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RESUMEN
Este estudio evalud y optimiz6 la extraccion de compuestos bioactivos, principalmente
compuestos fendlicos y flavonoides, de hojas de Eysenhardtia texana mediante extraccion
asistida por microondas (EAM) con disolventes eutécticos profundos (DEP). Mediante el
empleo de una mezcla de cloruro de colina:4cido acético:agua (1:1:10) en condiciones
optimizadas (194 °C durante 25 min), se obtuvo un extracto con las siguientes
caracteristicas: 76.2 mg de equivalentes de &cido galico (EAG)/g de contenido
polifenolico total (CPT), 38.1 mg de equivalentes de rutina (ER)/g de contenido total de
flavonoides (CTF) y actividad antioxidante de 54.8 mg de equivalentes de trolox (ET)/g
(ABTS), 306.1 mg ET/g (DPPH) y 118.6 mg ET/g (FRAP). Ademas, los principales
compuestos fenodlicos identificados por HPLC-MS/MS fueron el p-hidroxibenzaldehido,
el 4cido 3,4-dihidroxibenzoico y la vainillina. El extracto optimizado exhibid actividad
antifingica contra Fusarium oxysporum y Rhizopus stolonifer. La funcionalidad del
extracto optimizado fue evaluada en recubrimientos comestibles, los cuales preservaron
eficazmente la calidad de la mora, reduciendo la pérdida de peso y la contaminacion
microbiana durante el almacenamiento poscosecha a4 + 1 °Cy 85% de humedad relativa
(HR) durante 15 dias. Este comportamiento se puede atribuir a la presencia de los
compuestos bioactivos detectados en el extracto, conocidos por sus propiedades
antioxidantes y antimicrobianas. Estos compuestos podrian contribuir a prolongar la vida
util al mitigar el estrés oxidativo y controlar los microorganismos de deterioro. En general,
este estudio representa el primer uso de hojas de E. texanas procesadas con tecnologias
verdes, proporcionando una nueva via de valorizacién para desarrollar recubrimientos

comestibles innovadores para mitigar las pérdidas poscosecha en zarzamoras.
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ABSTRACT
This study evaluated and optimized the extraction of bioactive compounds, mainly
phenolic and flavonoids compounds, from Eysenhardtia texana leaves using microwave-
assisted extraction (MAE) with deep eutectic solvents (DES). By employing a choline
chloride:acetic acid:water mixture (1:1:10) under optimized conditions (194 °C for
25 min), an extract with the following characteristics was obtained: 76.2 mg gallic acid
equivalents (GAE)/g of total phenolic content (TPC), 38.1 mg rutin equivalents (RE)/g of
total flavonoid content (TFC), and antioxidant activity of 54.8 mg Trolox equivalents
(TE)/g (ABTS), 306.1 mg TE/g (DPPH), and 118.6 mg TE/g (FRAP). Additionally, the
main identified phenolic compounds by HPLC-MS/MS were p-hydroxybenzaldehyde,
3,4-dihydroxybenzoic acid, and vanillin. The optimized extract exhibited antifungal
activity against Fusarium oxysporum and Rhizopus stolonifer. Its functionality was
assessed in edible coatings, which effectively preserved blackberry quality by reducing
weight loss and microbial contamination during postharvest storage at 4 + 1°C and 85%
relative humidity (RH) for 15 d. This behavior can be attributed to the presence of the
bioactive compounds detected in the extract, which are known for their antioxidant and
antimicrobial properties. These compounds could contribute to extending the shelf life by
mitigating oxidative stress and controlling spoilage microorganisms. Overall, this study
represents the first use of E. fexana leaves processed with green technologies, providing
a novel valorization pathway for developing innovative edible coatings to mitigate

postharvest losses in blackberries.
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INTRODUCCION

Los compuestos bioactivos de fuentes vegetales se han vuelto cada vez mas importantes
para la conservacion de alimentos y sus beneficios medicinales (Putnik et al., 2018). Las
plantas pueden sintetizar varios compuestos bioactivos, incluidos CTF y flavonoides, que
tienen propiedades antioxidantes, antiinflamatorias, anticancerigenas y antimicrobianas
(Avinash & Nandan, 2022). México cuenta con una amplia diversidad de especies
vegetales, lo que le otorga un gran potencial para la produccion de compuestos bioactivos
(Davila-Rangel et al., 2024). Eysenhardtia texana, comunmente conocida como rifion de
Texas, es una planta con aplicaciones prometedoras en la industria farmacéutica,
cosmética y agroalimentaria, debido a sus propiedades diuréticas, antidiabéticas,
antioxidantes, antiinflamatorias y antimicrobianas (Bustos-Salgado et al., 2021). Si bien
se utiliza principalmente en la medicina tradicional, la investigacion cientifica sobre esta
especie es limitada, lo que subraya la necesidad de seguir explorando su potencial. En la
actualidad, algunos investigadores han realizado estudios fitoquimicos y farmacologicos
sobre el género Eysenhardtia, y s6lo se ha reportado la composiciéon de un extracto de

metanol-diclorometano obtenido de las partes aéreas de la planta (Wéchter et al., 1999).

