.113	-0.163	7.767	0.788
2x1	7.420	-0.152	7.573	0.079	7.580	0.382	-	-	6.733	0.675
2x2	6.973	-0.599	-	-	7.353	0.327	8.090	-0.384	7.113	-0.109
2x3	7.277	0.321	6.800	-0.399	7.253	0.157	8.560	0.045	6.860	0.039
2x4	9.160	0.471	8.600	0.223	6.720	-0.860	9.300	0.103	5.767	-0.605
3x1	8.523	-0.068	8.010	-0.428	8.987	-0.211	8.547	0.375	5.660	0.263
3x2	8.470	-0.115	8.023	-0.420	8.367	-0.659	8.987	0.708	7.660	0.099
3x3	8.257	-0.168	8.033	-0.110	9.047	-0.050	8.237	-0.083	6.980	-0.179
3x4	10.100	0.392	10.340	1.019	10.507	0.926	8.047	-0.954	6.527	-0.183
4x1	8.610	0.242	6.913	-0.057	-	-	7.093	-0.061		
4x2	8.007	-0.361	7.287	0.312	7.447	-0.964	7.100	-0.161		
4x3	8.533	0.332	6.588	-0.087	8.233	-0.248	7.307	0.005		
4x4	9.313	-0.171	7.747	-0.106	10.153	1.189	8.247	0.263		
5x1	7.723	-0.094	7.507	0.089	7.677	-0.081	7.193	-0.099		
5x2	8.073	0.255	7.150	-0.272	7.677	0.061	7.413	0.014		
5x3	7.420	-0.232	7.753	0.631	7.790	0.133	7.593	0.153		
5x4	9.047	0.112	7.913	-0.387	8.033	-0.107	8.100	-0.022		
6x1	9.173	-0.381	7.080	-0.113	7.963	-0.104	7.067	-0.417		
6x2	8.840	-0.714	7.433	0.235	7.280	-0.615	7.533	-0.058		
6x3	_	-	6.953	0.055	7.747	-0.219	7.933	0.302		
6x4	11.393	0.722	7.960	-0.116	9.393	0.944	8.533	0.220		
7x1	8.640	-0.109	8.020	-0.082	9.647	0.130	7.827	-0.012		
7x2	8.497	-0.253	8.523	0.417	9.860	0.516	8.200	0.254		

Cuadro 4.25.....continuación.

Modia	Fresco	000	Entero	0.0	Nacho	10	Chipotle	ıtle	Doble propósito	pósito
MESUZO	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE
7x3	9.027	0.444	ı	1	8.967	-0.448	7.693	-0.294		
7x4	9.827	-0.040	8.253	-0.731	9.707	-0.192	8.767	0.098		
8x1	8.380	0.061	7.800	0.100	8.290	0.206	7.990	0.625		
8x2	8.910	0.590	7.467	-0.238	8.490	0.166	6.887	-0.585		
8x3	8.080	-0.073	7.233	-0.171	8.867	0.472	•	1		
8x4	8.900	-0.536	8.953	0.371	8.453	-0.425	8.067	-0.128		
9x1	7.893	-0.032	7.627	0.138	ı	ı	8.073	0.351		
9x2	8.343	0.418	6.933	-0.560	9.053	0.150	7.373	-0.456		
9x3	7.987	0.228	7.793	0.600	9.280	0.306	7.553	-0.317		
9x4	8.470	-0.572	8.253	-0.117	8.980	-0.478	9.020	0.468		
10x1	7.640	0.292	7.967	0.266	9.840	0.445	•	1		
10x2	7.560	0.211	8.123	0.418	9.407	0.184	•	ı		
10x3	7.533	0.351	7.167	-0.239	9.020	-0.273	•	ı		
10x4	7.653	-0.812	8.200	-0.383	9.427	-0.350	ı	1		
Media	8.424	0	7.722	0	8.453	0	7.919	0	6.850	0
$\mathrm{DMS}_{0.05}$	0.7263	0.657	0.942	0.708	1.279	0.900	0.836	0.581	1.228	0.816
,,			0							

¹ Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle, 41-43 doble propósito).

Cuadro 4.26. Longitud de frutos (cm) y ACE de mestizos de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Mestizo ¹ -	Fresc	co	Ente	ro	Nach	10	Chipo	otle
Wiestizo -	Media	ACE	Media	ACE	Media	ACE	Media	ACE
1x1	7.927	-0.058	6.774	-0.407	7.513	-0.041	6.878	-0.020
1x2	7.457	-0.311	6.441	-0.599	6.948	-0.608	5.918	-1.058
1x3	8.337	0.173	7.490	0.571	7.760	0.327	6.663	-0.105
1x4	8.753	0.197	7.904	0.434	8.498	0.321	8.708	1.183
2x1	8.183	0.463	7.588	0.163	7.661	0.223	6.848	-0.265
2x2	7.518	0.015	7.150	-0.133	7.632	0.192	7.584	0.394
2x3	7.336	-0.562	7.578	0.416	6.890	-0.426	6.894	-0.087
2x4	8.375	0.084	7.268	-0.446	8.071	0.010	7.697	-0.042
3x1	8.355	-0.156	7.986	0.427	8.373	0.249	8.508	0.112
3x2	8.751	0.457	8.496	1.079	8.553	0.427	9.187	0.713
3x3	7.461	-1.228	7.508	0.212	7.279	-0.723	7.390	-0.876
3x4	10.008	0.927	6.128	-1.719	8.794	0.047	9.074	0.051
4x1	8.898	0.634	7.077	-0.429	8.639	0.243	7.571	0.063
4x2	7.887	-0.161	7.181	-0.183	8.308	-0.091	8.508	0.922
4x3	8.029	-0.413	7.131	-0.113	8.121	-0.154	7.472	0.095
4x4	8.775	-0.060	8.520	0.725	9.021	0.002	7.054	-1.080
5X1	8.337	0.107	7.276	-0.076	7.464	-0.118	6.951	-0.448
5X2	8.026	0.013	7.395	0.185	7.533	-0.051	7.313	-0.164
5X3	8.535	0.127	7.042	-0.048	7.696	0.235	7.319	0.051
5X4	8.553	-0.247	7.579	-0.061	8.140	-0.065	8.587	0.561
6X1	9.155	-0.160	7.557	0.409	7.028	-0.416	6.750	-0.148
6X2	9.195	0.097	6.334	-0.671	6.980	-0.466	6.761	-0.214
6X3	9.884	0.391	7.189	0.305	7.167	-0.156	6.873	0.106
6X4	9.558	-0.328	7.393	-0.043	9.105	1.038	7.781	0.256
7X1	8.610	0.114	8.153	0.283	9.411	0.448	7.269	-0.126

Cuadro 4.26.....continuación.

Mestizo ¹ -	Fresc	co	Ente	ro	Nach	0	Chipo	tle
Wiestizo -	Media	ACE	Media	ACE	Media	ACE	Media	ACE
7X2	8.210	-0.068	7.809	0.081	8.688	-0.276	6.581	-0.892
7X3	8.965	0.291	7.508	-0.099	8.989	0.148	7.886	0.621
7X4	8.729	-0.337	7.893	-0.265	9.265	-0.320	8.418	0.396
8X1	7.738	-0.566	7.441	-0.619	7.663	-0.183	8.042	0.749
8X2	8.156	0.068	7.833	-0.085	7.948	0.100	7.598	0.229
8X3	9.188	0.705	7.833	0.036	7.429	-0.296	6.960	-0.201
8X4	8.668	-0.207	9.017	0.668	8.848	0.379	7.143	-0.777
9X1	7.513	-0.641	7.751	-0.322	8.243	0.062	8.244	0.119
9X2	8.044	0.107	8.058	0.128	8.420	0.236	8.343	0.139
9X3	9.058	0.726	7.506	-0.304	8.687	0.626	8.471	0.476
9X4	8.532	-0.193	8.859	0.498	7.881	-0.924	8.018	-0.734
10X1	7.648	0.262	8.710	0.569	8.712	-0.468	6.993	-0.037
10X2	6.951	-0.217	8.198	0.199	9.718	0.537	7.038	-0.070
10X3	7.354	-0.209	6.901	-0.977	9.477	0.418	6.820	-0.080
10X4	8.121	0.165	8.638	0.209	9.316	-0.487	7.844	0.187
Media	8.369	0.000	7.602	0.000	8.197	0.000	7.549	0.000
DMS _{0.05}	0.209	0.1473	0.172	0.1224	0.220	0.1542	0.211	0.1467

¹ Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle).

mejores mestizos de cada nicho de calidad. Para mercado en fresco las mejores combinaciones son 2x4 (0.471), 6x4 (0.722*), 7x3 (0.444), 8x2 (0.590) y 9x2 (0.418); para enteros 12x3 (-0.399), 13x1 (-0.428), 13x2 (-0.420), 17x4 (-0.731*) y 19x2 (-0.560); para nachos 21x2 (0.632), 23x4 (0.926*), 24x4 (1.189**), 26x4 (0.944*) y 27x2 (0.516); para chipotle 32x2 (-0.384), 33x4 (-0.954**), 36x1 (-0.417), 38x2 (-0.585*) y 39x2 (-0.456) y finalmente para doble propósito 42x1 (0.788*), 42x2 (0.675) y 43x1 (0.263). Los progenitores que intervienen en cada mestizo no guardan una tendencia hacia algún tipo de ACG, sino que presentan diferentes efectos de la misma, comportamiento comúnmente registrado en trabajos de esta naturaleza.

Con respecto a los mestizos evaluados en Tampico (Cuadro 4.26), se aprecia un comportamiento muy similar al generado en Delicias, ya que los grupos fresco y nachos mantienen el mayor tamaño de fruto y viceversa los grupos para entero y chipotle el fruto más chico. Tomando en cuanta los efectos de ACE, las combinaciones con alto potencial para mejorar la longitud de fruto a través de genes no aditivos en la calidad para fresco son 3x2 (0.457), 3x4 (0.927), 4x1 (0.634), 8x3 (0.705) Y 9x3 (0.726); para enteros, 11x2 (-0.599), 13x4 (-1.719), 15x2 (-0.671), 18x1 (-0.619) y 20x3 (-0.977); para nachos 23x2 (0.427), 26x4 (1.038), 27x1 (0.448), 29x3 (0.626) y 30x2 (0.537) y finalmente para chipotle 31x2 (-1.058), 33x3 (-0.876), 34x4 (-1.080), 37x2 (-0.892) y 38x4 (-0.1777).

Parámetros genéticos

Los valores del análisis genético en la localidad de Delicias se aprecian en el Cuadro 4.27. Tomando en cuanta el grado de dominancia, la longitud de fruto con base al promedio de los progenitores se inclina preferentemente a los efectos de tipo no aditivo, similares a los resultados de Luiz (2000). Considerando sólo líneas el comportamiento genético da un cambio importante, ya que los grupos de calidad para fresco, enteros, nachos y chipotle, es decir los que comparten el mismo origen templado, ahora presentan una actividad con preferencia hacia los genes aditivos, los cuales coinciden con Robledo (2005), Dorantes (2003), Ben y Paran (2000), Patel et al. (1998), Ahmed et al. (1998). En el caso doble propósito donde el carácter es debido mayormente a la acción de genes no aditivos, tal diferencia con los demás grupos de marcado, pudiera ser el fondo genético de las líneas que lo conforman, ya que son las únicas de origen tropical.

La heredabilidad de la longitud de fruto cuando se utiliza el valor promedio de los progenitores es muy baja y coincide con la dominancia de genes no aditivos. Sin embargo, tomando sólo líneas, el comportamiento responde al cambio en la acción de los genes y la magnitud de la heredabilidad se incrementa en forma substancial en comparación a la estimada con el promedio de los progenitores. Los valores cambian entre los grupos de calidad, pero se observa una tendencia a ser mejor con los grupos para fresco (0.588) y nachos (0.613) que prefieren frutos de tamaño grande. En general, la heredabilidad de longitud de fruto en líneas evaluadas se puede considerar intermedia, según la clasificación de Chávez (1995), es decir, contiene gran cantidad de genes favorable que pudieran ayudar en la expresión más rápida del carácter.

Cuadro 4.27. Análisis genético de la varianza para longitud del fruto (cm) de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005.

Parámetros		N	ichos de calidad com	ercial	
genéticos	Fresco	Entero	Nacho	Chipotle	Doble Propósito
ACG Líneas	0.290 ±0.166	0.130 ±0.179	0.662 ±0.227	0.097 ±0.146	-0.012 ±0.199
ACG Probador	0.295 ± 0.105	0.221 ± 0.113	0.025 ± 0.144	0.110 ± 0.097	0.121 ± 0.231
ACG Promedio	0.024 ± 0.136	0.014 ± 0.146	0.031 ± 0.186	0.009 ± 0.122	0.012 ± 0.215
ACE	0.077 ± 0.332	0.054 ± 0.357	0.154 ± 0.454	0.098 ± 0.292	0.257 ± 0.399
σ^2_A Líneas	0.580 ± 0.288	0.260 ± 0.151	1.324 ± 0.643	0.193 ± 0.130	-0.024 ± 0.167
σ^2_A Probador	0.589 ± 0.369	0.442 ± 0.303	0.051 ± 0.080	0.219 ± 0.165	0.243 ± 0.357
σ^2_A Promedio	0.049 ± 0.347	0.027 ± 0.239	0.062 ± 0.458	0.019 ± 0.149	0.024 ± 0.279
$\sigma^2_{ m Dominancia}$	0.077 ± 0.053	0.054 ± 0.053	0.154 ± 0.102	0.098 ± 0.054	0.257 ± 0.216
\overline{D} Líneas	0.364	0.454	0.342	0.712	0
¬ Probador	0.362	0.348	1.743	0.668	1.030
□ Promedio	1.259	1.368	1.576	2.294	3.316
h ² Líneas	0.588 ± 0.292	0.373 ± 0.217	0.631 ± 0.306	0.353 ± 0.237	-0.033 ± 0.234
h ² Probador	0.592 ± 0.398	0.503 ± 0.345	0.062 ± 0.097	0.382 ± 0.288	0.248 ± 0.365
h ² Promedio	0.107 ± 0.350	0.061 ± 0.303	0.070 ± 0.313	0.050 ± 0.266	0.031 ± 0.330

 $[\]sigma_{\text{Lineas}}^2$ $\sigma_{\text{Probadore}}^2$ varianza aditiva de líneas, probadores y promedio de líneas y probadores, respectivamente. σ_{D}^2 evarianza de dominancia. $\overline{D}_{\text{Iineas}}$, $\overline{D}_{\text{promedio}}$ = promedio de dominancia con base en varianzas aditivas de líneas, probadores y el promedio de ellos, respectivamente. σ_{D}^2 evarianza de dominancia. $\overline{D}_{\text{Iineas}}$, $\overline{D}_{\text{promedio}}$ = heredabilidad con base en varianzas aditivas de líneas, probadores y el promedio de ellos, respectivamente.

El análisis genético correspondiente a la localidad de Tampico se muestra en el Cuadro 4.28. La expresión génica de la longitud de fruto con base al promedio de los progenitores y los probadores es debida preferentemente a los efectos de tipo no aditivo, similar a la localidad de Delicias y a lo reportado por Luiz (200). Considerando a líneas, se observa un cambio en el índice, ahora el grado de dominancia en los grupos para fresco y nachos con las medias más altas presentan una actividad génica preferentemente aditiva, coincidiendo con lo encontrado por Robledo (2005), Dorantes (2003), Ben y Paran (2000), Patel *et al.* (1998), Ahmed *et al.* (1998), en tanto, el grupo para chipotle con la media de fruto mediano-chico ahora su expresión es debida a la acción equilibrada de genes aditivos y no aditivos. Con respecto al grupo para entero, presenta dependencia de genes con actividad no aditiva, similar a los resultados estimados con el promedio y coincidiendo con Luiz (2002).

La heredabilidad de la longitud de fruto estimada en progenitores por separado refleja una gran mejoría en relación al promedio de ambos, principalmente en los grupos para fresco (0.621) y nachos (0.738) con valores que según Chávez (1995) clasifica como altos, similares a lo encontrado por Ben y Paran (2000); en tanto, los porcentajes obtenidos en los otros grupos, donde el carácter es mayormente afectado por genes no aditivos (0.200) y en equilibrio (0.450), según Chávez (1995) indica una heredabilidad intermedia.

Lo anterior significa que aún con las diferencias en la expresión génica entre grupos y localidades, la longitud de fruto en líneas es un carácter con heredabilidad intermedia y abundante expresión de genes favorables que mediante un esquema de

mejoramiento convencional pudieran aprovecharse en forma correcta, tal y como sugieren Pozo y Ramírez (2000), Ahmed *et al.* (1998), Patel *et al.* (1998), Joshi (1990) y Martínez *et al.* (2005).

Cuadro 4.28. Análisis genético de la varianza para longitud del fruto (cm) de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005.

Parámetro			Nicl	nos de cal	idad cor	nercial		
genético	Fre	esco	En	tero	Na	cho	Chip	ootle
ACG Líneas	0.203	±0.038	0.048	±0.031	0.331	±0.039	0.157	±0.037
ACG Probador	0.087	± 0.024	0.019	±0.020	0.090	± 0.025	0.073	± 0.024
ACG Promedio	0.013	± 0.031	0.003	± 0.026	0.019	± 0.032	0.010	± 0.031
ACE	0.237	± 0.075	0.372	± 0.063	0.223	± 0.079	0.373	± 0.075
σ^2_A Líneas	0.406	± 0.227	0.095	±0.130	0.662	± 0.333	0.314	± 0.220
σ^2_A Probador	0.174	± 0.141	0.038	± 0.074	0.181	± 0.144	0.147	± 0.142
σ^2_A Promedio	0.025	±0.189	0.006	±0.106	0.037	±0.256	0.020	± 0.185
$\sigma^2_{\mathrm{Dominancia}}$	0.237	± 0.064	0.372	±0.099	0.223	± 0.060	0.373	± 0.100
\overline{D} Líneas	0.764		1.978		0.590		1.091	
¬ Probador	1.166		3.145		1.111		1.595	
¬ Promedio	3.078		8.007		2.453		4.343	
h ² Líneas	0.621	± 0.347	0.200	±0.274	0.738	± 0.371	0.450	± 0.315
h ² Probador	0.412	±0.334	0.090	±0.177	0.434	±0.346	0.276	± 0.267
h ² Promedio	0.092	±0.351	0.015	±0.238	0.136	±0.390	0.049	±0.301

 σ_{Lineas}^2 $\sigma_{Probador}^2$ $\sigma_{Promedio}^2$ = varianza aditiva de líneas, probadores y promedio de líneas y probadores, respectivamente. σ_D^2 = varianza de dominancia. \overline{D}_{lineas} , $\overline{D}_{probadores}$, $\overline{D}_{promedio}$ = grado promedio de dominancia con base en varianzas aditivas de líneas, probadores y el promedio de ellos, respectivamente. h^2_{Lineas} , $h^2_{probadores}$, $h^2_{promedio}$ = heredabilidad con base en varianzas aditivas de líneas, probadores y el promedio de ellos, respectivamente.

Diámetro de fruto.

El diámetro en proporción a la longitud de fruto también marca diferencias para clasificar calidades del chile jalapeño que existen en el actual mercado.

Análisis estadístico

Los resultados de ANVA en la localidad de Delicias se aprecian en el Cuadro 4.29, indican diferencias significativas (p≤0.01) para grupos comerciales y mestizos dentro de grupos, con un coeficiente de variación de 5.78 por ciento y una media general entre grupos de 2.96 cm. Al subdividir la fuente de mestizos dentro de grupos se observa que todos los nichos de mercado exhiben diferencias estadísticas; es decir, las líneas seleccionadas difieren genéticamente en cada grupo comercial y explican el comportamiento diferente que tienen los mestizos.

Cuadro 4.29. Análisis de varianza para diámetro de frutos (cm) en grupos y mestizos dentro de grupos de chile jalapeño. Delicias, Chihuahua. 2005.

FV	GL	SC	CM	Valor de F	Pr > F
Grupo	4	0.728	0.182	6.18	<.0001
Rep (grupo)	10	0.765	0.076	2.60	0.0049
Mestizos (grupo)	156	17.173	0.110	3.74	<.0001
Fresco	38	4.617	0.122	2.89	<.0001
Enteros	37	3.178	0.086	3.23	<.0001
Nachos	37	4.083	0.110	3.37	<.0001
Chipotle	33	3.992	0.121	0.51	0.0157
Doble P.	11	1.280	0.116	2.55	0.0205
Error	312	9.192	0.029		
Total	482	27.839			
CV=5.78%					
Media=2.97 cm					

La prueba de medias clasificó grupos estadísticamente diferentes (Cuadro 4.30), ubicando a la calidad fresco (3.016 cm) y doble propósito (3.009 mm) con mayor diámetro de fruto. El grupo con diámetro intermedio integrado por la calidad chipotle

(2.971 cm) y entero (2.952 cm) y finalmente la calidad para nacho (2.911 cm) con el menor diámetro de fruto.

Cuadro 4.30. Prueba de medias para diámetro de frutos (cm) en grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005.

Grupo comercial	Media	Error estándar
Fresco	3.016	0.016
Doble Propósito	3.009	0.027
Chipotle	2.971	0.017
Entero	2.952	0.016
Nachos	2.911	0.016
$\mathrm{DMS}_{0.05}$	0.053	

Los resultados de ANVA para Tampico se pueden ver en el cuadro 4.31, indican diferencias significativas (p≤0.01) para grupos comerciales y mestizos dentro de grupos, con un coeficiente de variación de 1.18 por ciento y una media general entre grupos de 2.995 cm. Al subdividir la fuente de mestizos dentro de grupos se observa que todos los nichos de mercado exhiben diferencias estadísticas; es decir, las líneas seleccionadas difieren genéticamente en cada grupo comercial y explican la variación de los mestizos. De acuerdo con la magnitud de la aportación al CM, se observa a los grupos para calidad nachos y entero con el mayor y menor aporte, respectivamente.

La prueba de medias separó los grupos estadísticamente, ubicando a la calidad nachos (3.030 cm) como el mejor y a la calidad chipotle (2.940 cm) con el menor diámetro de fruto (4.32).

Considerando ambas localidades se observó que el diámetro de fruto no es un carácter muy afectado por el ambiente, ya que el promedio de los grupos expresó mínima diferencia entre las dos localidades.

Cuadro 4.31. Análisis de varianza para diámetro de frutos (cm) en grupos y mestizos dentro de grupos de chile jalapeño. Tampico, Tamaulipas. 2005.

FV	GL	SC	CM	Valor de F	Pr > F
Grupo	3	0.376	0.125	98.96	<.0001
Rep (grupo)	4	0.008	0.002	1.52	0.1994
Mestizos (grupo)	156	10.359	0.066	52.37	<.0001
Fresco	39	2.538	0.065	55.92	<.0001
Enteros	39	1.715	0.044	32.11	<.0001
Nachos	39	3.739	0.096	79.49	<.0001
Chipotle	39	2.358	0.061	45.35	<.0001
Error	156	0.198	0.001		
Total	319	10.963			
CV = 1.18%					
Media= 2.995 cm					

Cuadro 4.32. Prueba de medias para diámetro de frutos (cm) en grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005.

Grupo comercial	Media	Error estándar
Nachos	3.030	0.004
Fresco	3.017	0.004
Entero	2.991	0.004
Chipotle	2.940	0.004
$DMS_{0.05}$	0.011	

De acuerdo al Cuadro 4.33, la descomposición en líneas, probadores e interacción expresan que la varianza de mestizos en la localidad de Delicias es explicada por los tres componentes con tendencia a mayor contribución de probadores y la interacción línea x probador (LxP). En forma detallada las líneas fueron más importantes

en nachos y doble propósito, en tanto los probadores sólo en doble propósito no aportaron a la diferencia de los mestizos. Referente a la interacción LXP se ve que son significativamente importantes en los nichos para fresco, entero y chipotle.

Con respecto a la magnitud del CM se distingue que probadores destaca en la mayoría de los grupos, ya que sólo en doble propósito es superado por líneas. Vale la pena mencionar que en ninguno de los grupos de calidad la interacción LxP participa en forma notable.

Cuadro 4.33. Cuadrado medio del diámetro de fruto (cm) en cuatro grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005.

	Cuadrado Medio										
FV	Fresco	Entero	Nacho	Chipotle	Doble						
	TTESCO	Lintero	Naciio	Chipotie	Propósito						
Mestizos	0.122 **	0.086 **	0.110 **	0.121 **	0.116 *						
Líneas	0.086 ns	0.072 ns	0.210 **	0.100 ns	0.353 *						
Probador	0.405 **	0.362 **	0.431 **	0.738 **	0.080 ns						
LxP	0.101 **	0.058 **	0.031 ns	0.045 **	0.055 ns						
Error	0.042	0.027	0.033	0.022	0.046						
CV (%)	6.750	5.520	6.250	4.910	7.110						

Los resultados en la localidad de Tampico (Cuadro 4.34) señalan, en forma general, a los tres componentes como responsables de la varianza mostrada por los mestizos, con excepción de líneas en la calidad fresco que no mostró significancia estadística. En contribución al CM se detecta una tendencia a favor de probadores muy similar a los resultados arrojados en la localidad de Delicias.

Cuadro 4.34. Cuadrado medio del diámetro de fruto (cm) en cuatro grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005.

FV	Cuadrado Medio							
1. A	Fresco	Entero	Nacho	Chipotle				
Mestizos	0.065 **	0.044 **	0.096 **	0.061 **				
Líneas	0.081 ns	0.069 *	0.166 **	0.096 *				
Probadores	0.267 **	0.109 *	0.301 **	0.137 *				
Línea x Probador	0.037 **	0.028 **	0.050 **	0.040 **				
Error	0.001	0.001	0.001	0.001				
CV (%)	1.140	1.250	1.150	1.250				

Análisis genético

La descripción agronómica y genética de líneas evaluadas en Delicias se muestran en el Cuadro 4.35. Se observa que el diámetro de fruto promedio varía de 2.79 (nacho) a 3.12 (fresco) entre los grupos. Mediante los efectos de ACG fue posible separar las líneas con potencial para actuar como progenitoras para mejorar este carácter. En la calidad para fresco las líneas con mayor ACG son la 3 (0.076), 4 (0.060) y 9 (0.061); para la calidad enteros la 13 (0.104*), 15 (0.081) y 20 (0.111*); en la calidad para nachos donde se desea fruto grande tipo zanahoria las mejores líneas son 27 (-0.121*), 28 (-0.182**) y 29 (-0.213**) y por último en la calidad para chipotle la 33 (0.089), 36 (0.085) y 39 (0.167*).

En la localidad de Tampico (Cuadro 4.36) el diámetro medio de las líneas en los grupos de calidad fluctuó entre 2.991 cm (entero) a 3.017 cm (fresco) y fue estimado en base al comportamiento de los híbridos (prepotencia). Considerando los valores generados de ACG, en la calidad para fresco sólo cuatro presentaron una ACG positiva, siendo mejores las líneas 4 (0.150**) y 5 (0.154**); en la calidad para enteros sobresalen las líneas 15 (0.073**), 19 (0.075**) y 20 (0.067**); en la calidad para

nachos donde se desea fruto grande tipo zanahoria las mejores líneas son 25 (-0.123**) y 26 (-0.202**) y finalmente en la calidad para chipotle las líneas 33 (0.078**), 34 (0.099**) y 39 (0.211**).

Cuadro 4.35. Diámetro de frutos (cm) y ACG de 39 líneas de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Línea ¹	Fre	sco	Ente	eros	Nac	Nachos		Chipotle	
Linea	Media	ACG	Media	ACG	Media	ACG	Media	ACG	
1	3.333	0.016	2.707	-0.069	3.007	-0.038	2.773	-0.037	
2	3.213	-0.016	2.920	-0.065	2.780	0.107	3.073	-0.025	
3	3.273	0.076	2.993	0.104	3.120	-0.044	3.247	0.089	
4	3.220	0.060	3.093	-0.028	2.993	0.013	3.327	-0.067	
5	2.847	-0.019	2.913	0.081	2.993	0.074	2.967	0.028	
6	3.160	0.026	2.907	0.003	2.673	0.133	3.180	0.085	
7	3.013	-0.007	3.187	-0.032	2.533	-0.121	2.847	-0.070	
8	3.277	0.033	3.073	-0.117	2.247	-0.182	3.300	0.167	
9	3.100	0.061	2.827	-0.012	2.733	-0.213	3.120	-0.136	
10	2.887	-0.223	2.887	0.111	2.893	0.221	ND	ND	
Media	3.132	0	2.951	0	2.797	0	3.093	0	
$DMS_{0.05}$	0.350	0.117	0.312	0.093	0.374	0.103	0.316	0.084	

Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle); ND= no disponible.