Para liberar todo el potencial de esta especie, se necesitan métodos de extraccion mas
eficientes y sostenibles. Las técnicas de extraccidn convencionales para la obtencion de
compuestos bioactivos a menudo implican el uso de solventes organicos, largos tiempos
de extraccion y altos costos operativos (Ivanovié et al., 2020). Por el contrario, las técnicas
de extracciéon no convencionales, como la extraccion asistida por microondas (EAM),
combinada con disolventes eutécticos profundos (DEP), ofrecen ventajas significativas.
Las técnicas proporcionan un tiempo de extraccion mas rapido, reducen el consumo de
disolventes y minimizan el impacto ambiental (Boli ef al., 2022). La EAM utiliza energia
electromagnética para calentar disolventes y materias primas, mientras que los DEP,
formados por la mezcla de aceptores y donantes de enlaces de hidrogeno, reducen su punto
de fusion y son menos toxicos que las alternativas convencionales (Sen et al., 2024). Estas
innovadoras técncias de extraccion son muy prometedoras para seguir avanzando en el

potencial bioactivo de diversas fuentes vegetales.



Ademas, la integracion de estas estrategias de extraccidon en un marco de biorrefineria
alineado con los principios de la economia circular representa un enfoque prometedor para
la utilizacion integral de la biomasa vegetal (Awad ef al., 2021). En este contexto, la
extraccion de compuestos bioactivos sirve como un paso inicial para la recuperacion de
sustancias de alto valor, seguido de etapas posteriores disefiadas para generar
subproductos adicionales o bioenergia (Jauregi et al., 2024). Por ejemplo, los DEP se han
empleado con éxito para recuperar compuestos polifenolicos de residuos vegetales, como
la cascara de naranja, dentro de un modelo de biorrefineria verde integrada (Pani¢ et al.,
2021). Ademas, los DEP se han utilizado para extraer acidos fendlicos y flavonoides de
sauco (Sambucus nigra L.) y romero (Rosmarinus officinalis), demostrando su eficacia en
la recuperacion de compuestos bioactivos (Vladimir-KneZevic et al., 2022). Sin embargo,
aun no se ha explorado el uso de DEP combinado con EAM para la recuperacion de
compuestos fenolicos y antioxidantes de E. fexana. Asi, este estudio tiene como objetivo
caracterizar y optimizar la extracciéon de compuestos bioactivos de hojas de E. texana a
través de EAM utilizando DEP, al tiempo que se evaliia su potencial antioxidante y
antimicrobiano, asi como su impacto en la calidad poscosecha de las zarzamoras. Cabe
destacar que este es el primer estudio que investiga la extraccién de compuestos bioactivos
de E. texana y su aplicaciéon en recubrimientos comestibles para extender la calidad

poscosecha de zarzamoras, ofreciendo un aporte novedoso al sector agroalimentario.



OBJETIVO GENERAL

Comparar métodos de extraccion convencional y no convencional para la obtencion de
extractos bioactivos de Eysemhardtia texana, determinar su potencial antioxidante y
antimicrobiano, y evaluar su efecto en la extension de la vida de anaquel del fruto de

zarzamora.

Objetivos especificos
e Obtener extractos de E. texana mediante dos métodos uno convencional y uno no
convencional.

e (Caracterizar los extractos obtenidos en términos de su bioactividad.

e Evaluar su efecto en la extension de la vida de anaquel de zarzamora.

HIPOTESIS
e Al menos uno de los extractos obtenidos de E. texana por una técnica convencional
y una no convencional presentardn actividad antimicrobiana y antioxidante.
e Al menos uno de los extractos de E. texana seré efectivo en la extension de vida

de anaquel del fruto de zarzamora.



REVISION DE LITERATURA

Calidad poscosecha de bayas

La demanda mundial de bayas ha crecido significativamente debido a su alto contenido
nutricional y los beneficios para la salud asociados, lo que las convierte en frutas
importantes en la industria agricola y alimentaria (Gonzalez-Ramirez et al., 2020). Su
perfil Gnico de vitaminas, antioxidantes y fibra dietética las ha posicionado como
componentes clave en alimentos funcionales y suplementos dietéticos. Sin embargo, la
naturaleza delicada de estas frutas no climatéricas presenta desafios para mantener su
calidad poscosecha. La cosecha generalmente se realiza en plena madurez para garantizar
un valor comercial 6ptimo, lo que requiere un manejo meticuloso y el cumplimiento de
estrictos estandares de calidad en toda la cadena de suministro para satisfacer las
expectativas del consumidor (Horvitz, 2017). Preservar la calidad poscosecha de las bayas
implica mantener sus propiedades fisicoquimicas, sensoriales y organolépticas, ya que
estos atributos son muy susceptibles a una rapida degradacion. Los parametros clave como
la firmeza, el color, el aroma y el sabor estan directamente relacionados con la preferencia

del consumidor y la comercializacion (Cockerton ef al., 2021).

Dada su fina piel protectora, su alta tasa de respiracion y su contenido de agua (que varia
entre el 85% y el 90%) las bayas son propensas a una rapida pérdida de peso y a cambios
fisiologicos durante el almacenamiento y el transporte (Ishkeh et al., 2021; Laaksonen et
al., 2016). Entre algunas caracteristicas fisicas presentes en las bayas se encuentran el
color y el tamafio del fruto dependiendo de la especie de baya, las cuales son consideradas
como rasgos apreciados por los consumidores. Las bayas son conocidas por su color
brillante y sabor caracteristico (Liguori et al., 2021). Este tipo de frutos son susceptibles
a danos mecanicos debido a su textura sensible, acelerando su proceso de maduracion y
dando lugar a la senescencia, por lo que reducir su deterioro es una necesidad para la
seguridad alimentaria (Pinzon et al., 2020). Para abordar estos desafios, se requieren
soluciones innovadoras que integren avances en la tecnologia poscosecha para preservar
las cualidades nutricionales y sensoriales de las bayas, asegurando su disponibilidad para

los consumidores sin comprometer su calidad.



Factores que influyen en las pérdidas poscosecha

La vida util de las bayas requiere estrategias eficientes para prolongar su periodo de
almacenamiento, asegurando que permanezcan disponibles para el consumo mas alla de
su etapa de produccion, manteniendo al mismo tiempo su calidad y aceptabilidad (Saito
et al., 2020). Dada su naturaleza perecedera, las bayas son propensas a deteriorarse
rapidamente, lo que plantea desafios importantes para su conservacion en la cadena de

suministro.

Los principales factores que contribuyen al deterioro de la fruta incluyen condiciones de
almacenamiento inadecuadas, humedad relativa (HR) inapropiada y tecnologias de
procesamiento insuficientemente avanzadas. Estos factores a menudo conducen a un
aumento de la transpiracion y respiracion de la fruta, acelerando el deterioro y
comprometiendo la calidad (Mujuka et al., 2020). Estas pérdidas poscosecha no solo se
reflejan en una menor disponibilidad del producto, sino que también se traducen en
importantes impactos econdmicos y desperdicio de recursos, particularmente en los casos
en que los productos horticolas, incluidas las bayas, estan destinados a la exportacion a
los mercados internacionales (Onwude et al., 2022). Las bayas son particularmente
vulnerables al deterioro después de la cosecha debido a su delicada estructura y
sensibilidad a factores externos. Los trastornos fisiolégicos como la deshidratacion y el
dafio mecanico son comunes, a menudo causados por practicas de manipulacion
inadecuadas. Ademads, estas frutas son muy susceptibles a infecciones microbianas y
enfermedades, especialmente cuando se exponen a temperaturas o condiciones de
almacenamiento suboptimas, lo que puede resultar en dafios por frio, podredumbre y

pérdida de comercializacion (Umagiliyage et al., 2017).

Durante el almacenamiento poscosecha, las bayas sufren una serie de modificaciones
bioquimicas complejas que afectan significativamente su estabilidad. Estos cambios
involucran la sintesis y degradacion de metabolitos especificos, alteraciones en la
capacidad antioxidante y fluctuaciones en los niveles de compuestos bioactivos (Horvitz
et al., 2021). Un aspecto bioquimico clave en las bayas es la interaccion dinamica entre

metabolitos secundarios, como antocianinas, flavonoides y otros compuestos fendlicos.