Cuadro 4.36. Diámetro de frutos (cm) y ACG de 40 líneas de chile jalapeño para diferentes calidades comerciales. Localidad Tampico, Tamaulipas. 2005.

Línea ¹	Fre	sco	Ente	eros	Nac	chos	Chip	ootle
Lillea	Media	ACG	Media	ACG	Media	ACG	Media	ACG
1	2.934	-0.083	2.800	-0.190	2.963	-0.067	2.918	-0.021
2	3.077	0.060	3.039	0.049	3.038	0.008	2.849	-0.090
3	2.989	-0.028	2.955	-0.035	2.983	-0.047	3.017	0.078
4	3.167	0.150	3.042	0.052	3.126	0.096	3.038	0.099
5	3.171	0.154	3.063	0.073	2.907	-0.123	2.983	0.044
6	2.849	-0.168	2.856	-0.135	2.828	-0.202	2.784	-0.156
7	3.038	0.021	2.993	0.003	3.151	0.121	2.916	-0.023
8	2.983	-0.034	3.033	0.042	2.965	-0.065	2.902	-0.038
9	3.003	-0.014	3.066	0.075	2.999	-0.031	3.150	0.211
10	2.958	-0.059	3.058	0.067	3.339	0.309	2.836	-0.103
Media	3.017	0	2.991	0	3.030	0	2.939	0
$DMS_{0.05}$	0.198	0.024	0.174	0.026	0.229	0.024	0.206	0.025

Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle).

La información sobre probadores en la localidad de Delicias (Cuadro 4.37) indica una media de 3.235 cm de diámetro, asimismo, que los frutos con mayor y menor diámetro correspondieron a los probadores 1 (3.22 cm) y 4 (2.67 cm) en forma respectiva. Referente a los valores de ACG que exhibieron con los diferentes grupos de calidad, se aprecia que para los grupos con líneas de origen templado el probador uno y dos pueden considerarse como los mejores prospectos, en cambio, para el grupo doble propósito con líneas de origen tropical el probador uno y tres se perfilan como la mejor alternativa para trabajos de mejora genética en vías de aprovechar su potencial como portadores de genes aditivos.

Cuadro 4.37. Diámetro de frutos (cm) y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

		ACG						
Probador	Media	Fresco	Entero	Nacho	Chipotle	Doble		
		Fiesco	Entero	Naciio	Chipotie	Propósito		
1	3.220	0.098	0.126	0.156	0.147	0.117		
2	2.933	0.085	0.059	0.061	0.096	-0.087		
3	3.120	-0.037	-0.094	-0.034	0.000	0.035		
4	2.673	-0.150	-0.095	-0.153	-0.231	-0.065		
Media	3.235	0	0	0	0	0		
DMS _{0.05}	0.214	0.074	0.059	0.065	0.056	0.145		

En Tampico el comportamiento de los probadores indica un diámetro promedio de 3.017 cm, el cual es ligeramente inferior al comportamiento de los mismos en la localidad de Delicias (Cuadro 4.38). Coincidentemente el mejor probador fue el cuatro de procedencia tropical y el de menor diámetro el probador 3 de procedencia templada. Tomando en cuenta el valor de ACG es posible ubicar al probador uno como el mejor y más consistente entre las calidades de mercado.

Analizando las dos localidades se observa que el comportamiento de los probadores varió con el ambiente de evaluación, ya que mientras en Delicias el mejor fue el probador uno de origen templado, en Tampico lo hizo el probador cuatro de origen tropical. A través de los efectos de ACG para diámetro de fruto, es posible deducir que el probador más consistente entre los grupos y los ambientes es el uno de origen templado.

Cuadro 4.38. Diámetro de frutos (cm) y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Probadores	Media -	ACG						
riouadores	Media -	Fresco	Entero	Nacho	Chipotle			
1	2.526	0.103	0.013	0.135	0.064			
2	2.663	0.019	0.021	-0.011	0.067			
3	2.507	0.043	0.070	0.035	-0.025			
4	3.449	-0.165	-0.104	-0.160	-0.106			
Media	3.017	0	0	0	0			
$_{-}$ DMS _{0.05}	0.131	0.015	0.016	0.015	0.016			

El comportamiento de los mestizos evaluados en Delicias (Cuadro 4.39) indica, como en otras características agronómica del fruto evaluadas, una amplia variación dentro y entre cada grupos comercial. En forma general, se detecta que el promedio del carácter entre grupos de calidad va desde 2.911 cm (nacho) a 3.016 cm (fresco), estos resultados coinciden con los grupos de mayor tamaño de fruto.

En el mismo Cuadro 4.39 se encuentran los efectos de ACE, mismos que permiten discriminar los mestizos y señalar aquellos portadores de genes no aditivos y con alto potencial para mejorar el diámetro de fruto a través de métodos de hibridación. En la calidad para fresco sobresalen las combinaciones 1x4 (0.198), 8x2 (0.169), 9x2 (0.245*), 10x1(0.149) y 10x3 (0.344**); para la calidad enteros 11x4 (0.252**),12x1 (0.196*), 13x2

Cuadro 4.39. Diámetro de frutos (cm) y ACE de mestizos de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Mastiza ¹	Fres	sco	Ente	ero	Nac	ho	Chip	otle	Doble Pr	opósito
Mestizo ¹ -	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE
1x1	3.107	-0.024	2.893	-0.116	2.933	-0.096	2.947	-0.135	3.293	0.044
1x2	3.223	0.106	2.893	-0.049	2.960	0.026	3.000	-0.031	3.220	0.176
1x3	2.720	-0.276	2.707	-0.083	2.660	-0.180	2.910	-0.028	3.007	-0.160
1x4	3.080	0.198	3.040	0.252	2.940	0.219	2.880	0.177	3.007	-0.060
2x1	3.087	-0.012	3.210	0.196	3.240	0.065	-	-	2.940	0.009
2x2	2.993	-0.092	-	-	3.087	0.007	3.093	0.050	2.667	-0.059
2x3	3.060	0.097	2.767	-0.027	2.947	-0.038	3.013	0.063	2.847	-0.002
2x4	2.860	0.010	2.687	-0.106	2.800	-0.066	2.733	0.017	2.800	0.052
3x1	3.007	-0.183	3.000	-0.183	3.057	0.033	3.037	-0.171	3.147	-0.054
3x2	3.117	-0.060	3.323	0.207	2.993	0.065	3.240	0.083	2.880	-0.116
3x3	3.170	0.115	3.170	0.207	2.873	0.040	3.120	0.055	3.280	0.162
3x4	3.073	0.132	2.733	-0.228	2.547	-0.168	2.847	0.017	3.027	0.008
4x1	3.190	0.016	3.080	0.030	-	-	3.040	-0.012		
4x2	2.980	-0.181	2.917	-0.067	3.040	0.054	2.813	-0.188		
4x3	3.173	0.134	2.841	0.010	2.893	0.003	3.000	0.091		
4x4	2.960	0.034	2.860	0.031	2.840	0.068	2.767	0.092		
5x1	3.147	0.051	3.127	-0.033	2.993	-0.148	3.123	-0.023		
5x2	3.093	0.011	3.160	0.067	3.073	0.027	3.040	-0.056		
5x3	2.823	-0.137	2.853	-0.086	3.073	0.122	2.953	-0.050		
5x4	2.927	0.079	2.993	0.055	2.800	-0.033	2.880	0.112		
6x1	3.227	0.086	3.237	0.156	3.160	-0.041	3.173	-0.031		
6x2	2.960	-0.167	2.893	-0.121	3.077	-0.029	3.247	0.094		
6x3	-	-	2.797	-0.065	3.027	0.016	2.980	-0.081		
6x4	2.940	0.048	2.893	0.033	2.913	0.022	2.827	0.001		
7x1	3.107	-0.001	3.080	0.034	2.893	-0.053	3.020	-0.029		
7x2	3.143	0.049	2.913	-0.066	2.887	0.036	3.073	0.075		

Cuadro 4.39.....continuación.

Mestizo ¹ -	Fres	sco	Ente	ero	Nac	ho	Chip	otle	Doble Pro	opósito
Mestizo	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE
7x3	2.780	-0.192	-	-	2.847	0.091	2.920	0.014		
7x4	3.007	0.148	2.767	-0.058	2.533	-0.104	2.593	-0.078		
8x1	3.040	-0.107	3.060	0.099	2.830	-0.056	3.437	0.151		
8x2	3.303	0.169	2.847	-0.048	2.787	-0.004	3.233	-0.002		
8x3	3.113	0.101	2.807	0.065	2.720	0.246	-	-		
8x4	2.740	-0.159	2.627	-0.113	2.580	0.003	2.747	-0.162		
9x1	3.193	0.019	3.093	0.027	-	-	3.173	0.190		
9x2	3.407	0.245	3.000	0.001	2.727	-0.032	2.870	-0.062		
9x3	2.873	-0.166	2.853	0.007	2.673	0.009	2.907	0.067		
9x4	2.833	-0.093	2.813	-0.032	2.693	0.148	2.393	-0.212		
10x1	3.040	0.149	3.003	-0.186	3.433	0.145				
10x2	2.793	-0.085	3.158	0.035	3.093	-0.100				
10x3	3.100	0.344	2.933	-0.037	3.060	-0.038				
10x4	2.240	-0.403	3.160	0.191	2.940	-0.039				
Media	3.016	0.000	2.952	0.000	2.911	0.000	2.971	0.000	3.010	0.000
$DMS_{0.05}$	0.300	0.234	0.264	0.187	0.275	0.207	0.226	0.169	0.409	0.252

Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle, 41-43 doble propósito).

(0.207*), 13x3 (0.207*) y 20x4 (0.191*); para la calidad nachos donde la calidad demanda fruto grande y delgado tipo zanahoria las mejores combinaciones son 21x3 (-1.795), 23x4 (-0.168), 25x1 (-0.148) y 27x4 (-0.104); para la calidad chipotle 31x4 (0.177*), 35x4 (0.112), 36x2 (0.094), 38x1 (0.151) y 39x1 (0.190*) y por último en la calidad para doble propósito las combinaciones 41x2 (0.176) y 43x3 (0.162).

Los mestizos evaluados en Tampico se muestran en el Cuadro 4.40 y al igual que en la localidad anterior, denotan una amplia variación dentro y entre cada grupos comercial. Se observa que el diámetro, en forma general, varió de 2.507 cm en el grupo para chipotle a 3.449 en el grupo para nachos. En el mismo Cuadro 4.40 se encuentran los efectos de ACE, mismos que permite clasificar a las mejores combinaciones portadores de genes dominantes con alto potencial para mejorar la característica a través de métodos de hibridación. En la calidad para fresco sobresalen las combinaciones 1x3 (0.207**), 1x4 (0.203**), 3x1 (0.166**), 4x2 (0.208**) y 6x1 (0.187**); para la calidad enteros 13x3 (0.238**), 15x4 (0.113**), 16x1 (0.201**), 17x3 (0.123**) y 18x1 (0.119**); para la calidad nachos 21x1 (-0.215**), 23x2 (-0.256**), 24x2 (-0.171**), 25x4 (-0.288**) y 26x3 (-0.180**) y por último en la calidad para chipotle las combinaciones 31x4 (0.195**), 32x2 (0.169**), 34x3 (0.141**), 35x1 (0.139**) y 37x2 (0.245**).

Parámetros genéticos

En Delicias el análisis genético realizado a diámetro de fruto se presenta en el Cuadro 4.41. Considerando el valor promedio de ambos tipos de progenitores se nota

Cuadro 4.40. Diámetro de frutos (cm) y ACE de mestizos de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Mestizo ¹ -	Fresc	co	Enter	0	Nacho)	Chipot	tle
Wiestizo -	Media	ACE	Media	ACE	Media	ACE	Media	ACE
1x1	2.768	-0.270	2.693	-0.121	2.883	-0.215	2.978	-0.004
1X2	2.813	-0.141	2.804	-0.017	3.051	0.099	2.982	-0.004
1X3	3.184	0.207	2.896	0.025	3.051	0.054	2.706	-0.188
1X4	2.973	0.203	2.809	0.113	2.866	0.063	3.008	0.195
2X1	3.043	-0.137	3.057	0.004	3.015	-0.158	2.811	-0.102
2x2	3.077	-0.019	3.038	-0.022	3.021	-0.006	3.082	0.166
2X3	3.185	0.065	3.034	-0.075	3.016	-0.057	2.913	0.088
2X4	3.003	0.092	3.028	0.093	3.098	0.220	2.592	-0.151
3X1	3.258	0.166	3.004	0.036	3.219	0.101	3.183	0.102
3X2	2.851	-0.157	2.938	-0.038	2.717	-0.256	3.067	-0.017
3x3	3.002	-0.031	3.263	0.238	3.149	0.131	2.863	-0.129
3X4	2.846	0.022	2.615	-0.236	2.848	0.024	2.954	0.044
4X1	3.348	0.078	3.097	0.041	3.415	0.154	2.964	-0.138
4X2	3.394	0.208	3.085	0.022	2.944	-0.171	3.029	-0.076
4X3	3.113	-0.097	3.079	-0.033	3.267	0.106	3.154	0.141
4x4	2.812	-0.190	2.908	-0.030	2.877	-0.089	3.004	0.073
5X1	3.215	-0.058	2.929	-0.147	3.031	-0.012	3.186	0.139
5X2	3.180	-0.010	3.131	0.047	3.161	0.264	3.040	-0.010
5X3	3.247	0.033	3.121	-0.013	2.978	0.036	3.097	0.138
5X4	3.041	0.035	3.073	0.113	2.459	-0.288	2.609	-0.267
6X1	3.139	0.187	3.070	0.201	3.182	0.218	2.824	-0.023
6X2	2.923	0.055	2.664	-0.213	2.730	-0.088	2.673	-0.178
6X3	2.804	-0.088	2.903	-0.023	2.683	-0.180	2.893	0.134
6X4	2.529	-0.155	2.787	0.035	2.718	0.050	2.744	0.067
7X1	3.135	-0.006	2.942	-0.065	3.330	0.044	2.878	-0.102
7X2	3.019	-0.038	3.087	0.073	3.164	0.024	3.228	0.245

Cuadro 4.40.....continuación.

Mestizo ¹ -	Fresc	co	Enter	O	Nach	0	Chipot	le
Wiestizo -	Media	ACE	Media	ACE	Media	ACE	Media	ACE
7X3	3.073	-0.008	3.187	0.123	3.154	-0.031	2.849	-0.042
7X4	2.923	0.051	2.758	-0.131	2.955	-0.036	2.709	-0.100
8X1	3.008	-0.077	3.165	0.119	3.213	0.113	2.922	-0.044
8X2	2.953	-0.049	3.107	0.053	3.008	0.054	2.955	-0.014
8X3	3.038	0.012	2.969	-0.134	2.919	-0.080	2.862	-0.015
8X4	2.932	0.114	2.891	-0.038	2.718	-0.087	2.868	0.073
9X1	3.213	0.108	3.039	-0.040	3.012	-0.122	3.285	0.071
9X2	3.069	0.047	3.151	0.064	3.053	0.064	3.274	0.057
9X3	2.961	-0.085	3.066	-0.070	3.133	0.099	3.000	-0.126
9X4	2.768	-0.069	3.007	0.045	2.798	-0.041	3.042	-0.002
10X1	3.070	0.009	3.042	-0.029	3.350	-0.124	3.003	0.102
10X2	3.079	0.102	3.110	0.031	3.343	0.015	2.733	-0.170
10X3	2.993	-0.008	3.089	-0.039	3.297	-0.077	2.810	-0.002
10X4	2.690	-0.103	2.990	0.036	3.364	0.185	2.800	0.070
Media	3.017	0.000	2.991	0.000	3.030	0.000	2.939	0.000
DMS _{0.05}	0.070	0.048	0.074	0.052	0.070	0.048	0.073	0.025

Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle, 41-43).

que la manifestación del carácter es diferente entre nichos de calidad, ya que los grupos fresco, entero y chipotle tuvieron un valor superior a la unidad del grado de dominancia e indicativo de genes no aditivos, similar a lo consignado para chile serrano por Dorantes (2003), mientras que en el de doble propósito fue menor a dicha unidad e indicativo de genes aditivos, el cual coincide con lo reportado por Ben y Paran (2000) y Robledo (2005).

En el caso específico de nachos donde el grado de dominancia no pudo ser estimado debido a la varianza de dominancia negativa, se recurrió al valor obtenido en ambas varianzas genéticas para determinar, con base en la magnitud expresada, que el diámetro del fruto es mayormente atribuido a los genes de actividad aditiva tal y como consignan Patel *et al.* (1998) y Ahmed *et al.* (1998).

Tomando en cuenta sólo líneas, el comportamiento difiere únicamente en el grupo de calidad para chipotle donde la acción de los genes cambia de no aditivo a aditivo. En los demás grupos se conserva el tipo de acción de los genes, sólo se observa cambio en la magnitud del grado de dominancia.

La heredabilidad del diámetro en Delicias que se muestra en el mismo Cuadro 4.41, presenta una proporción muy baja al ser estimada con el promedio de los dos tipos de progenitores, lo que significa la existencia de baja cantidad de genes favorables. Los resultados anteriores, son modificados al estimar este parámetro utilizando sólo líneas, y de expresarse como un carácter difícil de manejar genéticamente, ahora se torna a un carácter más fácil de trabajar en su herencia, pues los valores mejoraron

Cuadro 4.41. Análisis genético de la varianza para diámetro del fruto (cm) de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005.

Parámetros		Nic	chos de calidad comerc	ial	_
genéticos	Fresco	Entero	Nacho	Chipotle	Doble propósito
ACG Líneas	-0.001 ±0.059	0.001 ± 0.047	0.015 ± 0.052	0.005 ± 0.042	0.025 ± 0.062
ACG Probador	0.010 ± 0.037	0.010 ± 0.030	0.013 ± 0.033	0.026 ± 0.028	0.003 ± 0.071
ACG Promedio	0.000 ± 0.048	0.000 ± 0.039	0.001 ± 0.043	0.001 ± 0.035	0.003 ± 0.067
ACE	0.020 ± 0.118	0.011 ± 0.067	-0.001 ±0.105	0.008 ± 0.085	0.003 ± 0.123
σ^2_A Líneas	-0.002 ± 0.008	0.002 ± 0.006	0.030 ± 0.015	0.009 ± 0.008	0.050 ± 0.042
σ^2_A Probador	0.020 ± 0.017	0.020 ± 0.015	0.027 ± 0.018	0.051 ± 0.035	0.006 ± 0.013
σ^2_A Promedio	0.001 ± 0.013	0.001 ± 0.012	0.002 ± 0.017	0.003 ± 0.025	0.005 ± 0.031
$\sigma^2_{ m Dominancia}$	0.020 ± 0.009	0.011 ± 0.005	-0.001 ± 0.003	0.008 ± 0.004	0.003 ± 0.011
\overline{D} Líneas	0	2.185	0	0.899	0.258
[→] Probador	0.985	0.721	0	0.385	0.768
□ Promedio	5.716	3.623	0	1.710	0.797
h ² Líneas	-0.041 ± 0.135	0.056 ± 0.153	0.482 ± 0.243	0.244 ± 0.207	0.504 ± 0.426
h ² Probador	0.247 ± 0.208	0.353 ± 0.262	0.456 ± 0.306	0.638 ± 0.434	0.103 ± 0.239
h ² Promedio	0.010 ± 0.184	0.021 ± 0.248	0.070 ± 0.282	0.082 ± 0.419	0.096 ± 0.405

 $[\]sigma_{Lineas}^2$ $\sigma_{Probador}^2$ $\sigma_{Probador}^2$ $\sigma_{Probadores}^2$ = varianza aditiva de líneas, probadores y promedio de líneas y probadores, respectivamente. σ_D^2 = varianza de dominancia. \overline{D}_{lineas} , $\overline{D}_{probadores}$, $\overline{D}_$

significativamente en los grupos de calidad para nachos (0.485), chipotle (0.415) y doble propósito (0.504) donde la acción de genes es preferentemente aditivo. De estos grupos con buena heredabilidad destaca el grupo doble propósito único de origen tropical por su proporción más elevada y clasificada como heredabilidad alta por Chávez (1995), este resultado coincide con lo obtenido por Ben y Paran (2000).

Los resultados del análisis genético de la localidad de Tampico se pueden ver en el Cuadro 4.42. De acuerdo al grado de dominancia, la manifestación del carácter entre los nichos de calidad es muy similar cuando se analizan los progenitores por separado. Particularmente en líneas, se detectó a los genes no aditivos (Dorantes, 2003) como los más importantes en el grupo para fresco; mientras que en enteros, nachos y chipotle con índices cercanos a la unidad, indican la actividad equilibrada de genes aditivos como no aditivos, resultados similares reporta Ahmed *et al.* (1994). Tomando en cuanta el promedio de los progenitores, la expresión del diámetro de fruto en los cuatro grupos se inclina en forma contundente a la acción de genes no aditivos, los cuales concuerdan con lo obtenido por Dorantes (2003).

En Tampico la magnitud de la heredabilidad depende del cambio en la acción de genes entre los grupos comerciales y del tipo de progenitor, en esta localidad, el mayor valor correspondió a los grupos fresco (0.3588 y 0.5437) y nachos (0.5331 y 0.4960) donde actúan en forma equilibrada tanto genes aditivos como no aditivos estimados a partir de cualquiera de los progenitores por separado. La heredabilidad en los grupos con mayor proporción pueden clasificarse como intermedia, con aceptable cantidad de genes para mejorar el carácter a través de métodos como pedigrí o selección

masal tal y como sugieren Pozo y Ramírez (2000), Ahmed *et al.* (1998), Patel *et al.* (1998), Martínez *et al.* (2005) y Joshi (1990).

Cuadro 4.42. Análisis genético de la varianza para diámetro del fruto (cm) de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005.

Parámetros	Nichos de calidad comercial								
genéticos	Fresco			tero		Nacho		potle	
ACG Líneas	0.005	±0.012	0.005	±0.013	0.015	±0.012	0.007	±0.013	
ACG Probador	0.012	± 0.008	0.004	± 0.008	0.013	± 0.008	0.005	± 0.008	
ACG Promedio	0.001	±0.010	0.000	±0.012	0.001	±0.010	0.001	±0.012	
ACE	0.018	± 0.024	0.014	± 0.026	0.024	± 0.025	0.020	± 0.026	
σ^2_A Líneas	0.011	± 0.009	0.010	± 0.008	0.029	± 0.018	0.014	±0.011	
σ^2_A Probador	0.023	± 0.017	0.008	± 0.007	0.025	±0.019	0.010	± 0.009	
σ_A^2 Promedio	0.001	±0.014	0.001	± 0.007	0.002	±0.019	0.001	±0.010	
$\sigma^2_{\mathrm{Dominancia}}$	0.018	± 0.005	0.014	± 0.004	0.024	± 0.007	0.020	± 0.005	
\overline{D} Líneas	1.295		1.150		0.914		1.189		
¬ Probador	0.887		1.299		0.984		1.425		
¬ Promedio	3.596		4.108		3.317		4.416		
h ² Líneas	0.359	±0.299	0.406	±0.319	0.533	± 0.331	0.399	± 0.318	
h ² Probador	0.544	±0.402	0.349	±0.306	0.496	±0.377	0.316	±0.296	
h ² Promedio	0.068	±0387	0.051	±0.292	0.080	±0.363	0.046	±0.308	

 σ_{Lineas}^2 $\sigma_{Probador}^2$ $\sigma_{Probador}^2$ or $\sigma_{Probador}^2$ = varianza aditiva de líneas, probadores y promedio de líneas y probadores, respectivamente. σ_D^2 = varianza de dominancia. \bar{D}_{Lineas} , $\bar{D}_{probadores}$, \bar{D}

Grosor de pericarpio

Variables del fruto como grosor de pericarpio, número de lóculos y grados huecos, entre otras, juegan un papel de gran importancia en la consistencia de los frutos y por ende en el peso y la resistencia al transporte. Los mejores efectos se obtienen al actuar en forma conjunta y balanceada y no en forma separada, ya que cualquier deficiencia que expresen estas variables se verá reflejada en la calidad comercial.

Análisis estadístico

En el Cuadro 4.43 con los resultados obtenidos en la localidad de Delicias señalan diferencias significativas (p≤0.01) entre grupos y mestizos dentro de grupos, con un coeficiente de variación de sólo 9.22 por ciento y una media general de 4.488 mm. Los componentes de la partición de grupos muestran diferencias (p≤0.01) dentro de fresco, enteros, nachos y chipotle y sin diferencias estadísticas (p>0.05) dentro de doble propósito. Esto significa que la variación de mestizos se debe a las diferencias genéticas de las líneas que integraron los grupos de calidad, principalmente a los nichos fresco y nachos por su aporte al CM.

Cuadro 4.43. Análisis de varianza para grosor de pericarpio de frutos (mm) para grupos y mestizos dentro de grupos comerciales. Delicias, Chihuahua. 2005.

GL	SS	CM	Valor de F	Pr > F	
4	8.272	2.068	12.06	<.0001	
10	51.712	5.171	30.15	<.0001	
156	67.344	0.432	2.52	<.0001	
38	19.285	0.508	2.15	0.0014	
37	14.460	0.391	4.37	<.0001	
37	18.063	0.488	2.07	0.0025	
33	14.020	0.425	2.42	0.0007	
11	1.383	0.126	1.21	0.3219	
312	53.515	0.172			
482	180.821				
	4 10 156 38 37 37 37 33 11 312	4 8.272 10 51.712 156 67.344 38 19.285 37 14.460 37 18.063 33 14.020 11 1.383 312 53.515	4 8.272 2.068 10 51.712 5.171 156 67.344 0.432 38 19.285 0.508 37 14.460 0.391 37 18.063 0.488 33 14.020 0.425 11 1.383 0.126 312 53.515 0.172	GL SS CM de F 4 8.272 2.068 12.06 10 51.712 5.171 30.15 156 67.344 0.432 2.52 38 19.285 0.508 2.15 37 14.460 0.391 4.37 37 18.063 0.488 2.07 33 14.020 0.425 2.42 11 1.383 0.126 1.21 312 53.515 0.172	

A fin de clasificar los diferentes grupos de calidad de mercado (Cuadro 4.44), se realizó una prueba de medias, quedando dos grupos estadísticamente diferentes entre ellos; el primero con las calidades para fresco, nacho y chipotle clasificados

estadísticamente iguales entre ellos y diferentes a la calidad para doble propósito y entero del segundo grupo. En este caso la media entre grupos de calidad fue 4.473 mm y es considerada como alta.

Cuadro 4.44. Prueba de medias para grosor de pericarpio de frutos (mm) en grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005.

Grupo comercial	Media	Error estándar
Fresco	4.635	0.038
Nachos	4.541	0.039
Chipotle	4.531	0.041
Doble Propósito	4.381	0.069
Entero	4.280	0.383
$\mathrm{DMS}_{0.05}$	0.130	

En el Cuadro 4.45 se observa que las diferencias significativas mostradas por los mestizos involucra mayormente a los probadores como uno de los componentes que más inciden en su variación, ya que resultó estadísticamente significativo en cuatro de los cinco grupos de calidad. En tanto las líneas, sólo exhibieron importancia estadística en enteros y nachos. Por último, la interacción de ambos tipos de progenitores se manifestó únicamente con el grupo de enteros. Cabe mencionar que estas últimas fuentes comparten la significancia sobre mestizos con probadores.

Cuadro 4.45. Cuadrado medio del grosor de pericarpio del fruto (mm) en cinco grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005.

		C	Cuadrado Medio			
FV	Fresco	Entero	Nacho	Chipotle	Doble	
	110300	Littero	raciio	Cimpotic	Propósito	
Mestizos	0.508 **	0.391 **	0.488 **	0.425 **	0.126 ns	
Líneas	0.476 ns	0.640 **	0.586 **	0.245 ns	0.144 ns	
Probador	2.202 **	0.909 **	2.651 **	2.800 **	0.039 ns	
LxP	0.303 ns	0.217 **	0.178 ns	0.157 ns	0.163 ns	
Error	0.236	0.089	0.236	0.176	0.104	
CV (%)	10.360	6.940	10.870	9.340	7.350	

El grupo de calidad doble propósito integrado con líneas de origen tropical fue el único que tuvo un comportamiento diferente a los otros cuatro, ya que además de manifestar no significancia entre sus líneas también fue el grupo donde los probadores mostraron la menor proporción al CM. En forma general, los efectos sobre el CM hacen patente a probadores como los más participativos en la diferencias de los mestizos con respecto a este carácter.

Análisis genético

Los valores del grosor de pericarpio que tuvieron las líneas progenitoras fluctuaron de 4.23 mm en la calidad para nachos a 4.99 mm en la calidad para fresco (Cuadro 4.46). Los promedios exhibidos en los cuatro grupos permiten clasificar a todas las líneas con grosor de pericarpio alto, ya que en todos los casos es superior a 4 mm.

Cuadro 4.46. Grosor de pericarpio de frutos (mm) y ACG de 39 líneas progenitoras de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Línea ¹	Fre	sco	Ente	eros	Nac	chos	Chip	Chipotle	
Linea	Media	ACG	Media	ACG	Media	ACG	Media	ACG	
1	4.893	-0.144	3.560	-0.409	4.060	-0.136	4.000	-0.190	
2	5.219	-0.212	4.187	-0.378	4.313	0.135	4.393	-0.146	
3	5.627	0.281	4.360	0.076	4.753	0.190	4.787	0.298	
4	4.547	-0.032	4.187	-0.015	4.327	0.054	4.420	0.052	
5	4.353	-0.016	4.653	0.226	4.567	0.221	4.040	0.049	
6	5.093	0.509	4.420	-0.100	4.140	0.279	3.833	-0.083	
7	4.713	-0.076	4.487	0.351	4.020	-0.120	4.120	0.029	
8	5.193	-0.054	4.313	-0.025	3.913	0.416	4.680	0.113	
9	5.373	0.083	5.453	-0.032	4.020	-0.326	4.780	-0.130	
10	4.960	-0.212	4.293	0.300	4.253	0.050	ND	ND	
Media	4.997	0	4.391	0	4.237	0	4.339	0	
DMS _{0.05}	0.786	0.277	0.642	0.171	0.614	0.278	0.535	0.240	

Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle); ND= no disponible

Los estimados de ACG dan la pauta para ubicar en cada grupo de calidad a las líneas con mayor potencial para utilizarse como progenitoras a fin de mejorar el grosor de pericarpio del fruto. En este sentido, en la calidad fresco la mejor línea fue la 6 (0.509**); en la calidad enteros la 17 (0.351**); en la calidad nacho la 28 (0.416**) y por último en chipotle la línea 33 (0.298*).

Por otra parte, en los probadores el grosor de pericarpio también es considerado alto, ya que en todos fue superior a 4 mm, con un promedio de 4.56 mm (Cuadro 4.47). Como en todos los casos se utilizaron los mismos probadores, la media para ellos fue la misma, cambiando solo los valores de ACG en cada grupo comercial. Los resultados obtenidos al respecto dan confianza de señalar a los progenitores 1 y 2 como los mejores candidatos para los cuatro grupos de calidad de origen templado (fresco, entero, nachos y chipotle). En el caso específico del grupo de calidad para doble propósito con líneas de origen tropical, los probadores 2 y 3 se perfilan como las alternativas más viables para trabajar bajo cualquier método genético que brinden la oportunidad de aprovechar los genes aditivos que poseen para este carácter.

Cuadro 4.47. Grosor de pericarpio de frutos (mm) y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

	_	ACG						
Probador	Media	Fresco	Entero	Nacho	Chipotle	Doble		
		riesco Entero r	Nacio	Cilipotie	Propósito			
1	4.566	0.191	0.210	0.439	0.323	-0.070		
2	4.220	0.283	0.055	0.087	0.139	0.080		
3	4.726	-0.206	-0.262	-0.119	0.029	0.023		
4	4.060	-0.286	-0.024	-0.319	-0.452	-0.033		
Media	4.39	0	0	0	0	0		
$DMS_{0.05}$	0.510	0.175	0.108	0.176	0.160	0.219		

Los mestizos se aprecian en el Cuadro 4.48 e indican, en su mayoría, un grosor de pericarpio superior a 4 mm, es decir alto y aceptable. Las medias de los cinco grupos de calidad giró entre 4.30 del grupo entero a 4.60 mm en el grupo fresco.

Mediante los efectos de ACE es factible seleccionar las combinaciones con alto potencial para mejorar con técnicas de hibridación o selección recurrente el grosor de pericarpio del chile jalapeño. De esta forma, en la calidad para fresco tenemos a las combinaciones 1x4 (0.290), 2x3 (0.310), 3x3 (0.320), 6x2 (0.393) y 10x1 (0.386); en la calidad para enteros 11x4 (0.465**), 13x2 (0.442**), 14x3 (0.310), 15x2 (0.318) y 19x4 (0.375*); en la calidad para nachos 21x4 (0.288), 23x3 (0.427), 25x1 (0.305), 27x1 (0.347) y 29x4 (0.304); para la calidad chipotle 31x4 (0.304), 33x1 (0.231), 35x4 (0.372), 36x2 (0.226) y 39x1 (0.383) y finalmente para la calidad doble propósito las combinaciones 41x2 (0.257), 42x3 (0.309) y 43x1 (0.124).

Parámetros genéticos

En el Cuadro 4.49 se presentan los componentes de la varianza genética para el grosor de pericarpio del fruto en la localidad de Delicias. Analizando los componentes con base al grado de dominancia y al promedio de los dos tipos de progenitores, se observa que los nichos de mercado para fresco, enteros y doble propósito deben su expresión a genes con efectos mayormente no aditivos; en cambio, en los grupos para nachos y chipotle a los genes con actividad aditiva.

Cuadro 4.48. Grosor de pericarpio de frutos (mm) y ACE de mestizos de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Mestizo ¹	Free	Fresco		ero	Nac	ho	Chip	otle	Doble Pr	opósito
Mestizo	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE
1x1	4.753	0.071	3.980	-0.140	4.753	-0.091	4.313	-0.352	4.247	-0.126
1x2	4.653	-0.121	3.687	-0.240	4.420	-0.072	4.667	0.186	4.780	0.257
1x3	4.067	-0.219	3.507	-0.103	4.073	-0.213	4.193	-0.178	4.367	-0.100
1x4	4.493	0.290	4.313	0.465	4.373	0.288	4.193	0.304	4.380	-0.031
2x1	4.687	0.073	4.373	0.262	5.193	0.078	-	-	4.187	0.002
2x2	4.300	-0.406	-	-	4.733	-0.030	4.620	0.096	4.067	-0.268
2x3	4.527	0.310	3.667	0.026	4.427	-0.131	4.617	0.202	4.587	0.309
2x4	4.180	0.045	3.667	-0.212	4.353	-0.004	3.920	-0.014	4.180	-0.043
3x1	4.817	-0.291	4.220	-0.346	5.087	-0.084	5.383	0.231	4.500	0.124
3x2	5.013	-0.186	4.853	0.442	4.900	0.081	4.900	-0.068	4.537	0.011
3x3	5.030	0.320	4.253	0.159	5.040	0.427	4.807	-0.052	4.260	-0.209
3x4	4.807	0.178	4.100	-0.233	3.900	-0.512	4.227	-0.151	4.487	0.073
4x1	4.853	0.059	4.727	0.252	-	-	5.033	0.127		
4x2	4.387	-0.500	3.913	-0.407	4.827	0.144	4.500	-0.222		
4x3	4.587	0.190	4.313	0.310	4.753	0.277	4.740	0.128		
4x4	4.587	0.272	4.107	-0.135	4.207	-0.070	4.060	-0.071		
5x1	4.620	-0.191	4.520	-0.196	5.507	0.305	4.733	-0.170		
5x2	5.187	0.284	4.880	0.318	4.787	-0.063	4.647	-0.072		
5x3	4.087	-0.327	4.067	-0.178	4.497	-0.147	4.440	-0.169		
5x4	4.587	0.255	4.560	0.077	4.260	-0.183	4.500	0.372		
6x1	4.953	-0.382	4.293	-0.096	5.487	0.228	4.660	-0.112		
6x2	5.820	0.393	4.067	-0.169	4.780	-0.127	4.813	0.226		
6x3	-	-	4.087	0.169	4.700	-0.001	4.513	0.036		
6x4	4.660	-0.196	4.273	0.117	4.313	-0.187	3.807	-0.190		
7x1	4.907	0.157	4.760	-0.081	4.513	0.347	4.687	-0.197		
7x2	4.763	-0.079	4.687	0.000	4.667	0.158	4.833	0.135		
7x3	4.373	0.020	-	-	4.340	0.037	4.680	0.091		

Cuadro 4.48.....continuación.

Mestizo ¹	Fresco		Ente	ero	Nac	ho	Chip	otle	Doble Pr	opósito
Mestizo	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE
7x4	4.193	-0.078	4.447	-0.161	4.167	0.064	4.040	-0.068		
8x1	4.193	0.141	4.527	0.062	4.283	-0.281	4.920	-0.048		
8x2	5.073	0.209	4.320	0.010	4.017	-0.195	4.680	-0.103		
8x3	4.060	-0.316	4.173	0.180	4.127	0.121	-	-		
8x4	4.280	-0.014	4.000	-0.231	4.073	0.268	4.333	0.141		
9x1	4.760	-0.149	4.613	0.155	-	-	5.107	0.383		
9x2	5.193	0.192	4.953	-0.350	4.313	0.011	4.370	-0.170		
9x3	4.700	0.188	3.827	-0.160	4.133	0.037	4.493	0.063		
9x4	4.220	-0.210	4.600	0.375	4.200	0.304	3.633	-0.316		
10x1	5.000	0.386	4.887	0.097	5.020	-0.011				
10x2	4.793	0.087	4.660	0.025	4.840	0.161				
10x3	4.433	0.216	4.273	-0.045	4.133	-0.339				
10x4	3.467	-0.669	4.500	-0.056	4.373	0.101				
Media	4.617	0.000	4.307	0.000	4.541	0.000	4.531	0.000	4.382	0
DMS _{0.05}	0.771	0.550	0.461	0.338	0.735	0.550	0.719	0.474	0.573	0.364

Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle, 41-43);

Contemplando sólo líneas el comportamiento genético en los grupos para fresco y enteros donde el grosor de pericarpio era debido mayormente a genes de tipo no aditivo, cambia radicalmente a genes de acción aditiva. En el caso especifico de los grupos donde la varianza es negativa, se tomó en cuanta el valor directo de las varianza aditiva y de dominancia para decidir por magnitud el tipo de genes que pudieran predominar.

Con lo anterior es posible señalar a la aditividad de los genes como responsable del carácter en los grupos fresco, enteros, nachos y chipotle conformados con líneas de origen templado, similar a lo reportado por Ahmed *et al.* (1998), Luiz (2002), Ben y Paran (2000) y a genes no aditivos para doble propósito integrado por líneas que proceden del trópico mexicano, resultados que coinciden con Fisher (1992).

Con respecto a la heredabilidad del carácter (Cuadro 4.49), los estimados con ambos progenitores muestran baja proporción, la cual esta acorde a su tipo de acción génica. Sin embargo, incluyendo sólo líneas la proporción mejora substancialmente e indica según Chávez (1995) una heredabilidad intermedia solo en los grupos para entero y nachos. Estimando a partir de probadores se nota que el carácter expresa una heredabilidad intermedia en los cuatro grupos, sobresaliendo los grupos de mercado para nachos y chipotle con mayor carga de genes favorables, resultados parecidos fueron encontrados por Ben y Paran (2000).

Cuadro 4.49. Análisis genético de la varianza para grosor de pericarpio del fruto (mm) de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005.

Parámetros	Nichos de calidad comercial						
genéticos	Fresco	Entero	Nacho	Chipotle	Doble P.		
ACG Líneas	0.014 ± 0.140	0.035 ±0.086	0.034 ± 0.140	0.008 ±0.121	-0.002 ±0.093		
ACG Probadores	0.063 ± 0.087	0.023 ± 0.055	0.082 ± 0.089	0.098 ± 0.081	-0.014 ± 0.107		
ACG Promedio	0.003 ± 0.114	0.003 ± 0.071	0.005 ± 0.115	0.004 ± 0.101	-0.002 ± 0.100		
ACE	0.022 ± 0.280	0.043 ± 0.173	-0.019 ± 0.281	-0.006 ± 0.212	0.020 ± 0.186		
σ^2_A Líneas	0.029 ± 0.036	0.070 ± 0.046	0.068 ± 0.042	0.015 ± 0.020	-0.003 ± 0.022		
σ_A^2 Probadores	0.127 ± 0.093	0.046 ± 0.039	0.165 ± 0.112	0.196 ± 0.131	-0.028 ± 0.019		
σ_A^2 Promedio	0.006 ± 0.071	0.005 ± 0.043	0.009 ± 0.085	0.009 ± 0.094	-0.003 ± 0.020		
$\sigma^2_{ m Dominancia}$	0.022 ± 0.030	0.043 ± 0.020	-0.019 ± 0.021	-0.006 ± 0.019	0.020 ± 0.030		
\bar{D} Líneas	0.882	0.778	0	0	0		
D Probadores	0.421	0.962	0	0	0		
□ Promedio	1.901	2.919	0	0	0		
h ² Líneas	0.100 ± 0.126	0.348 ± 0.227	0.239 ± 0.148	0.083 ± 0.108	-0.027 ± 0.183		
h ² Probadores	0.329 ± 0.242	0.258 ± 0.219	0.432 ± 0.294	0.536 ± 0.359	-0.288 ± 0.198		
h ² Promedio	0.024 ± 0.211	0.037 ± 0.226	0.042 ± 0.255	0.049 ± 0.342	-0.027 ±0.277		

 σ_{Lineas}^2 $\sigma_{Promedio}^2$ = varianza aditiva de líneas, probadores y promedio de líneas y probadores, respectivamente. σ_D^2 =varianza de dominancia. \overline{D}_{lineas} , $\overline{D}_{promedio}$ = promedio de dominancia con base en varianzas aditivas de líneas, probadores y el promedio de ellos, respectivamente. h^2_{Lineas} , $h^2_{promedio}$ =heredabilidad con base en varianzas aditivas de líneas, probadores y el promedio de ellos, respectivamente.

Corchosidad del fruto

Esta característica natural propia de varios tipos de chile, en especial el jalapeño, tiene gran importancia para la industria, sobre todo el enlatado y el chile chipotle o ahumado, ya que proporciona mayor facilidad de encurtido y ahumado al fruto durante su proceso. Hasta hace algunos años también el mercado fresco aceptaba la presencia de ésta característica en el fruto; sin embargo, ha dejado de ser importante al grado de no aceptar que el fruto contenga corchosidad por mínima que exista.

Un efecto directo de esta moda en los programas de mejoramiento del chile jalapeño es el nuevo enfoque hacia progenitores sin presencia de esta característica, por lo tanto, es factible que poco a poco tienda a desaparecer por efecto de la moda actual que lo empieza a clasificar como indeseable.

Como la presente investigación considera el grado de acorchamiento como una característica diferencial entre grupos comerciales, conformar el grupo para la calidad chipotle con grado de acorchamiento superior a 50 por ciento fue difícil, dada la dominancia de líneas a satisfacer la moda del mercado por fruto liso.

Análisis estadístico

En este caso la información obtenida fue en por ciento, por lo que se procedió, sólo para el ANVA, a transformar los datos mediante la raíz cuadrada tal y como sugieren Steel y Torrie (1960).

En el Cuadro 4.50 se aprecia el ANVA para grupos de calidad comercial y mestizos dentro de grupos de la localidad de Delicias, el cual muestra diferencias (p≤0.01) para ambas fuentes de variación. La partición de mestizos dentro de grupos en nichos de calidad comercial indica que las diferencias expresadas son explicadas por cuatro de los cinco nichos (p≤0.01), excepto doble propósito donde no hubo diferencias significativas entre sus líneas (p<0.05). En magnitud de aportación al CM, resaltan los nichos de calidad para nachos y entero con la mayor y menor magnitud del carácter en forma respectiva, mismos que coinciden con las medias generales extremas del carácter (Cuadro 4.51).

Cuadro 4.50. Análisis de varianza para grado de corchosidad del fruto (%) en grupos y mestizos dentro de grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005

FV	GL	SS	CM	Valor de F	Pr > F
Grupos	4	48.745	12.186	16.17	<.0001
Rep (Grupos)	10	17.220	1.722	2.28	0.0136
Mestizos (Grupos)	156	299.864	1.922	2.55	<.0001
Fresco	38	59.799	1.574	2.17	0.0013
Enteros	37	24.971	0.675	2.04	0.0030
Nachos	37	167.098	4.516	3.96	<.0001
Chipotle	33	34.734	1.053	1.74	0.0203
Doble Propósito	11	13.262	1.206	1.20	0.3335
Error	303	228.397	0.754		
Total	473	591.768			
CV=9.71%					
Media=18.84					

El análisis de medias clasificó a los grupos comerciales nachos (26.92) y doble propósito (12.76) como los nichos con mayor y menor porcentaje de acorchamiento, respectivamente (Cuadro 4.51). Los demás grupos se ubicaron con porcentaje

intermedios entre 13 y 19 por ciento. Se aprecia que los porcentajes no superaron el 30 por ciento de acorchamiento y el grupo para chipotle del que se esperaba obtener mayor grado de acorchamiento tan sólo alcanzó alrededor de 19 por ciento, en cambio, grupos como nachos y fresco obtuvieron porcentajes que pudieran ser, hasta cierto punto, cuestionables por su alta manifestación, indeseable en estos nichos de mercado.

Cuadro 4.51. Prueba de medias para grado de corchosidad del fruto (%) en grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005

Calidad Comercial	MEDIA	Error estándar
Fresco	17.974	1.399
Enteros	13.681	1.323
Nachos	26.918	1.350
Chipotle	18.891	1.305
Doble Propósito	12.765	2.437
$DMS_{0.05}$	4.480	

En la localidad de Tampico el ANVA para grupos de calidad comercial y mestizos dentro de grupos indica diferencias (p≤0.01) en ambas fuentes de variación con un CV de 2.48 por ciento y una media general cercana a 13 por ciento de corchosidad (Cuadro 4.52). La partición indica que las diferencias (p≤0.01) de los mestizos son explicadas por los cuatro nichos en igual significancia. Sin embargo, considerando la magnitud al CM, la calidad para nachos resulta muy superior a los demás grupos.

En esta localidad el análisis de medias clasificó a los grupos comerciales nachos (17.60 %) y enteros (9.42 %) como los nichos con el mayor y menor porcentaje de acorchamiento (Cuadro 4.53). Los demás grupos se ubicaron con porcentaje intermedios entre 11 y 13 por ciento.

Cuadro 4.52. Análisis de varianza para grado de corchosidad del fruto (%) en grupos y mestizos dentro de grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005

FV	GL	SS	CM	Valor de F	Pr > F
Grupos	3	11.336	3.779	70.49	<.0001
Rep (Grupos)	4	1.361	0.340	6.35	<.0001
Mestizos (Grupos)	156	152.512	0.978	18.24	<.0001
Fresco	39	12.798	0.328	9.45	<.0001
Enteros	39	19.261	0.494	31.06	<.0001
Nachos	39	111.328	2.855	23.32	<.0001
Chipotle	39	8.856	0.227	7.03	<.0001
Error	154	8.256	0.054		
Total	317	173.546			
CV = 2.49%					
Media=12.92					

Con respecto al comportamiento en ambas localidades es de notar que los valores promedio difieren entre los ambientes, siendo en Delicias donde se alcanzó el acorchamiento del fruto más alto. En este sentido es oportuno mencionar que aunque se utilizó la misma escala (%), la forma visual de medir el grado de acorchamiento resulta muy subjetiva y pudiera ser una de las causas que originaron estas diferencias.

Cuadro 4.53. Prueba de medias para grado de corchosidad del fruto (%) en grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005.

Calidad Comercial	Media	Error estándar
Nachos	17.600	0.390
Fresco	13.038	0.390
Chipotle	11.525	0.390
Enteros	9.423	0.390
$\mathrm{DMS}_{0.05}$	1.092	

En esta localidad el análisis de medias clasificó a los grupos comerciales nachos (17.60 %) y enteros (9.42 %) como los nichos con el mayor y menor porcentaje

de acorchamiento (Cuadro 4.53). Los demás grupos se ubicaron con porcentaje intermedios entre 11 y 13 por ciento.

La diferencia estadística de los mestizos (p≤0.01) en la localidad de Delicias da pauta a su partición en líneas, probadores y la interacción. Los resultados manifestados en el Cuadro 4.54 señalan que la variación de mestizos es debida en forma compartida por los tres componentes de la partición, sobresaliendo probadores en fresco y enteros y líneas y la interacción en nachos y la interacción en chipotle. Con relación a la magnitud del CM, sobresalen los probadores en cuatro de los cinco grupos de calidad, ya que sólo en el nicho para nacho es superado por líneas.

Cuadro 4.54. Cuadrado medio para corchosidad del fruto (%) de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005

		Cuadrado Medio								
FV	Fresco	Entero	Nacho	Chipotle	Doble					
	riesco Entero		raciio	Cimpotic	Propósito					
Mestizos	1.574 **	0.675 **	4.516 **	1.053 *	1.206 ns					
Líneas	0.936 ns	0.403 ns	9.763 **	0.582 ns	0.168 ns					
Probadores	10.308 **	3.335 **	1.391 ns	1.443 ns	1.529 ns					
LxP	0.767 ns	0.460 ns	3.089 **	1.164 **	1.371 ns					
Error	0.724	0.330	1.140	0.604	1.008					
CV (%)	9.450	6.270	12.940	8.660	10.890					

Los resultados correspondientes a la localidad de Tampico se pueden apreciar en el Cuadro 4.55. Es posible detectar que la variación de mestizos es mayormente explicada por la interacción LxP. Específicamente líneas muestra estar implicada en la variación de los mestizos a través de las calidades nachos y chipotle, en tanto, probadores lo hace solo en chipotle. En aportación al CM, llama la atención la magnitud

con la que participa líneas del grupo para nachos, la cual coincide con la media más alta de acorchamiento.

Cuadro 4.55. Cuadrado Medio para corchosidad (%) del fruto de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005.

FV		Cuadrado Medio							
Ι' V	Fresco	Entero	Nacho	Chipotle					
Mestizos	0.328 **	0.494 **	2.855 **	0.227 **					
Líneas	0.200 ns	0.417 ns	11.742 **	0.402 **					
Probadores	0.358 ns	0.607 ns	0.441 ns	0.793 **					
LxP	0.368 **	0.462 **	0.160 ns	0.106 **					
Error	0.035	0.016	0.122	0.032					
CV (%)	2.000	1.330	3.870	1.910					

Análisis genético

Los resultados agronómicos y genéticos de líneas en la localidad de Delicias se observan en el Cuadro 4.56. Se observa mucha variación entre y dentro de cada grupo con una media que va de 16.95 por ciento en el grupo fresco a 37.67 por ciento en el grupo para nachos. Nuevamente el grupo de interés chipotle se ubica con un porcentaje intermedio.

Los efectos de ACG permiten identificar entre todas las líneas aquellas con alto potencial para mejorar positiva o negativamente el acorchamiento a través de técnicas de selección que aprovechen los genes aditivos. En el grupo para fresco donde el acorchamiento del fruto no es aceptado sobresalen por la ACG negativa las líneas 2 (-4.724), 3 (-9.391*) y 10 (-2.520); en el grupo para enteros donde es permitido un acorchamiento intermedio bajo, las líneas 12 (1.541), 13 (6.152*) y 19 (2.985); en el

grupo para nachos donde no es bien visto el grado de acorchamiento las líneas 22 (-15.585**), 24 (-10.363*) y 26 (-15.373**) y por último en el grupo para chipotle donde el acorchamiento alto es esencial sobresalen las líneas 32 (6.442), 35 (3.942) y 36 (1.192).

Cuadro 4.56. Grado de corchosidad del fruto (%) y ACG de 39 líneas progenitoras de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Línea ¹	Fres	sco	Ente	Enteros		chos	Chip	otle
Lillea	Media	ACG	Media	ACG	Media	ACG	Media	ACG
1	43.33	1.44	9.00	0.82	10.00	-8.59	6.67	1.03
2	8.33	-4.72	13.33	1.54	66.67	-15.59	4.33	6.44
3	2.33	-9.39	50.00	6.15	3.33	6.42	18.33	0.93
4	0.50	3.44	23.33	-2.52	20.00	-10.36	26.67	-1.81
5	1.67	-1.72	50.00	-4.27	5.67	-4.83	20.00	3.94
6	23.33	5.36	2.67	-3.02	76.33	-15.37	11.00	1.19
7	20.00	-1.89	30.00	-2.68	86.67	19.17	20.67	-1.47
8	21.67	5.36	16.67	0.15	89.67	20.25	23.33	-7.89
9	36.67	5.78	11.00	2.99	3.33	16.97	33.33	-2.64
10	11.67	-2.52	18.33	0.32	15.00	-7.10	ND	ND
Media	16.95	0	22.43	0	37.67	0	18.26	0
$DMS_{0.05}$	26.21	0.49	20.46	0.33	22.40	0.61	17.46	0.45

¹ Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle); ND= no disponible

En la localidad de Tampico el comportamiento de las líneas se puede ver en el Cuadro 4.57. Se nota que la media entre grupos varía de 9.57 por ciento en el grupo de mercado para entero a 17.60 por ciento en el grupo de calidad para nachos. Mediante los efectos de ACG positivos o negativos según sea la necesidad del grupo, es posible clasificar con alto potencia de genes aditivos para el acorchamiento la líneas 5 (-2.538*), 7 (-2.288*) y 8 (-3.413**) en la calidad para fresco; las líneas 11 (1.702*), 16 (12.291**) y 18 (1.077) en la calidad para enteros; las líneas 21 (-11.350**), 26 (-

13.100**) y 30 (-10.100**) en la calidad para nachos y por último, las líneas 34 (3.850**), 36 (4.100**) y 38 (7.850**) en la calidad para chipotle.

Cuadro 4.57. Grado de corchosidad del fruto (%) y ACG de 40 líneas de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Línea ¹	Fres	Fresco		Enteros		chos	Chip	Chipotle	
Lillea	Media	ACG	Media	ACG	Media	ACG	Media	ACG	
1	19.63	6.59	11.13	1.70	6.25	-11.35	6.67	-5.28	
2	14.25	1.21	13.33	-0.42	66.67	-8.98	4.33	-0.65	
3	13.75	0.71	9.29	-0.14	3.33	-5.10	18.33	-1.03	
4	12.75	-0.29	23.33	-3.67	7.63	-9.98	26.67	3.85	
5	10.50	-2.54	7.50	-1.92	5.67	-5.73	10.25	-1.28	
6	13.75	0.71	2.67	12.29	76.33	-13.10	15.63	4.10	
7	10.75	-2.29	6.13	-3.30	86.67	32.40	20.67	-5.03	
8	9.63	-3.41	16.67	1.08	89.67	-8.60	23.33	7.85	
9	13.75	0.71	8.63	-0.80	3.33	40.53	33.33	-1.90	
10	11.63	-1.41	18.33	-3.30	7.50	-10.10	10.88	-0.65	
Media	13.04	0	22.43	0	37.67	0	18.26	0	
DMS _{0.05}	11.10	2.24	20.46	1.47	22.40	3.27	17.46	2.26	

¹ Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle).

Con respecto a probadores evaluados en la localidad de Delicias se distingue que el probador 4 posee el mayor acorchamiento de fruto con 36.66 por ciento y al probador 3 el menor porcentaje (Cuadro 4.58). A través de los efectos de ACG se observa que ninguno de los probadores es potencial candidato como progenitor de este carácter en los cinco grupos. Se aprecia que las diferencias genéticas de los grupos se hicieron patentes, ya que para los grupos fresco y nachos donde se busca reducir el grado de acorchamiento los mejores probadores son, respectivamente el uno y el cuatro de origen templado, con relación a los grupos de mercado para enteros y chipotle que el grado de acorchamiento es permitido, el probador con mejor perspectiva es el cuatro y finalmente para el grupo comercial doble propósito los mejores probadores son el 1 y 3 de origen templado.

Cuadro 4.58. Grado de corchosidad del fruto (%) y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

		ACG						
Probadores	Media	Fresco	Entero	Nacho	Chipotle	Doble Propósito		
1	13.330	-8.541	-3.115	4.673	-5.282	5.902		
2	11.667	-1.526	-1.412	-2.133	2.665	-5.890		
3	7.667	-4.493	-4.533	1.282	-2.391	5.569		
4	36.667	14.059	8.419	-2.718	3.961	-7.015		
Media	17.333	0	0	0	0	0		
$DMS_{0.05}$	19.030	0.308	0.208	0.386	0.297	0.683		

El comportamiento de probadores en Tampico (Cuadro 4.59) apunta nuevamente al probador 4 con el mayor acorchamiento de fruto con 19 por ciento, valor inferior en un 48.17 por ciento al obtenido por el mismo probador en Delicias (36.66%). En esta localidad el menor porcentaje correspondió al probador 3 con sólo 7.5.

Cuadro 4.59. Grado de corchosidad del fruto (%) y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

	Media —	ACG						
Probadores	Media —	Fresco	Entero	Nacho	Chipotle			
1	8.500	1.363	3.277	-0.200	-2.275			
2	7.500	-0.938	-2.318	-2.400	-1.075			
3	13.500	-2.888	-2.873	-1.250	-2.125			
4	19.000	2.463	1.893	3.850	5.475			
Media	12.130	0	0	0	0			
$\mathrm{DMS}_{0.05}$	2.832	1.417	0.932	2.065	1.426			

Con respecto a los efectos de ACG el comportamiento diferencial entre grupos indica que para los mercados fresco y nacho donde se busca disminuir el grado de acorchamiento los probadores 2 y 3 son, respectivamente los mejores prospectos. En tanto para los grupos chipotle y enteros donde el acorchamiento es permitido, el probador 4 de origen tropical se perfila como el candidato a mejorar este carácter.

Cuadro 4.60. Grado de corchosidad del fruto (%) y ACE de mestizos de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Mestizo ¹	Fres	sco	Ente	ero	Nac	cho	Chip	ootle	Doble P	ropósito
MESUZO	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE
1x1	5.000	-5.876	7.333	-4.052	16.667	-6.339	7.333	-7.301	11.667	-7.569
1x2	20.667	2.776	12.000	-1.088	25.000	8.799	14.000	-8.581	1.667	-5.777
1x3	8.667	-6.257	5.333	-4.633	10.000	-9.615	11.667	-5.859	35.000	16.098
1x4	43.333	9.858	33.333	10.415	21.667	6.052	46.667	22.789	5.000	-1.319
2x1	7.667	2.958	11.667	-0.441	8.333	-7.673	-	-	25.000	4.598
2x2	5.333	-6.391	-	-	10.000	0.799	21.667	-6.331	2.500	-6.110
2x3	10.000	1.243	7.333	-3.356	7.667	-4.949	21.000	-1.942	15.000	5.069
2x4	30.000	2.691	26.667	3.026	19.333	10.718	33.333	4.039	10.000	2.515
3x1	3.000	2.958	14.000	-2.719	40.000	1.994	14.000	-0.536	19.333	2.681
3x2	3.000	-4.058	16.667	-1.755	15.000	-16.201	18.333	-4.149	15.000	10.140
3x3	8.333	4.243	8.667	-6.633	41.667	7.052	16.667	-0.760	5.000	-11.319
3x4	20.000	-2.643	40.000	11.748	36.667	6.052	28.333	4.554	3.667	-0.069
4x1	11.000	-1.876	5.000	-3.052		-	26.667	14.866		
4x2	25.000	5.109	14.000	4.246	3.333	-11.090	16.667	-3.081		
4x3	15.333	-1.591	9.000	2.367	6.333	-11.504	11.667	-3.026		
4x4	34.333	-1.143	16.667	-2.919	40.000	26.163	13.333	-7.711		
5x1	3.333	-4.376	4.000	-2.302	15.000	-11.764	15.333	-2.218		
5x2	5.000	-9.724	16.000	7.996	7.667	-12.292	30.000	4.502		
5x3	6.667	-5.091	4.333	-0.550	40.000	16.627	16.667	-3.776		
5x4	50.000	19.691	13.333	-4.502	23.333	3.961	29.333	2.539		
6x1	21.667	6.874	6.667	-0.885	17.500	1.282	14.333	-0.468		
6x2	18.333	-3.474	8.333	-0.921	7.000	-2.413	43.333	20.586		
6x3	-	-	6.000	-0.133	5.333	-7.494	7.667	-10.026		
6x4	30.000	-7.393	21.667	2.581	18.333	9.506	15.000	-9.044		
7x1	3.667	-3.876	16.667	8.781	63.333	12.570	10.333	-1.801		
7x2	13.333	-1.224	9.000	-0.588	65.000	21.042	10.000	-10.081		

Cuadro 4.60.....continuación.

Mestizo ¹	Fre	sco	Ente	ero	Na	cho	Chip	otle	Doble Pr	Doble Propósito	
Mestizo	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE	
7x3	6.667	-4.924	-	-	37.333	-10.039	33.333	18.308			
7x4	40.667	10.524	6.667	-12.752	25.000	-18.373	16.000	-5.377			
8x1	15.667	0.874	6.000	-4.719	56.667	4.827	6.667	0.949			
8x2	28.333	6.526	9.333	-3.088	40.000	-5.034	15.000	1.336			
8x3	19.000	0.159	23.333	14.033	70.000	21.552	-	-			
8x4	30.333	-7.059	16.667	-5.585	22.000	-22.449	11.333	-3.627			
9x1	11.667	-3.543	25.000	11.448	-	-	14.333	3.366			
9x2	28.333	6.109	12.333	-2.921	63.333	21.577	25.000	6.086			
9x3	23.333	4.076	10.000	-2.133	56.667	11.496	13.333	-0.526			
9x4	31.667	-6.143	19.333	-5.752	11.667	-29.504	12.333	-7.877			
10x1	11.667	4.753	9.333	-1.552	25.000	0.509					
10x2	17.500	3.571	11.667	-0.921	25.000	7.314					
10x3	23.333	12.371	8.333	-1.133	7.000	-14.100					
10x4	10.000	-19.514	26.667	4.248	24.000	6.900					
Media	17.970	0	13.640	0	27.048	0	18.843	0	12.403	0	
$DMS_{0.05}$	2.962	16.048	2.961	11.350	2.850	16.708	2.956	15.221	2.7692	17.615	

Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle, 41-43 doble propósito).

El comportamiento de los mestizos evaluados en Delicias se observa en el Cuadro 4.60. En forma general, el acorchamiento medio entre grupos se ubica entre 12 por ciento para doble propósito y 27 por ciento para nachos. Los valores de ACE son de gran utilidad para discriminar las combinaciones cuyo potencial para mejorar el acorchamiento no es apropiado o viceversa para localizar las mejores combinaciones. En este sentido, para el grupo de calidad fresco que busca menos acorchamiento las mejores combinaciones se reducen a 2x2 (-6.391), 5x2 (-9.724), 6x4 (-7.393), 8x4 (-7.059) y 10x4 (-19.514*); para el grupo de calidad enteros 11x4 (10.415), 13x4 (11.748*), 17x1 (8.781), 18x3 (14.033*) y 19x1 (11.449*); para el grupo de calidad nachos que también busca menor acorchamiento 23x2 (-16.201), 27x4 (-18.373*), 28x4 (-22.449**), 29x4 (-29.504**), y 30x3 (-14.100); para el grupo con calidad chipotle 31x4 (22.789**), 34x1 (14.866), 36x2 (20.586**), 37x3 (18.308*), y 39x2 (6.086) y por último para el grupo doble propósito 41x3 (16.098), 42x3 (5.069) y 43x2 (10.140).

En el caso de los mestizos evaluados en Tampico se puede señalar, de acuerdo al Cuadro 4.61, que exhiben diferencias marcadas entre y dentro de cada grupo. El acorchamiento medio entre grupos se ubica entre 9.4 por ciento (enteros) y 17 por ciento (nachos), porcentajes también menores a los encontrados en Delicias. Mediante los valores de ACE es posible subrayar las combinaciones 1x1 (-12.488**), 2x4 (-8.213**), 3x2 (-7.813**), 3x4 (-7.715**) y 5x2 (-8.813**) en la calidad para fresco; las combinaciones 12x4 (6.607**), 13x2 (5.532**), 16x1 (30.009**), 18x1 (6.223**) y 19x4 (4.482**) para enteros; las combinaciones 24x3 (-4.375), 27x3 (-8.750**), 28x3 (-4.250), 29x2 (-5.725) y 29x4 (-6.975*) para nachos y finalmente las combinaciones

Cuadro 4.61. Grado de corchosidad del fruto (%) y ACE de mestizos de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Mestizo ¹	Fres	со	Ente	ero	Nach	10	Chipo	Chipotle	
Wiestizo -	Media	ACE	Media	ACE	Media	ACE	Media	ACE	
1x1	8.500	-12.488	12.500	-1.902	4.000	-2.050	7.500	3.525	
1x2	22.500	3.813	10.000	1.193	5.000	1.150	5.000	-0.175	
1x3	17.500	0.762	8.500	0.248	6.000	1.000	5.000	0.875	
1x4	30.000	7.913	13.500	0.482	10.000	-0.100	7.500	-4.225	
2x1	22.500	6.888	5.000	-7.277	7.500	-0.925	10.000	1.400	
2x2	17.500	4.188	5.000	-1.682	6.000	-0.225	11.000	1.200	
2x3	8.500	-2.863	8.500	2.373	10.000	2.625	5.000	-3.750	
2x4	8.500	-8.213	17.500	6.607	11.000	-1.475	17.500	1.150	
3x1	37.500	22.388	5.000	-7.563	12.500	0.200	15.000	6.775	
3x2	5.000	-7.813	12.500	5.532	10.000	-0.100	6.000	-3.425	
3x3	4.000	-6.863	10.000	3.587	10.000	-1.250	8.500	0.125	
3x4	8.500	-7.713	10.000	-1.178	17.500	1.150	12.500	-3.475	
4x1	12.500	-1.613	6.000	-3.027	6.000	-1.425	4.000	-9.100	
4x2	13.500	1.688	5.000	1.568	5.000	-0.225	12.500	-1.800	
4x3	12.500	2.638	6.000	3.123	2.000	-4.375	20.000	6.750	
4x4	12.500	-2.713	6.000	-1.643	17.500	6.025	25.000	4.150	
5x1	10.000	-1.863	8.500	-2.277	12.500	0.825	8.500	0.525	
5x2	8.500	-1.063	5.000	-0.182	10.000	0.525	7.500	-1.675	
5x3	11.000	3.388	4.000	-0.627	12.500	1.875	7.500	-0.625	
5x4	12.500	-0.463	12.500	3.107	12.500	-3.225	17.500	1.775	
6x1	8.500	-6.613	55.000	30.009	5.000	0.700	12.500	-0.850	
6x2	4.000	-8.813	7.000	-12.396	3.500	1.400	12.500	-2.050	
6x3	12.500	1.638	5.000	-13.841	3.500	0.250	15.000	1.500	
6x4	30.000	13.788	12.500	-11.107	6.000	-2.350	22.500	1.400	
7x1	12.500	0.387	5.000	-4.402	55.000	5.200	5.000	0.775	
7x2	10.000	0.188	6.000	2.193	50.000	2.400	5.000	-0.425	

Cuadro 4.61.....continuación.

Mastiza ¹	Fresc	co	Enter	ro	Nacł	10	Chipotle		
Mestizo ¹ -	Media	ACE	Media	ACE	Media	ACE	Media	ACE	
7x3	7.000	-0.863	5.000	1.748	40.000	-8.750	8.500	4.125	
7x4	13.500	0.288	8.500	0.482	55.000	1.150	7.500	-4.475	
8x1	8.500	-2.488	20.000	6.223	7.500	-1.300	15.000	-2.100	
8x2	10.000	1.313	8.500	0.318	7.500	0.900	27.500	9.200	
8x3	10.000	3.263	5.000	-2.627	3.500	-4.250	12.500	-4.750	
8x4	10.000	-2.088	8.500	-3.893	17.500	4.650	22.500	-2.350	
9x1	10.000	-5.113	5.000	-6.902	60.000	2.075	5.000	-2.350	
9x2	12.500	-0.313	6.000	-0.307	50.000	-5.725	7.500	-1.050	
9x3	10.000	-0.863	8.500	2.748	67.500	10.625	6.000	-1.500	
9x4	22.500	6.288	15.000	4.482	55.000	-6.975	20.000	4.900	
10x1	13.500	0.512	5.000	-4.402	4.000	-3.300	10.000	1.400	
10x2	17.500	6.813	6.000	2.193	5.000	-0.100	10.000	0.200	
10x3	8.500	-0.238	5.000	1.748	8.500	2.250	6.000	-2.750	
10x4	7.000	-7.088	8.500	0.482	12.500	1.150	17.500	1.150	
Media	13.038	0	9.400	0	17.600	0	11.525	0	
$DMS_{0.05}$	6.716	4.480	4.205	2.946	9.530	6.530	6.663	4.510	

¹ Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle).

33x1 (6.775**), 34x3 (6.750**), 34x4 (4.150), 38x2 (9.200**) y 39x4 (4.900*) para la calidad chipotle como las mejores opciones para mejorar positiva o negativamente el grado de acorchamiento del fruto, según sea el grupo de interés.

Parámetros genéticos

En el Cuadro 4.62 se presentan los resultados correspondientes a la localidad de Delicias. Considerando el grado de dominancia estimado a partir de ambos progenitores, es posible inferir, que los genes predominantemente involucrados en la expresión del carácter son de tipo no aditivo. En el caso particular del grupo comercial para fresco, este difiere con los resultados anteriores, ya que atribuye su expresión a genes aditivos.

La expresión génica al tomar en cuenta sólo líneas, conserva su dependencia a genes no aditivos en cuatro de los cinco nichos de mercado, sólo el grupo para nachos con la media más alta de corchosidad, cambia su dependencia de genes no aditivos a genes de tipo aditivo.

La corchosidad del fruto en la localidad de Delicias estimada con el promedio de los dos progenitores manifiesta una heredabilidad relativamente baja e indicativa de una gran carga de genes no aditivos, el valor mas alto fue alcanzado por el grupo para fresco con 0.033; esta heredabilidad según la clasificación de Chávez (1995) es baja.

Cuadro 4.62. Análisis genético de la varianza para corchosidad del fruto (%) de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005.

Parámetros				Nichos de calidad comercial						
genéticos	Fı	resco	Eı	ntero	N	acho	Ch	ipotle	Doble	Propósito
ACG Líneas	0.014	±0.246	-0.005	±0.166	0.556	±0.308	-0.049	±0.224	-0.100	±0.290
ACG Probadores	0.318	±0.155	0.096	± 0.105	-0.057	±0.195	0.010	± 0.150	0.018	± 0.335
ACG Promedio	0.013	±0.201	0.003	± 0.136	0.023	± 0.252	-0.002	± 0.187	-0.008	±0.313
ACE	0.014	± 0.491	0.043	± 0.332	0.650	± 0.617	0.187	± 0.449	0.121	± 0.580
σ_A^2 Líneas	0.028	± 0.075	-0.009	± 0.035	1.112	± 0.707	-0.097	± 0.069	-0.200	±0.116
σ^2_A Probador	0.636	± 0.435	0.192	± 0.141	-0.113	± 0.080	0.021	± 0.072	0.035	± 0.263
σ_A^2 Promedio	0.025	±0.312	0.007	±0.103	0.046	± 0.503	-0.004	± 0.070	-0.015	± 0.204
$\sigma^2_{ m Dominancia}$	0.014	± 0.081	0.043	± 0.045	0.650	± 0.279	0.187	±0.115	0.121	±0.258
\overline{D} Líneas	0.707		0		0.764		0		0	
□ Probador	0.149		0.476		0		2.994		1.855	
¬ Promedio	0.748		2.526		3.750		0		0	
h ² Líneas	0.037	± 0.098	-0.026	± 0.096	0.383	± 0.244	-0.140	±0.099	-0.216	±0.125
h ² Probadores	0.463	±0.317	0.339	±0.250	-0.067	± 0.048	0.026	± 0.089	0.030	±0.226
h ² Promedio	0.033	±0.291	0.018	±0.222	0.025	±0.220	-0.005	±0.093	-0.014	± 0.195

 σ_{Lineas}^2 $\sigma_{Promedio}^2$ = varianza aditiva de líneas, probadores y promedio de líneas y probadores, respectivamente. σ_D^2 = varianza de dominancia. \overline{D} líneas, \overline{D} promedio = grado promedio de dominancia con base en varianzas aditivas de líneas, probadores y el promedio de ellos, respectivamente. h^2 Líneas, h^2 promedio = heredabilidad con base en varianzas aditivas de líneas, probadores y el promedio de ellos, respectivamente.

Al estimar este parámetro utilizando líneas, la magnitud cambia en forma importante sólo en el grupo para nachos y de 0.025 se incrementa a 0.383. Los otros grupos no presentan cambios, ya que las varianzas aditivas son negativas.

En la localidad de Tampico, la información genética (Cuadro 4.63) permite precisar que en los grupos fresco y enteros predominan la actividad de genes no aditivos como responsables del carácter, esto considerando tanto líneas y probadores como el promedio de ambos. Asimismo, que en el grupo para nachos donde la aportación de las líneas fue altamente significativa y coincide con la media mas elevada, el análisis genético indistintamente del tipo de progenitor se inclina a favor de genes con acción aditiva, estos resultados son similares a lo encontrado en la localidad de Delicias. Con respecto a chipotle donde se pretendía marcar la diferencia con este carácter, desafortunadamente y al igual que en Delicias, los resultados no fueron los esperados por las razones previamente señaladas. En esta localidad el grupo para chipotle indica actividad de genes aditivos cuando se considera líneas o probadores, pero cambia a genes no aditivos cuando es estimado con el promedio de ambos tipos de progenitores.

De acuerdo con la literatura la inconsistencia genética mostrada por el acorchamiento en las dos localidades coincide con Johnson y Knaval (1990), ya que en el mismo trabajo de herencia con *Capsicum annuum* concluyeron que están involucrados genes aditivos y también genes no aditivos en la expresión del carácter.

La heredabilidad en Tampico es muy similar a la estimada en Delicias y los valores mas elevados e indicativos de la presencia de genes aditivos se obtienen en los

grupos nachos (0.954) y chipotle (0.516). Con respecto a los demás grupos donde su varianza aditiva es negativa, la heredabilidad del carácter es por tanto también negativa y de poca ayuda para interpretar su comportamiento genético.

Cuadro 4.63. Análisis genético de la varianza para corchosidad del fruto (%) de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005.

Parámetros			Nicho	s de calio	dad con	nercial		
genéticos	Fre	esco	En	tero	Na	acho	Chi	potle
ACG Líneas	-0.021	±0.066	-0.006	±0.045	1.448	±0.124	0.037	±0.063
ACG Probador	-0.001	± 0.042	0.008	± 0.028	0.014	± 0.078	0.034	± 0.040
ACG Promedio	-0.001	± 0.054	0.000	±0.036	0.066	±0.101	0.003	± 0.052
ACE	0.167	±0.132	0.223	± 0.089	0.019	± 0.247	0.037	±0.127
σ_A^2 Líneas	-0.042	± 0.032	-0.011	± 0.054	2.895	±1.252	0.074	± 0.043
σ^2_A Probador	-0.001	± 0.025	0.015	± 0.040	0.028	± 0.028	0.069	± 0.050
σ_A^2 Promedio	-0.002	±0.029	0.000	±0.048	0.133	±0.885	0.006	± 0.047
$\sigma^2_{ m Dominancia}$	0.167	± 0.049	0.223	± 0.061	0.019	± 0.026	0.037	±0.015
\overline{D} Líneas	0		0		0.081		0.707	
[□] Probador	0		3.829		0.822		0.733	
□ Promedio	0		0		0.378		2.480	
h ² Líneas	-0.264	±0.201	-0.049	± 0.237	0.954	± 0.412	0.516	±0.301
h ² Probador	-0.005	±0.125	0.060	±0.157	0.165	±0.165	0.498	±0.363
h ² Promedio	-0.010	±0.161	0.000	±0.199	0.484	±0.552	0.080	±0.335

 σ_{Lineas}^2 , $\sigma_{Probador}^2$, $\sigma_{Probador}^2$, $\sigma_{Probadores}^2$, evarianza aditiva de líneas, probadores y promedio de líneas y probadores, respectivamente. σ_D^2 =varianza de dominancia. \bar{D}_{lineas} , $\bar{D}_{probadores}$, $\bar{D$

Por otra parte, como se buscó que cada grupo comercial fuera (excluyente) constituido por líneas diferentes y no se repitieran, se presentan el análisis genético con el grupo original; sin embargo, dado los resultados muy diferentes del grupo para nachos , el cual se caracterizó por tener el mayor grado de corchosidad en ambas localidades, se decidió conformar un grupo nuevo con líneas seleccionadas por alto grado de

acorchamiento ubicadas en otros nichos de calidad y hacer un ejercicio con fines comparativos, en este caso sólo se analizaron datos de la localidad de Delicias.

Los resultados se pueden apreciar en el Cuadro 4.64, se nota un cambio interesante en la aportación al CM, ya que ubicando líneas con alto grado de acorchamiento la diferencia manifiesta de los mestizos ahora es debida básicamente a líneas y no a probadores como en el caso anterior.

Cuadro 4.64. Cuadrado medio de líneas de chile jalapeño con alto y bajo grado de acorchamiento (%). Delicias, Chihuahua. 2005.

FV	Cuadrado N	Medio
ΓV	Alto	Bajo
Mestizos	3.877 **	1.053 **
Líneas	11.115 **	0.582 ns
Probadores	0.537 ns	1.443 ns
Línea x Probador	2.021 **	1.164 **
Error	0.941	0.604
Media	52.88	18.89
CV (%)	11.60	8.66

Observando los componentes de la varianza genética (Cuadro 4.65) queda claro que al seleccionar para alto grado de acorchamiento la ACG cambia notoriamente a favor de las líneas, relegando a segundo término a probadores. En este caso el grado de dominancia señala que la expresión del acorchamiento es mayormente atribuido a los genes de acción aditiva contra los no aditivos cuando se toman líneas con bajo expresión del carácter. Asimismo, se observa que mejora substancialmente la complejidad en su herencia, ya que la heredabilidad incrementa de -0.1399 a 0.5381, es decir, un valor

intermedio según la clasificación de Chávez (1995) con abundante carga de genes favorable.

Como estos resultados son similares a los obtenidos en el grupo para nachos en las dos localidades, es posible inferir con mayor confianza que el control genético del acorchamiento es debido básicamente a genes de acción aditiva.

Cuadro 4.65. Análisis genético de la varianza para líneas de chile jalapeño con alto y bajo grado de acorchamiento (%) del fruto. Delicias, Chihuahua. 2005.

Parámetros genéticos	Chipotle	Chipotle
1 drametros geneticos	original	modificado
ACG Líneas	-0.049	0.758
ACG Probador	0.010	-0.055
ACE	0.187	0.360
σ^2_A Líneas	-0.097	1.516
$\sigma^2_{ m Dominancia}$	0.187	0.360
□ Líneas	0	0.490
h ² Líneas	-0.140	0.538

Número de lóculos por fruto

Esta variable junto a grado hueco y grosor de pericarpio es muy importante en la consistencia que muestren los frutos de chile.

Análisis estadístico

Los resultados del ANVA generados en la localidad de Delicias se aprecian en el Cuadro 4.66. Indican diferencias altamente significativas (p≤0.01) para grupos y

mestizos dentro de grupos con un CV de 6.79 por ciento. A fin de diferenciar los híbridos dentro de grupos se particionó la fuente mestizos dentro de grupos de calidades para fresco, enteros, nachos, chipotle y doble propósito, detectándose sólo el grupo nachos sin diferencias estadísticas entre sus líneas seleccionadas (p>0.05), es decir, el único grupo que aporta en la diferencia entre mestizos. Dentro de los grupos con significancia, se detecta que la magnitud expresada en el CM es muy similar entre ellos.

Cuadro 4.66. Análisis de varianza para número de lóculos del fruto en grupos y mestizos dentro de grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005.

FV	GL	SS	CM	Valor de F	Pr > F
Grupos	4	2.967	0.742	14.15	<.0001
Rep (Grupos)	10	0.384	0.038	0.73	0.6929
Mestizos (Grupos)	156	19.335	0.124	2.36	<.0001
Fresco	38	6.179	0.163	3.18	<.0001
Enteros	37	4.653	0.126	1.90	0.0064
Nachos	37	2.714	0.073	1.17	0.2687
Chipotle	33	3.758	0.114	2.75	0.0002
Doble Propósito	11	2.083	0.189	4.29	0.0010
Error	312	16.356	0.052		
Total	482	39.095			
CV = 6.79%					
Media=3.369					

La prueba de medias clasificó cuatro categorías estadísticamente diferentes entre ellos, ubicando al grupo para doble propósito con la media más alta y al de la calidad fresco con el menor número de lóculos por fruto (Cuadro 4.67). La media general entre grupos de calidad comercial fue 3.369 lóculos por fruto.

Cuadro 4.67. Prueba de medias para número de lóculos por fruto en grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005.

Calidad Comercial	Media	Error estándar
Doble propósito	3.550	0.038
Nachos	3.440	0.021
Enteros	3.368	0.021
Chipotle	3.344	0.023
Fresco	3.270	0.021
$DMS_{0.05}$	0.072	

Los resultados del ANVA en la localidad de Tampico se aprecian en el Cuadro 4.68. Este carácter no muestra diferencias significativas (p>0.05) entre grupos ni repeticiones en grupos, sólo en mestizos dentro de grupos con un CV confiable de 9.24 por ciento. La partición de mestizos dentro de grupos indica diferencias significativas sólo en los nichos de calidad enteros (p≤0.01) y chipotle (p≤0.05). En contribución al CM se distingue a la calidad para enteros como el más importante entre los cuatro.

Cuadro 4.68. Análisis de varianza para número de lóculos del fruto en grupos y mestizos dentro de grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005.

FV	GL	SC	CM	Valor de F	Pr > F
Grupo	3	0.116	0.039	0.46	0.7078
Rep (grupo)	4	0.071	0.178	2.14	0.0784
Mestizos (grupo)	156	25.052	0.161	1.93	<.0001
Fresco	39	4.750	0.122	1.24	0.2433
Enteros	39	9.721	0.249	3.57	<.0001
Nachos	39	3.888	0.100	1.52	0.0906
Chipotle	39	5.988	0.154	1.67	0.0512
Error	154	12.789	0.083		
Total	317	38.695			
CV= 9.24%					
Media= 3.17					

La prueba de medias simplemente ratifica la no significancia de los grupos en el ANVA; sin embargo, se puede señalar a los grupos de calidad para chipotle y nachos con el promedio mas alto y bajo respectivamente. La media general fue 3.17 lóculos por fruto, ligeramente menor al obtenido en Delicias (Cuadro 4.69)

Cuadro 4.69. Prueba de medias para número de lóculos del fruto en grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005.

Grupo comercial	Nº de Lóculos	Error Estándar
Chipotle	3.137	0.032
Enteros	3.128	0.032
Fresco	3.112	0.032
Nachos	3.087	0.032
$_{-}$ DMS _{0.05}	0.090	

En la localidad de Delicias las diferencias altamente significativas para la fuente mestizos en las cinco calidades de mercado, permite mediante su partición en líneas, probadores y la interacción LxP, explorar los efectos que más aportan a la diferenciación de los mestizos (Cuadro 4.70). En este caso, líneas es significativamente importante para las calidades fresco y doble propósito; probadores sólo para la calidad fresco y la interacción en calidades para fresco, chipotle y doble propósito. Es de resaltar que en las calidades para enteros y nachos ninguna de las fuentes muestra aportación significativa a la varianza del grupo.

Con relación a la magnitud del CM, es posible señalar a los probadores como la fuente mas importante, ya que su aporte es superior en cuatro de los cinco grupos; le

siguen las líneas en tres de los cinco grupos y, por último, la interacción que demostró su importancia sobre el carácter en los grupos de mercado para chipotle y doble propósito.

Cuadro 4.70. Cuadrado medio para número de lóculos por fruto de chile jalapeño en diferentes tipos de calidad comercial. Delicias. Chihuahua. 2005.

	Cuadrado Medio								
FV	Fresco	Entero	Nacho	Chipotle	Doble				
	TTESCO	Entero	Nacio	Chipotic	Propósito				
Mestizos	0.163 **	0.126 **	0.073 ns	0.114 **	0.189 **				
Líneas	0.312 **	0.159 ns	0.076 ns	0.095 ns	0.043 *				
Probadores	0.385 **	0.239 ns	0.122 ns	0.193 na	0.081 ns				
LxP	0.084 *	0.104 ns	0.067 ns	0.109 **	0.292 **				
Error	0.051	0.066	0.063	0.041	0.044				
Media	3.270	3.368	3.440	3.344	3.550				
CV (%)	6.850	7.660	7.250	6.040	5.940				

La descomposición de mestizos en líneas, probadores y la interacción LxP de la localidad de Tampico se puede ver en el Cuadro 4.71. Es posible observar que líneas destaca en el grupo de calidad para fresco y la interacción en los grupos para enteros y nachos, asimismo, se puede ver que probadores estadísticamente no interviene en la variación expresada por mestizos en ninguno de los casos.

Cuadro 4.71. Cuadrado medio para número de lóculos por fruto de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005.

FV -	Cuadrado Medio								
1. 4	Fresco	Entero	Nacho	Chipotle					
Mestizos	0.122 ns	0.249 **	0.100 ns	0.154 *					
Líneas	0.250 **	0.188 ns	0.057 ns	0.179 ns					
Probadores	0.083 ns	0.154 ns	0.079 ns	0.146 ns					
LxP	0.083 ns	0.279 **	0.116 *	0.146 ns					
Error	0.098	0.070	0.066	0.092					
Media	3.113	3.129	3.088	3.138					
CV (%)	10.20	8.45	8.28	9.67					

Con relación a la magnitud del CM, las líneas demostraron la mayor importancia sobre el carácter en los grupos de mercado para fresco y chipotle, en tanto la interacción lo hizo en los grupos para enteros y nachos.

Análisis genético

La información agronómica y genética generada por las líneas en la localidad de Delicias, se presenta en el Cuadro 4.72. Es de notar que el número promedio de lóculos por fruto fluctúa entre 3.29 en el grupo de calidad para entero a 3.52 en la calidad para nachos. En el caso de los valores de ACG es posible ubicar a las líneas 5 (0.263**), 15 (0.165*), 24 (0.160*) y 32 (0.189**) de los grupos de calidad para fresco, entero, nacho y chipotle respectivamente como las alternativas más viables a mejorar este carácter mediante la vía de los genes aditivos.

Cuadro 4.72. Número de lóculos del fruto y ACG de 39 líneas progenitoras de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005

Línea 1	Fre	sco	En	tero	Na	Nacho		Chipotle	
Lilica	Media	ACG	Media	ACG	Media	ACG	Media	ACG	
1	3.133	-0.120	2.800	-0.085	3.267	0.060	3.200	-0.028	
2	3.400	-0.020	3.267	0.098	3.667	0.001	3.467	0.189	
3	3.533	0.030	3.133	0.073	3.667	0.060	3.733	-0.053	
4	3.400	-0.120	3.133	-0.218	3.533	0.160	3.200	0.056	
5	3.467	0.263	3.333	0.165	3.667	-0.065	3.067	-0.153	
6	3.333	0.130	3.667	0.048	3.533	0.010	3.467	-0.011	
7	3.400	0.072	3.133	-0.068	3.333	-0.074	3.667	-0.011	
8	2.800	-0.303	3.600	0.048	3.733	-0.040	3.333	0.100	
9	3.667	0.155	3.867	0.032	3.333	0.071	3.467	-0.019	
10	3.267	-0.053	2.933	-0.085	3.467	-0.124	ND	ND	
Media	3.340	0	3.290	0	3.520	0	3.400	0	
$DMS_{0.05}$	0.423	0.128	0.612	0.146	0.428	0.142	0.331	0.115	

Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle); ND= no disponible.

En el cuadro 4.73 se presenta el comportamiento de las líneas en la localidad de Tampico. Se aprecia que el número promedio de lóculos por fruto entre nichos de calidad fluctúa de 3.087 en la calidad para nachos a 3.150 en la calidad para chipotle. En lo que se refiere a la ACG sobresalen las líneas 2 (0.250*), 4 (0.250*), y 7 (0.250*) del grupo fresco, la línea 12 (0.248**) del grupo entero, las línea 29 (0.163) del grupo nachos y las líneas 37 (0.238*) y 39 (0.238*) chipotle como portadoras de genes aditivos para mejorar esta característica tan importante para dar consistencia y firmeza al fruto.

Cuadro 4.73. Número de lóculos del fruto y ACG de 40 líneas progenitoras de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Línea ¹	Fre	sco	Ent	Entero		Nacho		Chipotle	
Lillea	Media	ACG	Media	ACG	Med	ia ACG	Media	ACG	
1	3.000	-0.125	3.125	-0.002	3.00	00 -0.087	3.000	-0.088	
2	3.375	0.250	3.375	0.248	3.12	25 0.038	3.000	-0.038	
3	3.125	0.000	3.000	-0.127	3.12	25 0.038	3.500	0.012	
4	3.375	0.250	3.000	-0.127	3.12	25 0.038	3.000	0.113	
5	3.000	-0.125	3.000	-0.127	3.12	25 0.038	3.000	-0.138	
6	3.000	-0.125	3.250	0.123	3.00	00 -0.087	3.000	-0.138	
7	3.375	0.250	3.250	0.123	3.12	25 0.038	3.375	0.238	
8	3.000	-0.125	3.250	0.123	3.00	00 -0.087	3.125	-0.013	
9	3.000	-0.125	3.125	-0.002	3.25	0.163	3.375	0.238	
10	3.000	-0.125	2.875	-0.252	3.00	00 -0.087	3.125	-0.013	
Media	3.125	0	3.125	0	3.08	37 0	3.150	0	
$DMS_{0.05}$	0.327	0.217	0.572	0.183	0.33	0.177	0.392	0.210	

Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle).

El comportamiento de los probadores evaluados en Delicias se puede observar en el Cuadro 4.74. El número de lóculos por fruto varió de 3.20 en el probador 1 a 3.72 en el probador 3, con una media de 3.5. Tomando en cuanta los valores de ACG, el probador 2 de ambiente templado se proyecta como la opción para mejorar este carácter en los grupos para fresco, entero, nacho y chipotle y en el caso del grupo para doble propósito la alternativa son los probadores dos y tres.

Cuadro 4.74. Número de lóculos del fruto y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

		ACG							
Probador	Media	Fresco	Entero	Nacho	Chipotle	Doble			
		riesco	Entero	Naciio	Chipotie	Propósito			
1	3.200	-0.023	-0.035	-0.007	-0.011	-0.039			
2	3.400	0.163	0.050	0.040	0.119	-0.106			
3	3.733	-0.041	-0.106	-0.087	-0.028	0.117			
4	3.667	-0.103	0.085	0.053	-0.085	0.028			
Media	3.500	0	0	0	0	0			
$DMS_{0.05}$	0.426	0.072	0.093	0.091	0.078	0.143			

Con respecto al comportamiento de probadores en Tampico (Cuadro 4.75), se observa que el número de lóculos por fruto varió de 3 a 3.50 con una media de 3.125.

En forma general, los valores de ACG positivos entre los grupos de calidad fueron obtenidos por el probador 4 de ambiente tropical, asimismo, se observa un comportamiento inconsistente de los tres probadores de origen templado, es decir, comportamiento opuesto al obtenido en la localidad de Delicias. Lo anterior denota una interacción del ambiente en la expresión de la ACG entre los probadores y grupos de calidad comercial.

Cuadro 4.75. Número de lóculos por fruto y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Probador -	ACG								
riouauoi	Media	Fresco	Entero	Nacho	Chipotle				
1	3.000	0.075	0.023	-0.087	-0.088				
2	3.000	-0.075	0.023	0.013	-0.038				
3	3.500	-0.025	-0.127	0.013	0.012				
4	3.000	0.025	0.084	0.063	0.113				
Media	3.125	0	0	0	0				
$\mathrm{DMS}_{0.05}$	1.125	0.137	0.116	0.112	0.133				

Los mestizos evaluados en Delicias presentan valores promedio que van desde 3.27 en el grupo de calidad para fresco hasta 3.55 en el de calidad doble propósito (Cuadro 4.76). Con respecto a la ACE, las mejores cinco combinaciones para el grupo fresco fueron 2x1 (0.173), 2x3 (0.191), 3x2 (0.170), 3x4 (0.203) y 9x2 (0.378**), para el grupo entero fueron 11x3 (0.222), 13x2 (0.308*), 15x1 (0.168), 15x4 (0.182) y 20x2 (0.267), para el grupo nachos fueron 21x3 (0.187), 23x4 (0.180), 26x2 (0.177), 27x4 (0.180) y 29x2 (0.183), para el grupo chipotle fueron 31x4 (0.235*), 33x4 (0.193), 35x3 (0.236*), 37x1 (0.344**) y 39x1 (0.219) y por último, para el grupo doble propósito fueron 41x1 (0.106), 42x2 (0.289*), 42x3 (0.267*), 43x1 (0.272*) y 43x4 (0.206).

Los mestizos en la localidad de Tampico presentan valores promedio que van de 3.088 en la calidad para nachos hasta 3.138 en la calidad chipotle (Cuadro 4.77). Con respecto a la ACE, las mejores combinaciones para mejorar mediante métodos que aprovechen genes no aditivos en la calidad fresco son 2x4 (0.600), 3x1 (0.300) y 4x2 (0.200), para la calidad entero son 11x1 (0.352), 12x2 (0.602), 16x4 (0.600), 17x4 (0.600) y 20x1 (0.602), para la calidad nachos son 23x2 (0.363), 25x2 (0.363) y 29x3 (0.738) y para la calidad chipotle son las combinaciones 33x3 (0.613) y 40x4 (0.638).

Parámetros genéticos

La información genética del carácter lóculos de la localidad Delicias se observa en el Cuadro 4.78. Con base en el promedio ponderado de los dos tipos de progenitores, se detecta que la manifestación del carácter es esencialmente atribuido la acción de

Cuadro 4.76. Número de lóculos por fruto y ACE de mestizos de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Mestizo ¹		resco	Er	itero	Na	acho	Chi	potle	Doble Pr	Doble Propósito	
Mestizo	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE	
1x1	3.133	0.007	3.067	-0.182	3.467	-0.026	3.200	-0.106	3.600	0.106	
1x2	3.400	0.087	3.333	0.000	3.400	-0.140	3.400	-0.036	3.333	-0.094	
1x3	3.133	0.024	3.400	0.222	3.600	0.187	3.200	-0.089	3.667	0.017	
1x4	2.933	-0.113	3.333	-0.035	3.533	-0.020	3.467	0.235	3.533	-0.028	
2x1	3.400	0.173	3.467	0.035	3.533	0.099	-	-	3.200	-0.378	
2x2	3.267	-0.147	-	-	3.533	0.052	3.600	-0.052	3.800	0.289	
2x3	3.400	0.191	3.467	0.106	3.167	-0.188	3.400	-0.106	4.000	0.267	
2x4	2.933	-0.213	3.467	-0.085	3.533	0.039	3.600	0.152	3.467	-0.118	
3x1	3.233	-0.043	3.267	-0.140	3.400	-0.093	3.167	-0.114	3.733	0.272	
3x2	3.633	0.170	3.800	0.308	3.333	-0.206	3.267	-0.144	3.200	-0.194	
3x3	3.333	0.074	3.100	-0.236	3.533	0.120	3.333	0.069	3.333	-0.283	
3x4	3.000	-0.197	3.600	0.073	3.733	0.180	3.400	0.193	3.733	0.206	
4x1	3.000	0.127	3.000	-0.115	-	-	3.133	-0.256			
4x2	3.333	0.020	3.133	-0.067	3.733	0.094	3.533	0.015			
4x3	3.200	0.091	3.133	0.089	3.467	-0.046	3.533	0.161			
4x4	3.067	0.020	3.333	0.098	3.600	-0.053	3.400	0.085			
5x1	3.500	-0.010	3.667	0.168	3.467	0.099	3.167	-0.014			
5x2	3.700	0.003	3.467	-0.117	3.467	0.052	3.267	-0.044			
5x3	3.400	-0.093	3.200	-0.228	3.233	-0.055	3.400	0.236			
5x4	3.533	0.103	3.800	0.182	3.333	-0.095	2.933	-0.174			
6x1	3.467	0.090	3.467	0.085	3.467	0.024	3.400	0.078			
6x2	3.400	-0.163	3.333	-0.133	3.667	0.177	3.467	0.015			
6x3	-	-	3.333	0.022	3.333	-0.030	3.200	-0.106			
6x4	3.333	0.037	3.533	0.032	3.333	-0.170	3.267	0.018			
7x1	3.333	0.015	3.200	-0.065	3.400	0.040	3.667	0.344			
7x2	3.433	-0.072	3.500	0.150	3.267	-0.140	3.467	0.015			
7x3	3.333	0.032	-	-	3.200	-0.080	3.267	-0.039			

Cuadro 4.76.....continuación.

Mestizo ¹	Fr	esco	Er	itero	N	acho	Ch	ipotle	Doble Pr	opósito
Mestizo	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE
7x4	3.267	0.028	3.200	-0.185	3.600	0.180	2.933	-0.315		
8x1	2.933	-0.010	3.467	0.085	3.267	-0.126	3.400	-0.034		
8x2	2.933	-0.197	3.200	-0.267	3.533	0.094	3.533	-0.030		
8x3	2.933	0.007	3.333	0.022	3.333	0.020	-	-		
8x4	3.067	0.203	3.667	0.165	3.467	0.014	3.400	0.040		
9x1	3.200	-0.202	3.400	0.035	-	-	3.533	0.219		
9x2	3.967	0.378	3.400	-0.050	3.733	0.183	3.633	0.190		
9x3	3.067	-0.318	3.200	-0.095	3.467	0.043	3.200	-0.098		
9x4	3.467	0.145	3.600	0.115	3.333	-0.231	2.933	-0.307		
10x1	3.267	0.073	3.333	0.085	3.467	0.157	-	-		
10x2	3.267	-0.113	3.600	0.267	3.133	-0.223	-	-		
10x3	3.267	0.091	3.200	0.022	3.200	-0.030	-	-		
10x4	3.067	-0.047	3.000	-0.368	3.467	0.097	-	-		
Media	3.276	0	3.378	0	3.445	0	3.344	0	3.550	0
$DMS_{0.05}$	0.367	0.256	0.385	0.291	0.422	0.284	0.306	0.230	0.368	0.240

Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle, 41-43 doble propósito).

Cuadro 4.77. Número de lóculos del fruto y ACE de mestizos de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Mestizo ¹ -	Fre	Fresco		ero	Nac	ho	Chipotl	e
WIESUZO -	Media	ACE	Media	ACE	Media	ACE	Media	ACE
1x1	3.000	-0.075	3.500	0.352	3.000	0.087	3.000	0.088
1x2	3.000	0.075	3.000	-0.148	3.000	-0.013	3.000	0.038
1x3	3.000	0.025	3.000	0.002	3.000	-0.013	3.000	-0.012
1x4	3.000	-0.025	3.000	-0.209	3.000	-0.063	3.000	-0.113
2x1	3.500	0.050	3.000	-0.398	3.000	-0.038	3.000	0.088
2x2	3.000	-0.300	4.000	0.602	3.000	-0.138	3.000	0.038
2x3	3.000	-0.350	3.000	-0.248	3.000	-0.138	3.000	-0.012
2x4	4.000	0.600	3.500	0.041	3.500	0.313	3.000	-0.113
3x1	3.500	0.300	3.000	-0.023	3.000	-0.038	3.000	-0.288
3x2	3.000	-0.050	3.000	-0.023	3.500	0.363	3.500	0.163
3x3	3.000	-0.100	3.000	0.127	3.000	-0.138	4.000	0.613
3x4	3.000	-0.150	3.000	-0.084	3.000	-0.188	3.000	-0.488
4x1	3.500	0.050	3.000	-0.023	3.000	-0.038	3.000	-0.037
4x2	3.500	0.200	3.000	-0.023	3.000	-0.138	3.000	-0.087
4x3	3.500	0.150	3.000	0.127	3.000	-0.138	3.000	-0.138
4x4	3.000	-0.400	3.000	-0.084	3.500	0.313	3.500	0.263
5x1	3.000	-0.075	3.000	-0.023	3.000	-0.038	3.500	0.213
5x2	3.000	0.075	3.000	-0.023	3.500	0.363	3.500	0.163
5x3	3.000	0.025	3.000	0.127	3.000	-0.138	3.500	0.113
5x4	3.000	-0.025	3.000	-0.084	3.000	-0.188	3.000	-0.488
6x1	3.000	-0.075	3.000	-0.273	3.000	0.087	3.000	-0.037
6x2	3.000	0.075	3.000	-0.273	3.000	-0.013	3.000	-0.087
6x3	3.000	0.025	3.000	-0.123	3.000	-0.013	3.000	-0.138
6x4	3.000	-0.025	4.000	0.666	3.000	-0.063	3.500	0.263
7x1	3.500	0.050	3.000	-0.273	3.000	-0.038	3.000	0.088
7x2	3.000	-0.300	3.000	-0.273	3.000	-0.138	3.000	0.038

Cuadro 4.77.....continuación.

Mestizo ¹ -	Fre	sco	Ent	ero	Nac	Nacho		Chipotle	
Mestizo -	Media	ACE	Media	ACE	Media	ACE	Media	ACE	
7x3	3.500	0.150	3.000	-0.123	3.000	-0.138	3.000	-0.012	
7x4	3.500	0.100	4.000	0.666	3.500	0.313	3.000	-0.113	
8x1	3.000	-0.075	3.500	0.227	3.000	0.087	3.000	0.088	
8x2	3.000	0.075	3.500	0.227	3.000	-0.013	3.000	0.038	
8x3	3.000	0.025	3.000	-0.123	3.000	-0.013	3.000	-0.012	
8x4	3.000	-0.025	3.000	-0.334	3.000	-0.063	3.000	-0.113	
9x1	3.000	-0.075	3.000	-0.148	3.000	-0.163	3.000	-0.037	
9x2	3.000	0.075	3.000	-0.148	3.000	-0.263	3.000	-0.087	
9x3	3.000	0.025	3.000	0.002	4.000	0.738	3.000	-0.138	
9x4	3.000	-0.025	3.500	0.291	3.000	-0.313	3.500	0.263	
10x1	3.000	-0.075	3.500	0.602	3.000	0.087	3.000	-0.163	
10x2	3.000	0.075	3.000	0.102	3.000	-0.013	3.000	-0.213	
10x3	3.000	0.025	3.000	0.252	3.000	-0.013	3.000	-0.263	
10x4	3.000	-0.025	2.000	-0.959	3.000	-0.063	4.000	0.638	
Media	3.125	0	3.125	0	3.088	0	3.138	0	
$_{\rm DMS_{0.05}}$	0.678	0.434	0.543	0.366	0.501	0.355	0.605	0.420	

Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle).

genes no aditivos en todos los tipos de calidad comercial. Sin embargo, tomando en consideración sólo líneas la expresión de lóculos en los grupos de calidad para fresco y enteros cambia en forma radical a la acción de genes aditivos. En el caso del grupo para nachos con acción marcada de genes de dominancia ahora es sustituido por la actividad equilibrada de los dos tipos de genes. Los grupos de calidad para chipotle y doble propósito conservaron el tipo de acción no aditivo sin importar el tipo de progenitor, esto dado a que la varianza de ACG utilizada para su estimación es negativa.

La heredabilidad en esta localidad (Cuadro 4.78) estimada con ambos tipos de progenitores, es muy baja en todos los grupos y obedece a la predominancia de genes no aditivos. Pero, al utilizar sólo líneas el comportamiento cambia notablemente en la calidad para fresco (0.379), el cual concuerda con la marcada acción de los genes aditivos que posee. En los grupos de mercado para entero y nachos la heredabilidad menos intensa es indicativa de una actividad equilibrada de los genes, pues los valores del grado de dominancia en ambos casos son muy cercanos a la unidad. En los demás grupos la heredabilidad resultó negativa, dado que la varianza genética de líneas utilizada es también negativa, por lo tanto, sus valores no permiten definir con claridad su comportamiento.

Con lo anterior podemos inferir que la heredabilidad de lóculos por fruto no exhibe diferencia genéticas entre ambientes, ya que doble propósito integrado por líneas de origen tropical, se comportó de manera similar a chipotle conformado por líneas de origen templado.

Cuadro 4.78. Análisis genético de la varianza para número de lóculos por fruto de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005.

Donámatnas	Nichos de calidad comercial									
Parámetros genéticos	Fresco	Entero	Nacho	Chipotle	Doble Propósito					
ACG Líneas	0.019 ±0.065	0.005 ± 0.074	0.001 ±0.072	-0.001 ±0.059	-0.021 ±0.061					
ACG Probador	0.010 ± 0.041	0.005 ± 0.047	0.002 ± 0.046	0.003 ± 0.039	-0.024 ± 0.070					
ACG Promedio	0.001 ± 0.053	0.000 ± 0.061	0.000 ± 0.059	0.000 ± 0.049	-0.004 ± 0.066					
ACE	0.011 ± 0.131	0.013 ± 0.149	0.001 ± 0.145	0.023 ± 0.117	0.083 ± 0.121					
σ^2_A Líneas	0.038 ± 0.022	0.009 ± 0.012	0.002 ± 0.006	-0.002 ± 0.009	-0.041 ± 0.025					
σ_A^2 Probador	0.020 ± 0.016	0.009 ± 0.010	0.004 ± 0.005	0.006 ± 0.009	-0.047 ± 0.034					
σ^2_A Promedio	0.002 ± 0.020	0.001 ± 0.011	0.000 ± 0.006	0.000 ± 0.009	-0.009 ± 0.030					
$\sigma^2_{\mathrm{Dominancia}}$	0.011 ± 0.008	0.013 ± 0.010	0.001 ± 0.007	0.023 ± 0.010	0.083 ± 0.049					
\overline{D} Líneas	0.540	1.183	0.901	0	0					
¬ Probador	0.745	1.183	0.601	1.909	0					
¬ Promedio	2.151	3.969	2.550	10.630	0					
h ² Líneas	0.379 ± 0.220	0.102 ± 0.137	0.024 ± 0.091	-0.039 ± 0.146	-0.484 ± 0.292					
h ² Probador	0.243 ± 0.195	0.102 ± 0.114	0.053 ± 0.074	0.088 ± 0.128	-0.588 ± 0.426					
h ² Promedio	0.037 ± 0.219	0.010 ± 0.125	0.003 ± 0.090	0.003 ± 0.137	-0.075 ±0.363					

 $[\]sigma_{\text{Lineas}}^2$, $\sigma_{\text{Probadores}}^2$ varianza aditiva de líneas, probadores y promedio de líneas y probadores, respectivamente. σ_D^2 evarianza de dominancia. σ_{Iineas} , σ_{promedio} = heredabilidad con base en varianzas aditivas de líneas, probadores y el promedio de ellos, respectivamente. σ_D^2 evarianza de dominancia. σ_D^2 promedio = heredabilidad con base en varianzas aditivas de líneas, probadores y el promedio de ellos, respectivamente.

La información genética en la localidad de Tampico se puede ver en el Cuadro 4.79. Con respecto a los resultados obtenidos es menester señalar que a excepción del grupo para chipotle en los demás grupos no fue posible determinar el grado de dominancia debido a estimaciones negativas de ACG y ACE, aun cuando dichos valores pueden tomarse como cero, ya que se encuentran dentro del margen que indica su error estándar.

Considerando el promedio de ambos tipos de progenitores, así como a probadores, las varianzas indistintamente marcan una tendencia a genes no aditivos, los cuales coinciden a lo obtenido en la localidad de Delicias.

Tomando en cuenta la proporción estimada en las varianzas de líneas es deducible que el número de lóculos por fruto en tres de los cuatro nichos de calidad deba su manifestación mayormente a genes de acción no aditiva, sólo en la calidad para fresco se inclina a favor de genes aditivos.

En forma general, podemos decir que estos resultados no coinciden Luiz (2002) quien reporta a los genes aditivos como responsables de este carácter.

Las varianzas negativas también afectaron la estimación de la heredabilidad, ya que en dos de los cuatro nichos los resultados fueron negativos. En los grupos donde fue posible estimar de manera correcta la proporción de la heredabilidad, ésta responde a la acción dominante de los tipos de genes siendo en el grupo de mercado para fresco

(0.3147) y chipotle (0.0660) donde alcanza su mayor y menor expresión en forma respectiva.

Cuadro 4.79. Análisis genético para número de lóculos por fruto de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005.

Parámetros	Nichos de calidad comercial							
genéticos	Fresco	Entero	Nacho	Chipotle				
ACG Líneas	0.021 ±0.11	1 -0.011 ±0.093	-0.007 ±0.090	0.004 ±0.107				
ACG Probador	0.000 ± 0.07	$0 -0.006 \pm 0.059$	-0.002 ± 0.057	0.000 ± 0.068				
ACG Promedio	0.001 ± 0.09	$1 -0.001 \pm 0.076$	0.000 ± 0.074	0.000 ± 0.088				
ACE	-0.007 ± 0.22	0.105 ± 0.187	0.025 ± 0.181	0.027 ± 0.214				
σ^2_A Líneas	0.042 ± 0.02	$7 -0.023 \pm 0.027$	-0.015 ± 0.010	0.008 ± 0.021				
σ^2_A Probador	0.000 ± 0.00	6 -0.013 ±0.012	-0.004 ± 0.006	0.000 ± 0.010				
σ_{A}^{2} Promedio	0.002 ± 0.020	0 -0.002 ±0.021	-0.001 ± 0.008	0.000 ± 0.017				
$\sigma^2_{ m Dominancia}$	-0.007 ± 0.01	$7 0.105 \pm 0.038$	0.025 ± 0.018	0.027 ± 0.023				
\overline{D} Líneas	0	0	0	1.790				
¬ Probador	0	0	0	0				
¬ Promedio	0	0	0	8.201				
h ² Líneas	0.315 ± 0.204	4 -0.149 ±0.178	-0.195 ± 0.132	0.066 ± 0.165				
h ² Probador	0.000 ± 0.66	2 -0.078 ±0.074	-0.044 ± 0.069	0.000 ± 0.084				
h ² Promedio	0.020 ± 0.18	0 -0.009 ±0.134	-0.009 ± 0.098	0.003 ± 0.138				

 $[\]sigma_{Lineas}^2$ $\sigma_{Probador}^2$ $\sigma_{Probador}^2$ evarianza aditiva de líneas, probadores y promedio de líneas y probadores, respectivamente. σ_D^2 evarianza de dominancia. \bar{D}_{lineas} $\bar{D}_{probadores}$, $\bar{D}_{$

Grado hueco del fruto

Esta variable toma importancia cuando se quiere seleccionar progenitores para ganar peso de fruto y resistencia a transporte, ya que dependiendo del llenado que tengan las cavidades del fruto es el grado de consistencia y peso que muestra el fruto. Ante esta situación y dado que un aspecto importante de cualquier cultivo, en particular con

aquellos denominados como hortaliza altamente perecedera y de alto costo, es su potencial de producción y su resistencia al transporte.

Por otra parte, es prudente puntualizar que se utilizaron escalas de medición diferentes en las dos localidades en estudio, por lo tanto, es probable que la información sea diferente y no sea comparable entre ambas localidades. En Delicias se empleo la escala ordinal 1=fruto hueco, 2= fruto medio hueco, 3= fruto medio lleno y 4= fruto lleno; mientras que en Tampico se midió a través de porcentaje de espacio hueco en el fruto.

Análisis estadístico

Los resultados de ANVA en la localidad de Delicias se pueden ver en el Cuadro 4.80, indican diferencias significativas (p≤0.01) para grupos y mestizos dentro de grupos con un CV de 11.25 por ciento. La partición de esta última fuente en tipos de calidad comercial señala que grado hueco expresa diferencias significativas (p≤0.01) en todos los nichos de mercado, es decir, las diferencias genéticas entre líneas de cada calidad son responsables de la variación de los mestizos dentro de grupos, principalmente por las calidades para fresco y entero dada la magnitud al CM.

Las diferencias marcadas entre grupos permitieron, mediante una prueba de media, formar grupos estadísticamente diferentes entre ellos (Cuadro 4.81). Marcando a los nichos para chipotle y enteros con el valor más alto (con el fruto más lleno) y la calidad para doble propósito con el valor mas bajo (con el fruto más hueco). En esta

variable la media general entre los grupos es 2.86 grado hueco considerado como fruto medio lleno o aceptable.

Cuadro 4.80. Análisis de varianza para grados huecos del fruto en grupos y mestizos dentro de grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005.

FV	GL	SS	CM	Valor de F	Pr > F
Grupos	4	14.927	3.732	35.80	<.0001
Rep (Grupos)	10	14.872	1.487	14.27	<.0001
Mestizos (Grupos)	156	91.175	0.584	5.61	<.0001
Fresco	38	39.713	1.045	5.95	<.0001
Enteros	37	28.619	0.774	4.94	<.0001
Nachos	37	20.881	0.564	3.58	<.0001
Chipotle	33	15.868	0.481	4.00	<.0001
Doble Propósito	11	4.130	0.375	5.03	0.0004
Error	312	32.518	0.104		
CV=11.25%					
Media=2.869					

Cuadro 4.81. Prueba de medias para grados huecos del frutos en grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005

Calidad Comercial	Media	Error estándar
Chipotle	2.986	0.032
Entero	2.945	0.030
Nacho	2.911	0.030
Fresco	2.835	0.030
Doble Propósito	2.281	0.054
$DMS_{0.05}$	0.101	

Los resultados del ANVA para la localidad de Tampico se dan en el Cuadro 4.82 y muestran diferencias significativas (p≤0.01) para las fuentes grupos y mestizos dentro de grupos con un CV de 0.73 por ciento, valor muy inferior al arrojado en Delicias. La descomposición en tipos de calidad comercial expresa diferencias significativas (p≤0.01) en todos los nichos de mercado, esto significa que las diferencias genéticas de líneas en cada calidad son responsables de la variación de los mestizos;

pero, tomando en cuenta la magnitud del CM, se observa mayor aporte de los grupos para fresco y nachos.

El análisis de las medias formó grupos estadísticamente diferentes entre ellos (Cuadro 4.83). Marcando los nichos fresco y chipotle con grado hueco más altos y bajos, respectivamente. La media general entre los grupos es 8.19 por ciento de grados huecos considerado como fruto aceptablemente lleno, estos resultados son similares a los generados en Delicias.

Cuadro 4.82. Análisis de varianza para grados huecos del fruto (%) en grupos y mestizos dentro de grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005.

FV	GL	SS	CM	Valor de F	Pr > F
Grupos	3	0.312	0.104	21.09	<.0001
Rep (Grupos)	4	0.036	0.009	1.81	0.1296
Mestizos (Grupos)	156	6.275	0.040	8.16	<.0001
Fresco	39	2.307	0.059	8.39	<.0001
Enteros	39	2.604	0.067	14.60	<.0001
Nachos	39	1.383	0.035	6.71	<.0001
Chipotle	39	1.247	0.032	5.46	<.0001
Error	154	0.759	0.005		
Total	317	7.381			
CV = 0.7347%					
Media=8.195%					

Cuadro 4.83. Prueba de medias para grados huecos del frutos (%) en grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005.

Calidad Comercial	Media	Error estándar
Fresco	9.238	0.161
Entero	8.385	0.161
Nacho	7.588	0.161
Chipotle	7.575	0.161
Media	8.196	
$DMS_{0.05}$	0.451	

La significancia de los mestizos en la localidad de Delicias justifica descomponer esta fuente en líneas, probadores y la interacción LxP (Cuadro 4.84). Con respecto al grupo de mercado para fresco se observa que la diferencia de los mestizos se atribuye más a los probadores y las líneas que a la interacción. Mientras que en la calidad para entero los efectos son producto de los tres componentes, pero sobresalen los probadores y las líneas por la magnitud aportada al CM.

El grupo para nacho muestra un comportamiento igual a la calidad para fresco, ya que las diferencias expresadas por sus mestizos se deben mas a las líneas y probadores y en menor magnitud a la interacción. En el caso del grupo para chipotle las diferencias de sus mestizos se atribuyen mayormente a probadores y luego a la interacción. Finalmente, en el grupo con la calidad para doble propósito se aprecia que las diferencias expresadas son preferentemente causadas por los efectos de las líneas seguidas por la interacción.

Cuadro 4.84. Cuadrado Medio para grado hueco del fruto de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005

		Nichos de mercado								
FV	Eragaa	Entero	Nacho	Chinatla	Doble					
	Fresco	Entero	Naciio	Chipotle	Propósito					
Mestizos	1.045 **	0.774 **	0.564 **	0.481 **	0.375 **					
Líneas	0.555 **	0.874 *	0.946 **	0.224 ns	1.337 *					
Probador	10.315 **	4.026 **	2.488 **	2.129 **	0.118 ns					
LxP	0.160 ns	0.365 **	0.198 ns	0.342 **	0.184 *					
Error	0.154	0.157	0.158	0.120	0.075					
CV (%)	14.60	13.43	14.11	11.35	11.14					

Los resultados correspondientes a la localidad de Tampico se dan en el Cuadro 4.85. Las fuentes de la descomposición de mestizos apuntan a la interacción como principal explicación estadística de la variación manifiesta de los mestizos en todos los grupos, en cambio, líneas y probadores como fuentes sin importancia en este carácter.

Tomando en cuenta aportación al CM, la situación se invierte y líneas y probadores se convierten en las fuentes que mas inciden en los mestizos.

Cuadro 4.85. Análisis genético para grados huecos del fruto (%) de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005.

FV		Nichos de	mercado	
Ι' V	Fresco	Entero	Nacho	Chipotle
Mestizos	0.059 **	0.067 **	0.035 **	0.032 **
Líneas	0.095 ns	0.078 ns	0.049 ns	0.038 ns
Probador	0.040 ns	0.155 *	0.054 ns	0.033 ns
LxP	0.050 **	0.052 **	0.029 **	0.030 **
Error	0.007	0.005	0.005	0.006
CV (%)	0.88	0.71	0.76	0.80

Análisis genético

La información agronómica y genética de las líneas evaluadas en Delicias se distingue en el Cuadro 4.86. Es posible ver que la media del grado hueco entre grupos varía de 2.93 (entero) a 3.34 (chipotle). Con respecto al valor de ACG se pudo ubicar a las mejores de cada grupo, las cuales mediante mejoramiento convencional es factible aprovechar su potencial como portadores de genes aditivos para este carácter. Para el grupo de mercado fresco las mejores líneas son 2 (0.298*), 5 (0.198) y 9 (0.165); para el

grupo de calidad enteros las líneas 12 (0.344**), 13 (0.355**) y 15 (0.121); para el grupo de calidad nachos las líneas 21 (0.344**), 22 (0.302**) y 25 (0.177) y por último para el grupo de calidad chipotle las líneas 31 (0.214*), 35 (0.130) y 36 (0.080).

En el Cuadro 4.87 se presenta la información agronómica y genética de líneas evaluadas en Tampico. Se aprecia que el promedio de las líneas entre grupos fluctúa de 9.23 por ciento en la calidad para fresco hasta 7.57 por ciento en la calidad para chipotle. Mediante los efectos de ACG de mismo Cuadro, es factible clasificar a las líneas con genes aditivos negativos tendientes a mejorar el llenado del fruto en cada grupo comercial. Con base en esto se tiene como mejor opción en fresco a las líneas 1 (-1.363*), 2 (-2.113**), 3 (-3.113**); las líneas 17 (-1.135*), 19 (-2.260**) y 20 (-2.635**) en enteros; las líneas 25 (-1.213*), 27 (-2.213*) y 29 (-2.213*) en nachos y por último las líneas 31 (-1.450**), 33 (-1.450**) y 38 (-1.450**) para chipotle.

Cuadro 4.86. Grados huecos del fruto y ACG de 39 líneas de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Línea ¹	Fre	sco	Ent	Entero		Nacho		Chipotle	
Lillea	Media	ACG	Media	ACG	Media	ACG	Media	ACG	
1	2.267	-0.402	3.000	0.005	3.000	0.344	3.533	0.214	
2	3.200	0.298	3.000	0.344	2.467	0.302	3.133	0.014	
3	3.133	-0.035	2.600	0.355	3.133	-0.123	3.000	-0.036	
4	3.333	0.015	2.933	-0.074	3.000	0.133	3.333	0.064	
5	3.067	0.198	3.333	0.121	2.600	0.177	3.667	0.130	
6	3.000	0.076	2.600	-0.170	3.067	0.011	3.733	0.080	
7	2.800	0.073	3.133	-0.101	2.933	-0.056	3.733	-0.103	
8	2.267	-0.202	3.267	0.088	3.533	0.019	2.800	-0.264	
9	3.467	0.165	3.400	0.071	2.533	-0.178	3.200	-0.161	
10	3.067	-0.168	2.133	-0.579	3.400	-0.640	ND	ND	
Media	2.960	0	2.940	0	2.967	0	3.348	0	
DMS _{0.05}	0.926	0.237	0.689	0.224	0.546	0.225	0.595	0.196	

Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle).

Cuadro 4.87. Grados huecos del fruto (%) y ACG de 40 líneas de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Línea ¹	Fres	со	Enter	ro	Nac	ho	Chip	Chipotle	
Linea	Media	ACG	Media	ACG	Media	ACG	Media	ACG	
1	7.88	-1.36	11.75	3.37	6.75	-0.84	6.13	-1.45	
2	7.13	-2.11	10.25	1.87	7.75	0.16	6.75	-0.83	
3	6.13	-3.11	9.86	1.47	8.88	1.29	6.13	-1.45	
4	8.25	-0.99	7.63	-0.76	6.63	-0.96	9.50	1.93	
5	11.13	1.89	7.88	-0.51	6.38	-1.21	8.50	0.93	
6	13.25	4.01	9.57	1.19	9.38	1.79	7.88	0.30	
7	10.00	0.76	7.25	-1.14	6.38	-1.21	7.00	-0.58	
8	10.13	0.89	8.13	-0.26	6.88	-0.71	6.13	-1.45	
9	9.25	0.01	6.13	-2.26	6.38	-1.21	9.25	1.68	
10	9.25	0.01	5.75	-2.64	10.50	2.91	8.50	0.93	
Media	9.24	0	8.42	0	7.59	0	7.58	0	
DMS _{0.05}	4.30	1.10	4.48	0.89	3.31	0.95	3.39	1.01	

¹ Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle).

El comportamiento de los probadores evaluados en Delicias se puede ver en el Cuadro 4.88. Se observa que el probador 4 presenta el valor de grado de hueco del fruto más bajo (con el fruto más hueco) y los probadores 2 y 3 con el más alto (con el fruto más lleno). Con relación a la ACG, es de notar que el comportamiento expresado guarda una tendencia muy constante a través de los grupos. Significativamente, el probador 1 de origen templado se proyecta como la mejor opción para mejorar grado hueco en los cuatro grupos de calidad, coincidentemente también constituidos por líneas del mismo ambiente. Contrario a ello, se observa que el probador 4 de origen tropical presenta una ACG negativa en la mayoría los grupos, con excepción del grupo para doble propósito donde junto a los probadores 2 y 3 resultan ser la mejor alternativa.

Cuadro 4.88. Grados huecos del fruto y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

				4.00					
	_	ACG							
Probador	Media	Fresco	Entero	Nacho	Chipotle	Doble			
		116860	Linero	INACIIO	Chipotic	Propósito			
1	3.067	0.378	0.221	0.269	0.251	-0.169			
2	3.200	0.235	0.210	0.001	0.003	0.064			
3	3.200	0.284	0.135	0.181	0.189	0.031			
4	2.400	-0.868	-0.532	-0.396	-0.394	0.075			
Media	2.960	0	0	0	0	0			
$_{\rm DMS_{0.05}}$	0.621	0.151	0.143	0.144	0.132	0.186			

La información de los probadores evaluados en Tampico se presenta en el Cuadro 4.89. Se puede ver que el probador 4 tiene el grado hueco del fruto más bajo y los probadores 1 y 2 el más alto. Con relación a la ACG es de notar que el comportamiento expresado por los probadores no es muy consistente entre los grupos de calidad. Para los grupos fresco y entero la opción para mejorar mediante genes aditivos es el probador 4, mientras que para los grupos nachos y chipotle el probador 1.

Cuadro 4.89. Grados huecos del fruto (%) y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Probadores	Media —	ACG						
riouadores	Wicuia —	Fresco	Entero	Nacho	Chipotle			
1	8.500	0.212	0.765	-1.338	-1.125			
2	10.000	-0.338	-0.332	-0.138	0.375			
3	6.000	1.063	1.765	0.663	0.625			
4	5.000	-0.938	-2.332	0.813	0.125			
Media	7.375	0	0	0	0			
$DMS_{0.05}$	4.640	0.692	0.563	0.601	0.638			

Cuadro 4.90. Grados huecos del fruto y ACE de mestizos de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Mestizo ¹	Mestizo ¹ Fresco		stizo ¹ Fresco Entero		Nac	Nacho		Chipotle		Doble Propósito	
	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE	
1x1	2.867	0.055	3.400	0.229	3.333	-0.036	3.600	0.149	1.800	-0.014	
1x2	2.667	-0.002	3.067	-0.094	2.933	-0.167	3.333	0.131	1.733	-0.314	
1x3	2.667	-0.050	3.533	0.449	3.267	-0.014	3.200	-0.189	2.333	0.319	
1x4	1.533	-0.032	1.800	-0.618	2.867	0.163	2.667	-0.140	2.067	0.008	
2x1	3.533	0.022	3.267	-0.244	3.200	-0.127	-	-	2.333	-0.139	
2x2	3.600	0.232	-	-	3.133	0.075	2.800	-0.203	2.967	0.261	
2x3	3.533	0.117	3.667	0.243	3.033	-0.206	3.333	0.145	2.533	-0.139	
2x4	1.867	-0.398	2.933	0.176	2.867	0.205	2.867	0.260	2.733	0.017	
3x1	3.000	-0.178	3.400	-0.121	3.000	0.098	3.067	-0.135	2.200	0.153	
3x2	3.400	0.365	3.467	-0.044	2.533	-0.101	2.867	-0.086	2.333	0.053	
3x3	3.000	-0.084	3.267	-0.168	2.933	0.120	3.133	-0.005	2.067	-0.181	
3x4	1.800	-0.132	3.067	0.299	2.067	-0.171	2.733	0.177	2.267	-0.025	
4x1	3.000	-0.228	3.333	0.241	-	-	3.067	-0.235			
4x2	3.133	0.048	3.067	-0.015	3.267	0.377	3.467	0.414			
4x3	3.400	0.267	2.752	-0.254	2.933	-0.136	3.067	-0.172			
4x4	1.867	-0.115	2.333	-0.006	2.467	0.026	2.600	-0.056			
5x1	3.533	0.122	3.267	-0.021	3.133	0.069	3.333	-0.035			
5x2	3.200	-0.068	3.333	0.056	3.200	0.266	2.800	-0.319			
5x3	3.400	0.083	3.200	-0.001	3.067	-0.047	3.467	0.161			
5x4	2.000	-0.165	2.467	-0.068	2.333	-0.204	2.867	0.144			
6x1	3.267	-0.023	2.667	-0.330	3.133	0.098	3.467	0.149			
6x2	3.400	0.254	3.200	0.215	2.867	0.100	3.067	-0.003			
6x3	-	-	2.330	-0.676	3.333	0.386	3.000	-0.255			
6x4	2.067	0.024	3.000	0.757	1.733	-0.637	2.733	0.060			
7x1	3.400	0.113	3.000	-0.066	3.000	0.031	3.533	0.399			

Cuadro 4.90.....continuación.

Mestizo ¹	Fres	Fresco		Entero		ho	Chip	Chipotle		Doble Propósito	
	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE	
7x2	3.033	-0.110	2.933	-0.121	2.600	-0.101	2.867	-0.019			
7x3	3.200	0.008	-	-	2.867	-0.014	3.133	0.061			
7x4	2.000	-0.040	2.600	0.288	2.333	0.030	2.000	-0.490			
8x1	2.867	-0.145	3.267	0.012	3.067	0.023	2.700	-0.273			
8x2	2.467	-0.402	3.333	0.090	2.767	-0.009	2.400	-0.325			
8x3	2.933	0.017	3.533	0.365	2.533	-0.422	-	-			
8x4	2.267	0.502	2.000	-0.501	2.733	0.355	3.067	0.738			
9x1	3.400	0.022	3.200	-0.038	-	-	3.133	0.057			
9x2	3.067	-0.168	3.200	-0.027	2.467	-0.112	3.300	0.472			
9x3	3.200	-0.084	3.133	-0.018	2.800	0.042	3.067	0.053			
9x4	2.333	0.202	2.533	0.049	2.467	0.285	1.800	-0.631			
10x1	3.267	0.222	2.867	0.279	2.333	-0.052					
10x2	2.733	-0.168	2.800	0.223	1.800	-0.317					
10x3	2.733	-0.217	2.400	-0.101	2.600	0.303					
10x4	1.933	0.135	1.400	-0.435	1.733	0.013					
Media	2.835	0.000	2.948	0.000	2.756	0.000	2.986	0.000	2.281	0.000	
$DMS_{0.05}$	0.603	0.475	0.623	0.448	0.654	0.449	0.553	0.392	0.448	0.310	

Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle, 41-43 doble propósito).

Los mestizos generados y evaluados en la localidad de Delicias se presentan en el Cuadro 4.90, se puede ver que el comportamiento de grados huecos del fruto e muy variable entre y dentro de los cinco grupos de calidad y que la media va desde 2.281 en el grupo de mercado para doble propósito hasta 2.988 en el grupo de mercado para enteros.

Las combinaciones o mestizos portadores de genes no aditivos (ACE) con alto potencial para mejorar grado hueco mediante la formación de híbridos en la calidad para fresco son 2x2 (0.232), 3x2 (0.365), 4x3 (0.267), 6x2 (0.254) y 8x4 (0.502*); para enteros 11x3 (0.449*), 13x4 (0.299), 16x4 (0.757**), 17x4 (0.288) y 18x3 (0.365); para nachos 24x2 (0.377), 26x3 (0.386), 28x4 (0.355), 29x4 (0.285) y 30x3 (0.303); para chipotle 32x4 (0.260), 34x2 (0.414*), 37x1 (0.399*), 38x4 (0.738**) y 39x2 (0.472*); por último para doble propósito 41x3 (0.319*), 42x2 (0.261) y 43x1 (0.153).

Los mestizos evaluados en Tampico se muestran en el Cuadro 4.91. En esta localidad la media entre los grupos va de 7.575 por ciento en el grupo para la calidad chipotle hasta 9.238 por ciento en el grupo para la calidad fresco. Tomando en cuanta los efectos ACE las mejores combinaciones para fresco son 4x3 (-3.313**), 5x4 (-4.818**), 6x3 (-4.813**), 7x4 (-4.063**) y 8x1 (-3.338**); para entero las combinaciones 12x2 (-4.918**), 14x3 (-3.390**), 16x3 (-2.837**), 17x3 (-3.015**) y 18x1 (-3.890**); para nachos las combinaciones 24x3 (-2.288*), 25x4 (-2.188*), 26x3 (-3.038**), 29x4 (-2.188*) y 30x1 (-3.163**) y por último 32x2 (-2.125*), 32x4 (-1.875) 35x1 (-2.375*), 39x4 (-3.375**) y 40x3 (-3.125**) para chipotle.

Parámetros genéticos

En la localidad de Delicias, la expresión genética de grados huecos contemplando ambos progenitores muestra variación con respecto a la calidad comercial; pero con tendencia a genes de acción no aditiva (Cuadro 4.92). Los grupos de mercado que difieren son para fresco donde existe mayor varianza aditiva y para nacho que denota una actividad equilibrada de los dos tipos de genes.

Considerando la varianza de líneas, el grado de dominancia cambia radicalmente en los grupos enteros, nachos, chipotle y doble propósito e indica que el carácter es mayormente atribuido por genes de tipo aditivo. En este caso, el origen de las líneas en los grupos no marca diferencias para la expresión del carácter, ya que las líneas del grupo para chipotle que depende de genes no aditivos, comparten el mismo origen que las líneas de la calidad fresco, enteros y nachos que manifestaron preferencia por genes aditivos. La heredabilidad de grados huecos estimada a partir del promedio ponderado de los dos tipos de progenitores responde a la acción de los genes responsables de su expresión en cada grupo de calidad. La menor proporción fue obtenida en las calidades entero, chipotle y doble propósito donde predominan los genes no aditivos y viceversa, el grupo para fresco con mayor cantidad de genes aditivos.

Con base sólo en líneas la heredabilidad del carácter mejora enormemente en relación al promedio ponderado, esto debido a que líneas presenta una varianza aditiva 56.06% más alta. En este caso, el grupo cuyas líneas son de origen tropical (doble

Cuadro 4.91. Grados huecos del fruto (%) y ACE de mestizos de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Mestizo ¹	Fresc	0	Enter	0	Nach	0	Chipot	le
MESHZO	Media	ACE	Media	ACE	Media	ACE	Media	ACE
1x1	8.500	0.413	10.000	-2.515	5.000	-0.413	6.000	1.000
1x2	10.000	2.463	15.000	3.582	5.000	-1.613	5.000	-1.500
1x3	7.000	-1.938	12.000	-1.515	10.000	2.588	8.500	1.750
1x4	6.000	-0.938	10.000	0.582	7.000	-0.563	5.000	-1.250
2x1	5.000	-2.338	10.000	-1.015	7.000	0.588	8.500	2.875
2x2	6.000	-0.788	5.000	-4.918	7.000	-0.613	5.000	-2.125
2x3	12.500	4.313	20.000	7.985	10.000	1.588	8.500	1.125
2x4	5.000	-1.188	6.000	-1.918	7.000	-1.563	5.000	-1.875
3x1	5.000	-1.338	8.500	-2.123	8.500	0.963	5.000	0.000
3x2	6.000	0.213	10.000	0.475	10.000	1.263	8.500	2.000
3x3	8.500	1.313	12.500	0.877	8.500	-1.038	5.000	-1.750
3x4	5.000	-0.188	7.000	-0.525	8.500	-1.188	6.000	-0.250
4x1	8.500	0.038	11.000	2.610	7.000	1.713	7.000	-1.375
4x2	10.000	2.088	8.500	1.207	8.500	2.013	12.500	2.625
4x3	6.000	-3.313	6.000	-3.390	5.000	-2.288	10.000	-0.125
4x4	8.500	1.188	5.000	-0.293	6.000	-1.438	8.500	-1.125
5x1	11.000	-0.337	11.000	2.360	7.000	1.963	5.000	-2.375
5x2	10.000	-0.788	5.000	-2.543	8.500	2.263	7.000	-1.875
5x3	17.500	5.313	8.500	-1.140	5.000	-2.038	8.500	-0.625
5x4	6.000	-4.188	7.000	1.457	5.000	-2.188	13.500	4.875
6x1	16.000	2.538	15.000	4.663	7.000	-1.038	5.000	-1.750
6x2	10.000	-2.913	10.000	0.761	8.500	-0.738	7.000	-1.250
6x3	9.500	-4.813	8.500	-2.837	7.000	-3.038	11.000	2.500
6x4	17.500	5.188	5.000	-2.239	15.000	4.813	8.500	0.500
7x1	15.000	4.788	11.000	2.985	5.000	-0.037	5.000	-0.875
7x2	10.000	0.338	7.000	0.082	5.000	-1.238	10.000	2.625

Cuadro 4.91.....continuación.

Mestizo ¹ -	Fresco		Enter	Entero Nach)	Chipot	Chipotle	
Mestizo	Media	ACE	Media	ACE	Media	ACE	Media	ACE	
7x3	10.000	-1.063	6.000	-3.015	8.500	1.463	6.000	-1.625	
7x4	5.000	-4.063	5.000	0.082	7.000	-0.188	7.000	-0.125	
8x1	7.000	-3.338	5.000	-3.890	5.000	-0.538	6.000	1.000	
8x2	10.000	0.213	10.000	2.207	5.000	-1.738	5.000	-1.500	
8x3	13.500	2.313	12.500	2.610	10.000	2.463	8.500	1.750	
8x4	10.000	0.813	5.000	-0.793	7.500	-0.188	5.000	-1.250	
9x1	8.500	-0.962	5.000	-1.890	5.000	-0.037	10.000	1.875	
9x2	8.500	-0.413	6.000	0.207	7.000	0.763	11.000	1.375	
9x3	10.000	-0.313	8.500	0.610	8.500	1.463	10.000	0.125	
9x4	10.000	1.688	5.000	1.207	5.000	-2.188	6.000	-3.375	
10x1	10.000	0.538	5.000	-1.515	6.000	-3.163	7.000	-0.375	
10x2	8.500	-0.413	5.000	-0.418	10.000	-0.363	8.500	-0.375	
10x3	8.500	-1.813	7.000	-0.515	10.000	-1.163	6.000	-3.125	
10x4	10.000	1.688	6.000	2.582	16.000	4.688	12.500	3.875	
Media	9.238	0	8.388	0	7.588	0	7.575	0	
DMS _{0.05}	3.253	2.189	2.672	1.780	2.758	1.899	2.972	2.017	

¹ Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle).

propósito) presenta el mayor por ciento de la heredabilidad y supera en 20 por ciento al mejor grupo del origen templado (nachos).

El análisis genético del carácter en la localidad de Tampico se presenta en el Cuadro 4.93. La expresión genética de grados huecos contemplando líneas, probadores y el promedio de ambos es muy evidente en todos los casos a favor de genes con actividad no aditiva. Esta información resulta muy diferente a la generada en la localidad de Delicias, ya que la expresión genética de los genes varió dependiendo de la fuente de estimación utilizada. Con respecto a la literatura no se encontraron resultados de referencia en este carácter.

Como nuestro interés son las líneas, los efectos genéticos en Tampico son totalmente opuestos a Delicias, esto debido posiblemente al cambio de escala de medición entre las localidades.

En Tampico la magnitud de la heredabilidad para grados huecos responde al grado de dominancia y a los efectos genéticos de los genes, ya que los valores más elevados se alcanzaron con las líneas y probadores (< 30%) y los más bajos con el promedio (<2%). En forma general, se puede catalogar que grados huecos tiene una heredabilidad que podemos catalogar como intermedia baja según la clasificación de Chávez (1995) en los cuatro grupos de calidad comercial.

Cuadro 4.92. Análisis genético para grados huecos del fruto de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005.

Parámetros	Nichos de calidad comercial									
genéticos	Fresco		En	Entero		Nacho		Chipotle		ble ósito
ACG Líneas	0.033	±0.121	0.042	±0.114	0.062	±0.115	-0.010	±0.100	0.096	±0.079
ACG Probador	0.339	± 0.077	0.122	± 0.072	0.076	± 0.073	0.066	± 0.068	-0.007	±0.091
ACG Promedio	0.014	±0.099	0.007	± 0.093	0.006	± 0.094	0.002	± 0.084	0.008	± 0.085
ACE	-0.007	± 0.242	0.069	± 0.229	0.014	±0.230	0.074	±0.200	0.036	± 0.158
σ^2_A Líneas	0.066	± 0.040	0.085	± 0.064	0.125	± 0.068	-0.020	±0.023	0.192	±0.158
σ^2_A Probador	0.677	± 0.435	0.244	± 0.170	0.153	± 0.105	0.132	±0.100	-0.015	± 0.026
σ^2_A Promedio	0.029	± 0.309	0.013	± 0.128	0.011	± 0.088	0.005	± 0.073	0.017	±0.113
$\sigma^2_{\mathrm{Dominancia}}$	-0.007	±0.017	0.069	± 0.033	0.014	± 0.020	0.074	± 0.033	0.036	± 0.032
\overline{D} Líneas	0		0.904		0.329		0		0.435	
→ Probadores	0		0.533		0.297		0.747		0	
□ Promedio	0		2.291		1.088		4.005		1.479	
h ² Líneas	0.283	±0.170	0.273	±0.206	0.421	±0.230	-0.112	±0.132	0.634	±0.521
h ² Probadores	0.801	±0.514	0.519	± 0.362	0.471	± 0.324	0.406	±0.306	-0.151	±0.270
h ² Promedio	0.145	±0.572	0.055	±0.328	0.062	±0.284	0.023	±0.292	0.130	± 0.566

 $[\]sigma_{Lineas}^2$, $\sigma_{Probador}^2$, $\sigma_{Probador}^2$, $\sigma_{Probadores}^2$, $\sigma_{Probadore$

Cuadro 4.93. Análisis genético para grados huecos del fruto (%) de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005.

Parámetros		Nichos de cal	idad comercial	
genéticos	Fresco	Entero	Nacho	Chipotle
ACG Líneas	0.006 ± 0.029	0.003 ± 0.023	0.003 ±0.025	0.001 ±0.027
ACG Probador	-0.001 ± 0.018	0.005 ± 0.015	0.001 ± 0.016	0.000 ± 0.017
ACG Promedio	0.000 ± 0.024	$4 0.000 \pm 0.019$	0.000 ± 0.021	0.000 ± 0.022
ACE	0.021 ± 0.059	0.024 ± 0.047	0.012 ± 0.051	0.012 ± 0.054
σ_A^2 Líneas	0.011 ± 0.01	$1 0.006 \pm 0.009$	0.005 ± 0.006	0.002 ± 0.005
σ_A^2 Probador	-0.001 ± 0.003	0.010 ± 0.010	0.002 ± 0.003	0.000 ± 0.002
σ^2_A Promedio	0.000 ± 0.008	0.001 ± 0.009	0.000 ± 0.005	0.000 ± 0.004
$\sigma^2_{ m D}$	0.021 ± 0.00	0.024 ± 0.007	0.012 ± 0.004	0.012 ± 0.004
□ Líneas	1.376	1.928	1.536	2.450
¬ Probador	0.000	1.513	2.217	5.477
¬ Promedio	7.280	6.298	5.431	7.746
h ² Líneas	0.284 ± 0.278	0.184 ± 0.259	0.226 ± 0.271	0.101 ± 0.251
h ² Probador	-0.037 ± 0.110	0.268 ± 0.258	0.123 ± 0.154	0.022 ± 0.109
h ² Promedio	0.014 ± 0.240	0.021 ± 0.245	0.023 ± 0.240	0.011 ±0.209

 σ_{Lineas}^2 , $\sigma_{Probador}^2$, $\sigma_{Probador}^2$ varianza aditiva de líneas, probadores y promedio de líneas y probadores, respectivamente. σ_D^2 =varianza de dominancia. \bar{D}_{lineas} , $\bar{D}_{probadores}$, \bar{D}

Peso de fruto

No es considerado un carácter determinante en la clasificación de nichos de calidad, pero adquiere importancia al seleccionar progenitores con alto potencial productivo. Es una de los componentes más importantes del rendimiento que basa su expresión en la longitud, diámetro y la consistencia de fruto, ésta última dada por grosor de pericarpio, número de lóculos y grados huecos principalmente.

Análisis estadístico

Los grupos y los mestizos dentro de grupos de la localidad de Delicias manifiestan diferencias (p≤0.01) significativas entre ellos, con un CV confiable de 14.23 por ciento y una media general entre grupos de 27.10 g (Cuadro 4.94). La descomposición de mestizos en nichos de calidad indica, con excepción de la calidad doble propósito que no tuvo diferencias (p>0.05), que existen diferencias significativas (p≤0.01) entre líneas que integran los grupos de calidad para fresco, entero, nachos y chipotle. Con respecto al CM es posible señalar a los grupos de calidad para nachos y fresco como las principales fuentes de la diferencia detectada en los mestizos.

Cuadro 4.94. Análisis de varianza para peso de fruto (g) en grupos y mestizos dentro de grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005.

FV	GL	SS	CM	Valor de F	Pr > F
Grupos	4	887.711	221.928	14.90	<.0001
Rep (Grupos)	10	4071.470	407.147	27.34	<.0001
Mestizos (Grupos)	156	6991.479	44.817	3.01	<.0001
Fresco	38	2207.027	58.080	2.50	0.0002
Enteros	37	995.964	26.918	1.82	0.0102
Nachos	37	2627.170	71.005	4.35	<.0001
Chipotle	33	930.946	28.211	2.66	0.0002
Doble Propósito	11	249.853	22.714	1.05	0.4336
Error	312	4645.833	14.891		
Total	482	16603.180			
CV=14.23%					
Media=27.102 g					

Considerando la prueba de medias al 5 por ciento de probabilidad, es posible clasificar estadísticamente a los grupos para calidad fresco y nacho como los mejores en peso de fruto y contrario a ellos a Doble propósito (Cuadro 4.95).

Cuadro 4.95. Prueba de medias para peso de fruto (g) en grupos comerciales de chile jalapeño. Delicias, Chihuahua. 2005

Calidad Comercial	Media	Error estándar
Fresco	28.671	0.357
Enteros	26.085	0.361
Nachos	28.163	0.361
Chipotle	26.269	0.382
Doble Propósito	24.221	0.643
$DMS_{0.05}$	1.212	

En la localidad de Tampico los grupos y los mestizos dentro de grupos manifiestan diferencias significativas (p≤0.01) entre ellos, con un CV confiable de 3.53 por ciento y una media general entre grupos de 36.47 g por fruto, este último valor superior al promedio obtenido en Delicias (Cuadro 4.96). La partición de mestizos en calidad comerciales indica diferencias significativas (p≤0.01) entre líneas que integran los cuatro grupos, es decir la varianza de mestizos se debe a la participación significativa de las líneas en cada grupo; sin embargo, específicamente en magnitud al CM destaca por su mayor contribución la calidad para nachos.

La prueba de medias clasificó a los grupos como estadísticamente diferentes (Cuadro 4.97), ubicando a la calidad de mercado para fresco (39.024) y para chipotle (34.289) como grupos con el mayor y menor peso de fruto, respectivamente, estos resultados son parecidos a lo encontrado en la localidad de Delicias.

Cuadro 4.96. Análisis de varianza para peso de fruto (g) en grupos y mestizos dentro de grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005

FV	GL	SS	CM	Valor de F	Pr > F
Grupos	3	1187.442	395.814	238.75	<.0001
Rep (Grupos)	4	44.466	11.117	6.71	<.0001
Mestizos (Grupos)	156	6900.162	44.232	26.68	<.0001
Fresco	39	1383.909	35.485	17.27	<.0001
Enteros	39	1444.365	37.035	33.29	<.0001
Nachos	39	2449.666	62.812	29.43	<.0001
Chipotle	39	1622.222	41.595	31.25	<.0001
Error	156	258.622	1.658		
Total	319	8390.691			
CV = 3.53%					
Media=36.47 g					

Cuadro 4.97. Prueba de medias para peso de fruto (g) en grupos comerciales de chile jalapeño. Tampico, Tamaulipas. 2005

Calidad Comercial	Media	Error estándar
Fresco	39.024	0.144
Nachos	37.608	0.144
Enteros	34.965	0.144
Chipotle	34.289	0.144
$DMS_{0.05}$	0.402	

La significancia de mestizos en cada grupo de calidad en la localidad de Delicias dio pauta a su partición en líneas, probadores e interacción. Los resultados se pueden ver en el Cuadro 4.98 el cual indica, desde el punto de vista estadístico, que líneas fueron importantes en las calidades para enteros, nachos y chipotle; probadores en nachos y chipotle y la interacción para fresco y chipotle. De acuerdo a la magnitud del CM, las líneas fueron mayores en los grupos de calidad para fresco, entero, nacho y doble propósito. En tanto, probadores sólo en la calidad chipotle y por último, la interacción como la fuente menos importante en este carácter.

Cuadro 4.98. Cuadrado medio para peso de fruto (g) de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005.

	Nichos de calidad comercial								
FV	Fresco	Entero	Nacho	Chipotle	Doble				
	110500	Entero	1 (dello	Строне	Propósito				
Mestizos	58.080 **	26.918 **	71.005 **	28.211 **	22.714 ns				
Líneas	86.237 ns	52.377 **	214.002 **	48.002 *	42.993 ns				
Probador	39.812 ns	32.671 ns	106.348 **	62.919 *	30.794 ns				
LxP	48.387 **	16.724 ns	17.673 ns	18.245 *	11.914 ns				
Error	23.194	14.817	16.325	10.595	21.704				
Media	28.601	26.085	28.163	26.269	24.221				
CV (%)	16.220	15.020	14.370	12.290	19.090				

Los resultados de la localidad de Tampico (Cuadro 4.99) indican que líneas son importantes estadísticamente en las cuatro calidades junto con la interacción, en cambio, los probadores expresaron no significancia en todas las calidades evaluadas. En aportación al CM sobresalen las líneas con una magnitud considerablemente superior a probadores y la interacción en todos los nichos de calidad. En forma general, Estos resultados son muy parecidos a lo generado en la localidad de Delicias.

Cuadro 4.99. Cuadrado medio para peso de fruto (g) de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005.

FV	Cuadrado Medio						
1 V	Fresco	Entero	Nacho	Chipotle			
Mestizos	35.485 **	37.035 **	62.812 **	41.595 **			
Líneas	63.953 *	71.066 *	174.637 **	92.564 **			
Probadores	45.520 ns	2.174 ns	32.733 ns	47.396 ns			
LxP	24.881 **	29.565 **	28.879 **	23.962 **			
Error	2.055	1.113	2.134	1.331			
Media	39.024	34.965	37.608	34.289			
CV (%)	3.78	3.08	3.99	3.43			

Análisis genético

Los resultados de las líneas evaluadas en la localidad de Delicias se pueden ver en el Cuadro 4.100, el cual permite ubicar al grupo de calidad fresco con mayor peso y viceversa a la calidad para entero. Tomando en cuenta los efectos sobre ACG, del total de líneas para el mercado en fresco sólo la 4 (2.267), 6 (4.904**) y la 9 (2.603) presentan efectos positivos y mas elevados; en la calidad para enteros sobresalen la 12 (1.205), 13 (3.762**) y 17 (4.471**); en la calidad para nachos las mejores son 24 (1.495), 27 (2.661*), y 30 (9.387**) y por último en la calidad para chipotle sobresalen la 32 (3.720**), 33 (1.122) y 38 (2.233*). Las líneas seleccionadas en cada grupo son potenciales candidatas para mejorar genéticamente el peso de fruto mediante aquellos métodos convencionales que mejor aprovechan los genes de tipo aditivo que poseen las líneas.

Cuadro 4.100. Peso de fruto (g) y ACG de 39 líneas progenitoras de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Línea ¹	Fres	со	Ente	ero	Nac	cho	Chip	Chipotle	
Linea	Media	ACG	Media	ACG	Media	ACG	Media	ACG	
1	31.61	-1.59	19.34	-1.29	28.65	-3.31	26.48	0.23	
2	35.08	-0.26	23.44	1.21	30.97	-2.69	38.75	3.72	
3	41.03	0.17	29.38	3.76	39.32	0.92	30.78	1.22	
4	35.44	2.27	23.99	-1.77	24.57	1.50	26.54	-1.84	
5	32.02	-1.57	24.29	-0.87	25.94	-5.22	23.73	-0.74	
6	50.52	4.90	21.03	-0.89	32.62	-2.08	22.69	-0.25	
7	36.21	1.28	29.98	4.47	22.49	2.66	26.92	-0.27	
8	35.24	-0.96	27.15	-1.85	30.33	-0.92	30.00	2.33	
9	31.79	2.60	22.17	-0.88	36.35	0.18	26.07	-2.89	
10	26.51	-5.61	20.37	-0.48	21.11	9.39	ND	ND	
Media	35.55	0	24.11	0	29.23	0	28.00	0	
$DMS_{0.05}$	11.26	2.73	4.38	2.18	7.17	2.29	8.05	1.84	

¹ Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle).

Con respecto a la localidad de Tampico los resultados de las líneas evaluadas se muestran en el Cuadro 4.101. Se observa que el grupo de calidad con mayor y menor peso promedio de fruto corresponde al fresco (39.025 g) y chipotle (34.289 g) en forma respectiva. Considerando los efectos de ACG destacan en fresco las líneas 4 (3.369**), 5 (3.144**) y 7 (1.869**); en la calidad enteros las líneas 18 (2.710**), 19 (2.998**) y 20 (4.298**); en la calidad para nachos las líneas 24 (3.604**), 27 (5.442**) y 30 (8.123**) y finalmente en la calidad para chipotle las líneas 33 (5.811**), 34 (2.105**) y 39 (5.393**).

Analizando ambas localidades se nota que las líneas expresaron mejor comportamiento del carácter en Tampico, ya que sus valores promedio en todas las calidades mejoraron en forma importante, principalmente en las calidades de enteros, nachos y chipotle.

Cuadro 4.101. Peso de fruto (g) y ACG de 40 líneas progenitoras de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Línea ¹	Fres	sco	Ente	Entero		Nacho		otle
Lilica	Media	ACG	Media	ACG	Media	ACG	Media	ACG
1	36.91	-2.12	30.53	-4.43	34.28	-3.33	32.05	-2.24
2	39.62	0.59	35.47	0.50	35.96	-1.65	32.61	-1.68
3	38.15	-0.87	34.99	0.02	37.15	-0.46	40.10	5.81
4	42.39	3.37	35.04	0.07	41.21	3.60	36.39	2.11
5	42.17	3.14	34.09	-0.87	32.03	-5.58	34.51	0.22
6	39.58	0.56	30.03	-4.93	31.29	-6.32	30.58	-3.71
7	40.89	1.87	34.60	-0.37	43.05	5.44	33.79	-0.50
8	39.06	0.04	37.68	2.71	36.52	-1.09	31.99	-2.30
9	38.87	-0.16	37.96	3.00	38.87	1.26	39.68	5.39
10	32.60	-6.42	39.26	4.30	45.73	8.12	31.18	-3.11
Media	39.03	0	34.97	0	37.61	0	34.29	0
$DMS_{0.05}$	5.12	0.99	5.58	0.73	5.51	1.01	5.02	0.80

¹ Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle).

El comportamiento de los probadores en la localidad de Delicias se aprecia en el Cuadro 4.102, se observan diferencias estadísticas entre los probadores con una media de 24.97 g. Asimismo, a los probadores 3 y 4 como los de mayor y menor peso en forma respectiva.

Cuadro 4.102. Peso de fruto (g) y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Delicias, Chihuahua. 2005

Probador	Media	Fresco	Entero	Nacho	Chipotle	Doble
		TTESCO	Lincio	Nacio	Chipotie	Propósito
1	25.427	0.805	0.609	1.553	1.594	-1.509
2	25.220	0.926	1.444	1.844	0.158	-0.318
3	28.287	-2.163	-1.215	-0.863	0.201	-0.850
4	20.943	0.215	-0.815	-2.223	-1.753	2.677
Media	24.969	0	0	0	0	0
$DMS_{0.05}$	7.095	1.741	1.392	1.461	1.244	3.171

Mediante los efectos de ACG fue posible marcar a los probadores 1 y 2 como los más consistentes entre los grupos comerciales fresco, entero, nacho y chipotle, por lo tanto, candidatos para mejorar genéticamente este carácter. Con respecto al grupo para doble propósito el probador 4 fue el único que mostró ACG positiva, coincidentemente comparten el origen tropical.

En el Cuadro 4.103 se puede ver el comportamiento de los probadores en la localidad de Tampico, donde las diferencias expresada en entre ellos colocan a los probadores cuatro y uno con el mayor y menor peso de fruto respectivamente, así también un promedio general 26.78 g, valor ligeramente superior al generado en la

localidad de Delicias. Tomado en cuenta los valores de ACG se pudo clasificar en esta localidad al probador 1 como el mejor prospecto para mejorar peso de fruto.

Cabe destacar que el comportamiento de los probadores en ambas localidades responde a un efecto genotipo-ambiente, ya que en Delicias el peso de fruto mas bajo correspondió al probador cuatro de origen tropical, mientras que en Tampico el peso de fruto más bajo se dio entre los probadores de origen templado.

Cuadro 4.103. Peso de fruto (g) y ACG de cuatro probadores de chile jalapeño para diferentes calidades comerciales. Tampico, Tamaulipas. 2005

Probadores	Media —		AC	G	
Probadores	Media —	Fresco	Entero	Nacho	Chipotle
1	24.375	1.836	0.418	1.387	1.516
2	25.925	-1.007	-0.298	-0.228	1.044
3	25.225	0.611	-0.227	0.484	-1.751
4	31.625	-1.439	0.108	-1.643	-0.809
Media	26.788	0	0	0	0
$\mathrm{DMS}_{0.05}$	2.090	0.628	0.462	0.640	0.506

Los resultados correspondientes a los mestizos en la localidad de Delicias se presentan en el Cuadro 4.104. El peso promedio de los fruto entre los grupos es muy similar al que se obtuvo en los grupos con las líneas, ya que tanto la calidad para fresco como para nachos alcanzaron el mayor peso de fruto.

Los estimados de ACE para separar las mejores combinaciones también se presentan en el Cuadro 4.103. Con base en estos resultados, del total de mestizos de cada grupo, fue posible discriminar aquellos con la menor capacidad combinatoria para

Cuadro 4.104. Peso de fruto (g) y ACE de mestizos de chile jalapeño en diferentes calidades comerciales. Delicias, Chihuahua. 2005.

Mestizo ¹	Fres		Ente		Nac		Chip		Dol Propo	ósito
	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE
1x1	27.647	-0.237	23.413	-1.990	24.263	-2.142	26.063	-2.029	22.817	-1.499
1x2	29.527	1.522	21.570	-4.668	27.118	0.421	27.310	0.654	25.847	0.339
1x3	20.887	-4.029	27.333	3.754	23.296	-0.694	24.460	-2.239	24.310	-0.665
1x4	30.253	2.960	26.860	2.881	24.733	2.104	28.160	3.414	30.327	1.825
2x1	28.013	-1.204	29.163	1.264	29.460	2.435	-	-	21.473	0.849
2x2	32.207	2.868	-	-	27.804	0.487	30.741	0.594	21.227	-0.589
2x3	26.457	0.207	29.160	3.085	23.827	-0.783	30.429	0.239	23.657	2.373
2x4	26.973	-1.654	23.547	-2.928	20.800	-2.449	28.797	0.561	22.177	-2.633
3x1	24.600	-5.044	28.983	-1.473	31.838	1.205	30.740	1.659	23.847	0.651
3x2	30.377	0.611	33.617	2.326	30.233	-0.690	37.514	-0.132	24.637	0.249
3x3	27.973	1.297	29.107	0.474	27.894	-3.323	29.726	2.038	22.147	-1.708
3x4	32.407	3.353	27.683	-1.349	26.353	-0.503	21.970	-3.765	28.190	0.808
4x1	32.397	0.654	25.027	0.102	-	-	25.939	-0.082		
4x2	27.007	-4.857	26.120	0.361	28.194	-3.307	23.220	-1.366		
4x3	32.207	3.432	22.407	-0.694	28.868	0.074	26.109	1.480		
4x4	32.140	0.988	23.710	0.209	31.910	4.476	22.443	-0.232		
5x1	27.000	-0.906	27.350	1.528	24.390	-0.102	25.743	-1.377		
5x2	26.717	-1.310	26.433	-0.223	22.966	-1.818	26.316	0.632		
5x3	23.757	-1.182	22.993	-1.004	23.759	1.683	24.779	-0.948		
5x4	30.930	3.614	24.073	-0.324	20.643	0.073	25.267	1.494		
6x1	34.823	0.444	24.233	-1.576	28.824	1.185	25.558	-2.057		
6x2	26.927	-7.574	28.213	1.570	25.529	-2.401	27.183	1.004		
6x3	-	-	22.833	-1.152	25.703	0.481	26.270	0.049		
6x4	38.973	5.184	25.520	1.135	24.287	0.425	25.073	0.805		
7x1	33.363	2.607	30.200	-0.966	34.417	2.041	28.219	0.631		
7x2	29.927	-0.951	35.653	3.623	31.111	-1.556	28.322	2.169		

Cuadro 4.104.....continuación.

Mestizo ¹	Fres	sco	Ente	ro	Nac	cho	Chip	otle	Dob Propó	
	Media	ACE	Media	ACE	Media	ACE	Media	ACE	Media	ACE
7x3	25.597	-2.192	-	-	32.139	2.179	25.479	-0.717		
7x4	30.920	0.753	25.817	-3.925	25.627	-2.973	21.960	-2.282		
8x1	29.327	0.813	26.087	1.240	26.585	-2.213	33.077	2.882		
8x2	32.247	3.712	23.830	-1.851	31.974	2.886	23.396	-5.363		
8x3	29.340	3.794	21.933	-1.089	25.654	-0.727	-	-		
8x4	19.820	-8.103	25.100	1.677	24.763	-0.257	29.330	2.482		
9x1	31.430	-0.648	26.093	0.276	-	-	27.555	2.578		
9x2	37.030	4.830	24.993	-1.659	29.711	-0.475	23.836	0.295		
9x3	27.033	-2.077	24.727	0.733	27.610	0.132	24.580	0.918		
9x4	29.600	-1.888	25.020	0.627	27.703	1.585	17.640	-3.990		
10x1	26.157	2.296	26.393	0.175	37.950	-1.153				
10x2	23.906	-0.077	27.330	0.277	45.428	6.035				
10x3	25.323	4.429	23.340	-1.054	34.246	-2.440				
10x4	16.840	-6.432	25.373	0.579	32.573	-2.753				
Media	28.668	0	26.085	0	28.163	0	26.565	0	24.221	0
$DMS_{0.05}$	6.762	5.450	6.740	4.356	6.161	4.572	4.641	3.683	8.309	5.272

¹ Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle, 41-43 doble propósito).

mejorar el peso de fruto a través de métodos como la hibridación, que basan su efectividad en los genes no aditivos de la progenie. En la calidad para fresco las mejores combinaciones fueron 6x4 (5.184), 8x2 (3.712), 8x3 (3.794), 9x2 (4.830) y 10x3 (4.429); en la calidad para enteros fueron 11x3 (3.754), 11x4 (2.881), 12x3 (3.085), 13x2 (2.326) y 17x2 (3.623); en la calidad para nachos fueron 22x1 (2.435), 24x4 (4.476), 27x3 (2.179), 28x2 (2.886) y 30x2 (6.035**); en la calidad para chipotle fueron 31x4 (3.414), 37x2 (2.170), 38x1 (2.882), 38x4 (2.482) y 39x1 (2.578) y finalmente para doble propósito fueron 41x4 (1.825), 42x1 (0.849) y 42x3 (2.373).

El comportamiento de los mestizos en la localidad de Tampico se observa en el Cuadro 4.105. Con base al promedio entre las calidades comerciales es factible agrupar a fresco y nachos con el mayor peso de fruto y con menor a enteros y chipotle, estos resultados son similares a los obtenidos en Delicias. En forma general, se observa a la localidad de Tampico como el ambiente mas favorable para los mestizos, ya que al igual que en líneas y probadores el carácter mejoró substancialmente en relación a Delicias.

Con respecto a la ACE de los mestizos se pudo clasificar a las combinaciones 1x4 (5.083**), 4x1 (4.271**), 6x1 (3.958**), 7x3 (3.671**) y 8x3 (4.227**) del nicho para fresco; las combinaciones 11x4 (3.086**), 13x2 (5.535**), 13x3 (6.040**), 14x4 (2.755**) y 17x2 (3.223**) para enteros; las combinaciones 21x4 (4.343**), 24x3 (4.003**), 25x2 (5.072**), 26x4 (5.206**) y 29x3 (4.322**) en nachos y a las combinaciones 31x4 (5.934**), 36x4 (4.478**), 37x2 (3.863**), 38x1 (3.646**) y 40x1 (4.359**) para chipotle como potenciales portadoras de genes no aditivos para mejorar peso de fruto en ambiente tropical.

Cuadro 4.105. Peso de fruto (g) y ACE de mestizos de chile jalapeño en diferentes calidades comerciales. Tampico, Tamaulipas. 2005.

Mestizo ¹	Fresc	Fresco		ro	Nach	Nacho		Chipotle	
Mestizo	Media	ACE	Media	ACE	Media	ACE	Media	ACE	
1x1	34.525	-4.217	28.200	-2.749	29.250	-6.412	32.700	-0.866	
1x2	33.775	-2.124	27.550	-2.684	34.325	0.278	29.350	-3.744	
1x3	38.775	1.258	32.650	2.346	36.550	1.791	28.975	-1.324	
1x4	40.550	5.083	33.725	3.086	36.975	4.343	37.175	5.934	
2x1	40.625	-0.829	37.800	1.914	35.325	-2.018	33.900	-0.229	
2x2	39.650	1.038	32.600	-2.571	37.725	1.997	37.025	3.369	
2x3	37.525	-2.704	36.125	0.884	32.175	-4.266	30.700	-0.161	
2x4	40.675	2.496	35.350	-0.226	38.600	4.287	28.825	-2.979	
3x1	43.225	3.239	35.350	-0.055	42.400	3.863	44.025	2.409	
3x2	33.325	-3.818	40.225	5.535	35.400	-1.522	43.400	2.256	
3x3	36.925	-1.836	40.800	6.040	34.225	-3.409	33.800	-4.549	
3x4	39.125	2.414	23.575	-11.520	36.575	1.068	39.175	-0.116	
4x1	48.500	4.271	35.975	0.520	44.775	2.176	33.450	-4.460	
4x2	44.175	2.788	34.275	-0.465	39.225	-1.759	39.125	1.688	
4x3	39.125	-3.879	32.000	-2.810	45.700	4.003	37.800	3.158	
4x4	37.775	-3.179	37.900	2.755	35.150	-4.419	35.200	-0.385	
5x1	44.450	0.446	32.550	-1.961	34.475	1.057	36.825	0.796	
5x2	41.675	0.513	33.775	-0.021	36.875	5.072	34.800	-0.756	
5x3	42.275	-0.504	34.200	0.334	32.175	-0.341	35.950	3.189	
5x4	40.275	-0.454	35.850	1.649	24.600	-5.788	30.475	-3.229	
6x1	45.375	3.958	32.425	1.976	36.075	3.401	29.125	-2.973	
6x2	39.475	0.901	23.925	-5.809	26.025	-5.034	28.175	-3.450	
6x3	42.500	2.308	31.225	1.421	28.200	-3.572	30.775	1.945	
6x4	30.975	-7.167	32.550	2.411	34.850	5.206	34.250	4.478	
7x1	42.775	0.046	35.550	0.532	45.050	0.613	31.275	-4.035	
7x2	37.075	-2.812	37.525	3.223	40.875	-1.947	38.700	3.863	
7x3	45.175	3.671	34.950	0.578	45.950	2.416	35.450	3.408	

Cuadro 4.105.....continuación.

Mestizo ¹ -	Fresc	20	Enter	ю	Nacho)	Chipot	le
Mestizo	Media	ACE	Media	ACE	Media	ACE	Media	ACE
7x4	38.550	-0.904	30.375	-4.333	40.325	-1.082	29.750	-3.235
8x1	35.400	-5.498	37.775	-0.318	39.750	1.844	37.150	3.646
8x2	36.525	-1.531	37.725	0.348	36.950	0.659	32.875	-0.156
8x3	43.900	4.227	34.775	-2.673	34.825	-2.178	26.400	-3.836
8x4	40.425	2.802	40.425	2.642	34.550	-0.326	31.525	0.346
9x1	39.725	-0.979	37.550	-0.830	39.350	-0.906	42.550	1.352
9x2	41.150	3.288	37.425	-0.240	38.825	0.184	41.075	0.350
9x3	36.250	-3.229	37.150	-0.585	43.675	4.322	37.875	-0.055
9x4	38.350	0.921	39.725	1.655	33.625	-3.601	37.225	-1.648
10x1	34.000	-0.436	40.650	0.970	43.500	-3.618	37.050	4.359
10x2	33.350	1.757	41.650	2.685	47.575	2.072	28.800	-3.419
10x3	33.900	0.689	33.500	-5.535	47.450	1.234	27.650	-1.774
10x4	29.150	-2.011	41.250	1.880	44.400	0.312	31.200	0.834
Media	39.024	0.000	34.965	0.000	37.608	0.000	34.289	0.000
DMS _{0.05}	2.834	1.986	2.178	1.462	2.938	2.025	2.392	1.599

¹ Las líneas cambian entre grupos comerciales (1-10 fresco, 11-20 entero, 21-30 nacho y 31-40 chipotle).

Parámetros genéticos

La información del análisis genético que se presenta en el Cuadro 4.106 permite deducir diferencias genéticas entre los grupos de calidad para el peso de fruto estimadas a partir del promedio en ambos progenitores, ya que mientras en los grupos para fresco, enteros y chipotle existe mayormente acción de genes no aditivos, similares a con Dorantes (2003) y Luiz (2002), en los grupos para nachos y doble propósito están involucrados preferentemente los genes aditivos, los cuales concuerdan con Patel *et al.* (1998), Ahmed *et al.* (1998) y Ben y Paran (2000).

Como el mayor interés esta en los efectos exclusivos de líneas, al estimar los componentes bajo este contexto, se observa un cambio importante en la acción de los genes entre los grupos comerciales. El grupo para calidad enteros y chipotle cambia de los efectos no aditivos a los efectos mayoritariamente aditivos. En tanto los grupos para fresco ahora muestran efectos equilibrados, mientras que nachos y doble propósito conservaron sus efectos aditivos. Con base en estos resultados podemos inferir, indistintamente del grupo comercial y el origen de las mismas, que el peso de fruto es debido preferentemente a efectos aditivos de los genes y por tanto, semejantes a lo reportado por Patel *et al.* (1998), Ahmed *et al.* (1998) y Ben y Paran (2000).

La heredabilidad del peso de fruto no fue la excepción en cuanto a su valor tan bajo como lo han mostrado los demás componentes del fruto estimados con el promedio en ambos tipos de progenitores. Los valores extremos de este parámetro corresponden a los grupos con mayor magnitud de genes no aditivos (0.0083) y aditivos (0.0926).

Cuadro 4.106. Análisis genético para peso del fruto (g) de chile jalapeño en diferentes tipos de calidad comercial. Delicias, Chihuahua. 2005.

Parámetros	Nichos de calidad comercial						
genéticos	Fresco	Entero	Nacho	Chipotle	Doble Propósito		
ACG Líneas	3.154 ±1.3	90 2.971 ±1.111	16.361 ±1.166	2.480 ±0.940	2.590 ±1.345		
ACG Probadores	-0.286 ± 0.5	79 0.532 ± 0.703	2.956 ± 0.738	1.655 ± 0.626	2.098 ± 1.553		
ACG Promedio	0.133 ± 0.9	0.155 ± 0.907	0.856 ± 0.952	0.191 ± 0.783	0.466 ± 1.449		
ACE	8.398 ± 2.7	0.636 ± 2.222	0.452 ± 2.333	2.550 ± 1.879	-3.263 ± 2.690		
σ^2_A Líneas	6.308 ± 6.4	84 5.942 ±3.794	32.722 ± 15.228	4.960 ± 3.504	5.180 ± 5.163		
σ^2_A Probadores	-0.572 ± 1.8	1.063 ± 1.408	5.911 ± 4.495	3.309 ± 2.672	4.196 ± 4.526		
σ^2_A Promedio	0.265 ± 4.7	0.310 ± 2.861	1.711 ± 11.227	0.382 ± 3.116	0.932 ± 4.855		
$\sigma^2_{ m Dominancia}$	8.398 ± 4.4	0.636 ± 1.728	0.452 ± 1.848	2.550 ± 1.823	-3.263 ± 3.238		
→ Líneas	1.154	0.327	0.118	0.717	0		
→ Probadores	0	0.773	0.277	0.878	0		
□ Promedio	5.629	1.431	0.514	2.583	0		
h ² Líneas	0.166 ± 0.1	71 0.278 ± 0.177	0.927 ± 0.431	0.274 ± 0.194	0.219 ± 0.219		
h ² Probadores	-0.018 ± 0.0	0.064 ± 0.085	0.696 ± 0.529	0.201 ± 0.162	0.185 ± 0.200		
h ² Promedio	0.008 ± 0.1	0.020 ± 0.151	0.398 ± 0.513	0.028 ± 0.181	0.048 ± 0.103		

 σ_{Lineas}^2 $\sigma_{Promedio}^2$ = varianza aditiva de líneas, probadores y promedio de líneas y probadores, respectivamente. σ_D^2 = varianza de dominancia. \overline{D} líneas, \overline{D} promedio = grado promedio de dominancia con base en varianzas aditivas de líneas, probadores y el promedio de ellos, respectivamente. h^2 Líneas, h^2 promedio = heredabilidad con base en varianzas aditivas de líneas, probadores y el promedio de ellos, respectivamente.

Tomando sólo la fuente líneas, la heredabilidad mejora notablemente, sobresaliendo el grupo para nachos con un valor superior al 0.66 y contrario a este resultado, el grupo para fresco con un valor de 0.1664, mismo que es producto de la actividad tanto de genes aditivos como no aditivos.

La información del análisis genético en la localidad de Tampico se presenta en el Cuadro 4.107. Es posible detectar que el comportamiento de probadores y el promedio de ambos tipos de progenitores se inclina a favor de genes con acción no aditiva en todos los nichos de calidad evaluados. En lo que se refiere a líneas la situación nuevamente cambia y aunque no guarda una relación con el peso promedio de frutos o grupos de calidad como hubiésemos querido, podemos señalar que esta característica importante del rendimiento está mas asociada a una actividad equilibrada de los genes dada la cercanía de los valores (\bar{p}) a la unidad en tres (fresco, enteros y chipotle) de los cuatro grupos. Al revisar la literatura la expresión génica del carácter no coincide con Dorantes (2003) y Luiz (2002) que reportan a los genes no aditivos ni con Patel *et al.* (1998), Ahmed *et al.* (1998) y Ben y Paran (2000) que señalan a genes aditivos como responsables.

La heredabilidad del peso de fruto para líneas en la localidad de Tampico indica que es una característica no muy complicada en su herencia, ya que los valores mas bajos alcanzados por los grupos fresco y enteros son superiores al 40 por ciento y corresponde a la acción equilibrada de los genes; en tanto, el valor mas alto corresponde al grupos para nachos (>70%) con acción de genes preponderantemente aditivos. Este último resultado concuerda con Patel *et al.* (1998), Ahmed *et al.* (1998) y Ben y Paran

(2000) que mencionan que la alta heredabilidad es indicativa de genes mayormente aditivos y de poco efecto ambiental.

Cuadro 4.107. Análisis genético para peso del fruto (g) de chile jalapeño en diferentes tipos de calidad comercial. Tampico, Tamaulipas. 2005.

Parámetros	Nichos de calidad comercial							
genéticos	Fresco	Entero	Nacho	Chipotle				
ACG Líneas	4.844 ±0.507	5.188 ±0.373	18.220 ±0.516	8.575 ±0.408				
ACG Probador	1.032 ± 0.320	-1.370 ±0.236	0.193 ± 0.327	1.172 ± 0.258				
ACG Promedio	0.261 ± 0.414	0.184 ± 0.304	0.836 ± 0.422	0.434 ± 0.222				
ACE	11.413 ± 1.014	14.226 ± 0.746	13.372 ± 1.033	11.315 ± 0.816				
σ^2_A Líneas	9.688 ± 7.010	10.375 ± 7.820	36.440 ±18.713	17.151 ±9.992				
σ^2_A Probador	2.064 ± 2.952	-2.739 ±0.788	0.385 ± 2.205	2.343 ± 3.063				
σ^2_A Promedio	0.522 ± 5.379	0.368 ± 5.558	1.671 ±13.323	0.868 ± 7.390				
$\sigma^2_{ m Dominancia}$	11.413 ±3.278	14.226 ±3.885	13.372 ± 3.802	11.315 ±3.151				
\overline{D} Líneas	1.085	1.171	0.606	0.812				
¬ Probador	2.352	0	5.890	2.197				
D Promedio	4.675	6.219	2.829	3.610				
h ² Líneas	0.418 ± 0.303	0.403 ± 0.304	0.701 ± 0.360	0.576 ± 0.335				
h ² Probador	0.133 ± 0.190	-0.217 ± 0.063	0.024 ± 0.139	0.156 ± 0.204				
h ² Promedio	0.037 ± 0.278	0.023 ± 0.290	0.097 ± 0.393	0.064 ± 0.330				

 σ_{Lineas}^2 , $\sigma_{Probador}^2$, $\sigma_{Probador}^2$, respectivamente. σ_D^2 =varianza de dominancia. \bar{D}_{Lineas} , $\bar{D}_{probadores}$, $\bar{D}_{probador$

V. CONCLUSIONES

La selección fenotípica de líneas permitió clasificar y caracterizar genéticamente cinco grupos de calidad comercial de chile jalapeño.

El control genético diferencial entre grupos de calidad comercial fue debido a las características intrínsecas de las líneas que conformaron los grupos.

El comportamiento fenotípico y genético de los grupos de calidad comercial de chile jalapeño se vio afectado por los ambientes contrastantes de prueba (Templado y Trópico).

Los parámetros de Aptitud combinatoria permitieron, en cada nicho de mercado comercial, seleccionar aquellas líneas de chile jalapeño con alto potencial genético para mejorar rendimiento y sus componentes principales en los dos ambientes.

El rendimiento y algunos componentes como el número de lóculos, grados huecos y grosor de pericarpio, que no fueron considerados como criterios para diferenciar los grupos de calidad comercial en chile jalapeño, también expresaron un comportamiento genético diferente entre los grupos de mercado, tal vez debido a las características específicas de cada grupo de calidad.

El diámetro del fruto mostró diferencias genéticas entre el grupo de calidad que demanda frutos de tamaño y diámetro grande (fresco) y el grupo de calidad que demanda frutos de tamaño grande y diámetro mediano (nacho). Sin embargo, esta última característica de la calidad de mercado fue similar en los grupos que exigen frutos medianos-chicos (entero y chipotle).

En forma general, la expresión genética del peso de fruto clasificó al nicho de mercado para fresco como diferente de los demás, ya que fue el único donde el carácter debe su manifestación a la actividad equilibrada de los dos tipos de genes y no a los genes aditivos como en los grupos para entero, nacho, chipotle y doble propósito.

La longitud del fruto fue afectada por los grupos de mercado, el ambiente y el fondo genético de las líneas. En Delicias los grupos de origen templado (fresco, entero, nacho y chipotle) involucran mayormente a los genes aditivos y el grupo de origen tropical a los genes no aditivos. En Tampico, mostró una respuesta genética diferencial entre los grupos que demandan frutos grandes como fresco y nacho (genes de tipo aditivos) y los grupos que demandan frutos medianos-chicos como entero y chipotle (genes no aditivos y en equilibrio).

La corchosidad del fruto presentó diferencias génicas entre los grupos comerciales, con una tendencia a genes aditivos cuando el porcentaje de acorchamiento es alto (nachos), a genes no aditivos cuando los valores de corchosidad son bajos (enteros y doble propósito) e inconsistencia cuando existen valores intermedios (fresco y chipotle).

La clasificación de progenitores con potencial genético especializado fortalecerá los programas de mejoramiento de chile jalapeño del INIFAP y sentará las bases para la generación a corto y mediano plazo de genotipos competitivos específicos a satisfacer el mercado de los jalapeños más exigentes

RESUMEN

México tiene la mayor variabilidad genética de Capsicum annuum var. annuum la cual ha dado origen a gran número de tipos de chiles. Dentro de la diversidad de Capsicum, el tipo jalapeño ha ganado la atención de todos los sectores involucrados en su cadena productiva y se ha mantenido como la principal especie de chile en México. La competencia entre los diversos nichos de mercado del chile jalapeño, demanda que los programas de mejoramiento cuenten con una base amplia de progenitores caracterizados fenotípica y genéticamente. La presente investigación se llevó a cabo durante los años 2004 y 2005 en las localidades de Delicias y Tampico. Se identificaron, caracterizaron y clasificaron 43 líneas con alto potencial para cinco tipos de mercado, así mismo, cuatro probadores. Los 162 mestizos fueron evaluados en las localidades de Delicias y Tampico, bajo el diseño estadístico bloques al azar con tres repeticiones. Para estimar los efectos genéticos de las diferentes variables de calidad en cada grupo de mercado, se recurrió al diseño de Línea x Probador. En todos los caracteres del fruto y el rendimiento, la magnitud de las varianzas genéticas varió entre los grupos comerciales y entre localidades, con valores intermedios a altos de la heredabilidad. El rendimiento de las líneas en los grupos comerciales presentó una expresión repartida entre los dos tipos de genes; La longitud de fruto, en Tampico, indica que en los grupos de mercado con frutos grandes es debida genéticamente a genes aditivos y en los grupos con fruto mediano-chico es debida a genes no aditivo. En Delicias el fondo genético de las líneas

que integraron los grupos de calidad, afectó la expresión del carácter, ya que en el grupo con líneas de origen tropical (doble propósito), la longitud del fruto es debida a genes no aditivos, mientras tanto, en los grupos con líneas de origen templada (fresco, entero, nacho y chipotle) la expresión es responsabilidad de genes aditivos. Los resultados con el diámetro del fruto señalan, entre otras cosas, diferencias genéticas entre el grupo de calidad que demanda frutos de tamaño y diámetro grande (fresco) y el grupo de calidad que demanda frutos de tamaño grande y diámetro mediano (nacho). En la corchosidad del fruto, los resultados relacionan a los genes aditivos como el control genético en el grupo para nacho, que coincide con el mayor grado de acorchamiento y a los genes no aditivos con los grupos de acorchamiento bajo. El número de lóculos exhibe un comportamiento muy diferenciado entre los grupos de mercado, teniendo tanto a los genes aditivos, genes no aditivos como la actividad equilibrada de los dos tipos de genes como responsables de su expresión. En lo que se refiere al grado hueco del fruto, los resultados muestran efectos contradictorios entre ambientes, ya que en Tampico (trópico) el carácter en todos los grupos de mercado debe su expresión básicamente a los genes no aditivos, mientras que en Delicias (Templado) la mayoría de los grupos presenta dependencia a los genes aditivos. Finalmente, en el peso de fruto, el grado de dominancia indica, en forma general, a los genes aditivos como los responsables de este carácter en ambas localidades. Particularmente, se puede observar que el grupo para fresco es el único que genéticamente cambia su acción génica (no aditivos).

VI. LITERATURA CITADA

- Ahmed N., M. Y. Bhat, M. I. Tanki and G. H. Zargar. 1994. Inheritance of yield and yield attributing characters in pepper (*Capsicum annuum* L). Capsicum and Eggplant New Letter, 13: 58-60.
- Ahmed N., M. Hurra, S. A. Wani and S. H. Khan. 2003. Gene action and combining ability for fruit yield and its component characters in sweet pepper. Capsicum and Eggplant Newsletter 22: 55-58. Turin Italy.
- Ahmed N., F. A. Shah, G. H. Zargar and S. A. Wani. 1998. Line x Tester analysis for the study of combining ability in hot pepper (*Capsicum annuum* L.). Capsicum & Eggplant Newsletter 17: 38-41. Turin, Italy.
- Allison J., C. S., and R. W. Curnow. 1966. On the choice of tester parent for the breeding of synthetic varieties of maize (*Zea mays* L.). Crop Sci. 6:641–644.
- Bartolome V. and G. Gregorio. 2000. An interactive macro program for Line x Tester analysis. International Rice Research Institute. Los Baños, Philippines.
- Ben Ch., A. and Paran L. 2000. Genetic analysis of quantitative traits in pepper (*Capsicum annuum* L.). J.Amer.Soc.Hort. Sci.125:66-70.
- Bosland, W. P. 1993. Breeding for quality in *Capsicum*. Capsicum and Eggplant Newsletter, 12:26-31.
- Brewbaker, L. J. 1994. Quantitative Genetics on a Spreadsheet. 2^{da} edition. Library of Congress Cataloging in Publication. Hawaii.
- Comstock R., E. and H. F. Robinson. 1948. The components of genetic variance in population of biparental progenies and their use in estimating the average degree of dominance. Biometrics 4: 254-266.
- Comstock R., E and H. F. Robinson. 1952. Estimation of average dominance of genes. In: Gowen (ed.) Heterosis. Ames, Iowa (USA): Iowa State College Press. p. 494-516.

- Castillo M., A. y Nevado B. M. 1980. El método de análisis de varianza y probabilidad de obtener estimaciones negativas de componentes de varianza. Agrociencia 40:145-180.
- Chain, M. 1987. A study of hybrid vigour in chillie (*Capsicum annuum* L.). Capsicum Newsletter, 6: 47-48. Turin Italy.
- Chávez, A. J. L. 1995. Mejoramiento de Plantas I. 2ª edición. Ed. Trillas, México, D. F.136 p.
- Davenport, C. B. 1908. Degeneration, albinism and inbreeding. Science 28:454-455.
- Dorantes G. J. R. A. 2003. Efectos genéticos de la vida de anaquel en chile serrano (*Capsicum annuum* L.). Tesis de Maestría. Universidad Autónoma Agraria Antonio Narro. Saltillo, México. 75 p.
- East, E. M. 1908. Inbreeding in corn. Rep. Connecticut Agric. Exp. Stn. for 1907. p 419-428.
- East, E. M. 1936. Heterosis. Genetics 21:375-397.
- Esquinas, A. J. T. 1982. Los recursos fitogenéticos, una inversión segura para el futuro. Instituto Nacional de Investigaciones Agrarias. Madrid España. 44 p.
- Falconer, D. S. 1972. Introducción a la Genética Cuantitativa. C.E.C.S.A, México D.F., México. 430 p.
- Fisher, I. 1992. The role of exocarp tickness in the production, consumtion and selection of paprika for consumtion. VIII th Meeting on Genetics and Breeding of Capsicum and Eggplant. Capsicum Newsletter Special Issue. p. 106-109.
- Franceschetti, U. 1971. Natural cross pollination in pepper (Capsicum annuum L.). Proc. Eucarpia Meeting on Genetic and Breeding of Capsicum. Turin, Italy. p. 346-353.
- Gardner C., O. and Eberhart S.A. 1966. Analysis and interpretation of variety cross diallel and related populations. Biometrics. 22:439-452.
- García B., F., G. E. Salinas G, O. Pozo C., H. Reyes V., M. Ramírez M., J. A. López S., M. Aguirre B. y O. Salazar S. 2002. Estimation of genetics distance among green pepper (*Capsicum annuum* L.) lines using rapd markers and its relationship whit heterosis. Proceedings 16th International Pepper Conference. Congreso Internacional del Chile. November 10-12, 2002. Tampico, Tamaulipas, México. p. 14-18.

- Gouesnard B. and A. Gallais. 1992. Genetic variance component estimation in a nested mating design with positive assortative mating, and application to maize. Crop Sci. 32:1127-1131.
- Greenleaf, W. H. 1986. Pepper Breeding. In: Basset, J. (Ed.) Breeding Vegetable Crops. AVI Publishing Co. Inc. USA. p. 67-127
- Griffing, B. 1956. Concept of general and specific combining ability in relation to diallel crossing systems. Aust. J. Biol. Sci. 9:463-493.
- Hallauer, A. R. and J. B. Miranda Fo. 1981. Quantitative Genetics in Maize Breeding. The Iowa State Univ. Press. Ames, La. 463 p.
- Horner E., S., M.C. Lutrick, W.H. Chapman, and F.G. Martin. 1976. Effect of recurrent selection for combining ability with a single-cross tester in maize. Crop Sci. 16: 5–8.
- Johnson D. and D. E. Knaval. 1990. Inheritance of cracking and scarring in pepper fruit. J. Amer. Soc. Hort.Sci,115:172-175.
- Joshi S. and Brahma. 1987. Results of the combined ability studies in sweet pepper (*Capsicum annuum* L). Capsicum Newsletter, 6: 49-50.
- Joshi, S. 1990. Genetics of six quantitative traits in Sweet Pepper (*Capsicum annuum* L.). Capsicum Newsletter, 8-9: 26-27.
- Joshi S., P.C. Thakurg, T.C. Verma and H.C. Verma. 1991. Intervarietal crossing of bell and hot pepper augments the hybrid seed yield. Capsicum Newsletter 10:53-54.
- Joshi V., N., R. B. Dubey and S. Marker. 2002. Combining ability for polygenic traits in early maturing hybrids of maize (*Zea mays* L.). Indian J. Genet, 62: 312-315.
- Kempthorne, O. 1957. An introduction to genetics statistics. John Wiley and Sons, inc., New York. 545 p.
- Khambanonda, I. 1949. Quantitative inheritance of fruit size in red pepper (*Capsicum frutescens*). Genetics 35:322-343.
- Latha R. and P. Shanmugasundaram. 1998. Combining ability studies involving new male sterile lines in pearl millet. Madras Agric.J. 85:160-163
- Luiz, L. D. S. 2002. Heterose e capacidade de combinacao em cruzamentos dialélicos parciais de pimentao. Piracicaba. Tese (mestre)-Escola Superior de Agricultura "Luiz de Quiroz", Universidade de Sao Paulo, Brasil.

- Luján F. M. y R. Rodríguez M. 2000. Típico 1 y Típico 2: Nuevas variedades de chile jalapeño en México. Folleto técnico No. 2. Campo Experimental Delicias, Chih. INIFAP. 15 p.
- Márquez S., F. and A. R. Hallauer. 1970. Influence of sample size on the estimation of genetic variances in a synthetic variety of maize. I. Grain yield. Crop Sci. 10:357-361.
- Márquez, S. F. 1985. Genotecnia Vegetal. Métodos, teoría, resultados. Tomo I. AGT Editor. México, D. F. 357 p.
- McArdle R., N. and J.C. Brouwkamp. 1983. Inheritance of the several fruit characters in *Capsicum annuum_*L. J.Hered.74:125-127.
- Mather, K and J. L. Jinks. 1977. Introduction to Biometrical Genetics. The Cornell University Press. Ithaca, N. Y.
- Matzinger, D. F. 1953. Comparison of three types of testers for the evaluation of inbred lines of corn. Agron. J. 45:493–495.
- Marcinik K, Z. Kaczmarek, T. Adamski. and M. Surma. 2003. The anther-culture response of triticale line x tester progenies. Cellular and molecular Biology Letters. Volume 8: 343-351.
- Martínez, G. A. 1983. Diseños y Análisis de Experimentos de Cruzas Dialélicas. Colegio de Posgraduados, México. 251 p.
- Martínez Z., G., J. R. A. Dorantes G., M. Ramírez M., A. Rosa L De la. y O. Pozo C. 2005. Efectos genéticos u heterosis de la vida de anaquel del chile serrano. Rev. Fitotec. Mex. 28:327-332.
- Miranda, J. E. C. 1987. Análise genética de um cruzamento dialélico em pimentao (*Capsicum annuum* L.). Piracicaba. Tese (doutorado)-Escola Superior de Agricultura "Luiz de Quiroz", Universidade de Sao Paulo, Brasil. 159 p.
- Narro L., S. Pandey., J. Crossa., C. León de and F. Salazar. 2003. Using Line x Tester Interaction for the Formation of Yellow Maize Synthetics Tolerant to Acid Soils. Crop Sci. 43:1718-1728.
- Odland M., L. and A. M. Porter. 1941. A study of natural crossing in pepper (*Capsicum frutescens* L.). J. Am. Soc. Hort. Sci. 38: 585-588.
- Owens, K. 1998. Breeding comercial pepper varieties for market and processing. 37437. HWY State. 16. inédito. Seminis Vegetables Seeds. Woodland California. CA95695. USA. 8 p.

- Patel J., A., M.R. Shukla., K. M. Doshi., B. R. Patel and S. A. Patel. 1998. Combining analysis for green fruit yields & yields components in chilli (*Capsicum annuum* L.). Capsicum & Eggplant Newsletter 17: 34-37. Turin, Italy.
- Peterson, P. A.1959. Linkage of fruit shape and color genes in *Capsicum*. Genetics 44:407-419.
- Pozo, C. O. 1981a. Descripción de tipos y cultivares de chile (*Capsicum* spp) en México. Folleto Técnico No. 77. INIA. SARH. México.
- ______.1981b. Determinación del porcentaje de polinización cruzada en chile serrano. Resumen de la AM. Soc. For Hort. Sci. Región Tropical. Mazatlán, Sinaloa, México.
- ______.1983. Estimates on natural cross-pollination in serrano pepper (*Capsicum annuum* L.). Capsicum Newsletter 2:106-108. Turin, Italy.
- ______.1984. Situación actual del cultivo de chile en México. In: J. A. Laborde C y O. Pozo C. (Ed) Presente y pasado del chile en México. SARH-INIA. Publicación Especial No. 85. p 18-25.
- Pozo C., O. y M. Ramírez M. 1994. Gigante Ébano y Paraíso, nuevas variedades de chile serrano en México. Folleto técnico No. 10. Campo Experimental Sur de Tamaulipas. INIFAP. 16 p.
- ______.1998. Don Pancho y Don Benito, cultivares de chile jalapeño para el Trópico Húmedo de México. Folleto técnico No. 15. Campo Experimental Sur de Tamaulipas. INIFAP. 16 p.
- ______.2000. Centauro, híbrido de chile serrano. Memoria XVIII Congreso Nacional de Fitogenética. 359 p.
- Ramiro, C. A. 1998. Líneas avanzadas de chile guajillo para el altiplano Norte-Centro de México. Memoria XVII Congreso Nacional de Fitogenética. 107 p.
- Ramírez, M. M. 1996. El chile Biodiversitas. Boletín bimestral de la comisión nacional para el conocimiento y uso de la biodiversidad.
- Rawlings J., O. and D. L. Thompson. 1962. Performance level as criterion for the choice of maize testers. Crop Sci. 2:217–220.
- Robledo, G. E. I.2005. Potencial genético de cruzas inter-raciales en el mejoramiento de chile (*Capsicum annuum* L.) Tesis de Maestría. Universidad Autónoma Agraria Antonio Narro. Saltillo, México. 62 p.
- Russell W., A. and S. A. Eberhart. 1975. Hybrid performance of selected maize lines from reciprocal recurrent selection and testcross selection programs. Crop Sci. 15:1–4.

- Sistema Integral de Información Agroalimentaria y Pesquera (SIAP). 2004. Anuario Estadístico. SAGARPA. México.
- Sakila M., S. M. Ibrahim, A. Kalamani and S. Backiyarani. 2000 Evaluation of *Sesame* hybrids through line x tester analysis. *Sesame* and *Safflower* Newsletter 15:1-6
- Statistic Analysis System (1999). SAS Institute Inc, versión 8.0. Cary, NC., USA.
- Singh K., R and D. B. Chaudhary. 1977. Biometrical Metohods in Quantitative Genetic Analysis. Kalyani Publishers, Ludhiana New Delhi. 301 p.
- Singh N., K and A. Kumar. 2004. Combining ability analysis to identify suitable parents for heterotic rice hybrid breeding. International Rice Research Notes. 29: 21-22.
- Singh, S. 1987. Results of the combined ability studies in sweet pepper (*Capsicum annuum* L.). Capsicum Newsletter 6: 49-50. Turin Italy.
- Sprague G., F. and L. A. Tatum. 1942. A general vs. specific combining ability in single crosses of corn. J. Am. Soc. Agron. 34: 923-932.
- D. Steel R. G and J. H. Torrie. 1960. Principles and Procedures of Statistics. McGraw-Hill Book Company, Inc. New York-Toronto-London. 473 p.
- Takur, P. C. 1987. Gene action, an index for heterosis breeding in sweet pepper. Capsicum Newsletter 6: 41-42. Turin, Italy.
- Upadhja M., H. and R. Cabbello. 2000. CIP Program Report 1999 2000. Lima, Peru.
- Vencovsky R. y P. Barriga. 1992. Genética Biométrica no Fitomelhoramento. Sociedade Brasileira de Genética, Ribeirao Preto, Sao Paulo, Brasil. 496 p.
- Virmani S., S., Z. X. Sun, T. M. Mou, A. A. Jauhar and C. X. Mao. 2003. Two-line hybrid rice breeding manual. Los Baños (Philippines): International Rice Research Institute. 88 p.
- Wricke G. and W. E. Weber. 1986. Quantitative Genetics and Selection in Plant Breeding. W. de G. Berlin. 406 p.