Estos compuestos contribuyen a la pigmentacion distintiva y las propiedades promotoras
de la salud de las bayas. Sin embargo, el estrés poscosecha, incluido el estrés oxidativo y
las variaciones en las condiciones de almacenamiento, pueden degradar estos compuestos,
alterando tanto las cualidades estéticas como nutricionales de la fruta (Neves et al., 2022).
Ademas, las bayas presentan cambios en los compuestos organicos volatiles (COV), que
son responsables de su perfil aromatico. Estos compuestos son muy sensibles a los factores
ambientales y su degradacion o modificacion puede afectar significativamente los
atributos sensoriales de las bayas. Preservar la integridad de éstos es fundamental para la
satisfaccion del consumidor y la comercializacion (Shah ef al., 2023). La interaccion de
las vias metabolicas durante el almacenamiento poscosecha también influye en la
acumulacion o el agotamiento de ciertas sustancias bioactivas, como las vitaminas y los
fitonutrientes. Por ejemplo, los niveles de acido ascérbico pueden disminuir con el tiempo
debido a la oxidacidon enzimatica, lo que afecta negativamente el valor nutricional de las

bayas (Haider et al., 2022).

Los cambios bioquimicos también se ven influenciados por las interacciones microbianas
en la superficie de la fruta. Ciertas especies microbianas pueden inducir cambios
metabolicos en los tejidos de las bayas, acelerando el deterioro de la calidad. La
investigacion sobre las transformaciones bioquimicas en las bayas proporciona
informacion fundamental sobre su comportamiento poscosecha, presentando posibles vias
para optimizar las condiciones de almacenamiento, desarrollar técnicas de conservacion
especificas y mejorar la calidad general y el atractivo para el consumidor de estas frutas

tan valoradas (Rienth et al., 2021).

Estudios recientes han indicado que las bayas, por su alto contenido de humedad, bajo pH
y rica composicion nutricional, representan un sustrato ideal para el crecimiento
microbiano (Martinez et al., 2018). En este sentido, los agentes fitopatégenos juegan un
papel importante en las pérdidas poscosecha de las bayas, provocando cambios en su
calidad, textura y rendimiento (Armghan Khalid ef al., 2022). Entre los microorganismos
comunmente asociados a las bayas se encuentran Botrytis spp., Fusarium spp., Rhizopus

spp., Penicilium spp., Alternaria spp., Mucor spp., entre otros (Pobiega et al., 2021). Estos



patdgenos afectan la vida util y la comercializacion de las bayas, lo que resalta la

necesidad de estrategias efectivas de manejo poscosecha.

Control de calidad poscosecha tipico de las bayas

En la actualidad, la demanda de los consumidores por adquirir productos seguros y
naturales ha llevado al sector agroalimentario a incorporar tecnologias innovadoras
orientadas a minimizar de forma segura el desarrollo de hongos patégenos, protegerlos de
factores externos y mantener la calidad comercial de las bayas (Vilaplana et al., 2020).
Por ello, es importante considerar técnicas adecuadas, junto con el cuidado ambiental,
para el control poscosecha de los frutos para aumentar su vida util hasta llegar al

consumidor final (Oregel-Zamudio et al., 2017).

Existen métodos utilizados para prolongar la vida util de las bayas, algunos de los cuales
han presentado restricciones como el uso de fungicidas quimicos, lo que ha disminuido su
aplicaciéon debido a que hoy en dia el mercado demanda productos naturales y
minimamente procesados, motivando a los investigadores a buscar alternativas que
ayuden en la conservacion de la fruta sin causar danos a la salud (Sdnchez-Hernandez et
al., 2022). Entre las técnicas cominmente utilizadas para el control de patdogenos en bayas
se encuentra el almacenamiento a bajas temperaturas, que es uno de los sistemas mas
eficientes y ampliamente utilizados. Este método implica bajar la temperatura de la fruta,
a menudo cerca pero no por debajo de su punto de congelacion, para reducir el deterioro
(Romero et al., 2022). Sin embargo, en el caso de las bayas, es crucial controlar
cuidadosamente la HR y evitar las temperaturas de congelacion, ya que estas frutas son
particularmente susceptibles al dafio fisico, generalmente conocido como dafio por ftio,
que puede manifestarse como decoloracion, ablandamiento o pérdida de sabor (Zhou et
al.,2014). Ademas, el almacenamiento prolongado a baja temperatura en las bayas puede
resultar en pérdida de humedad y cambios en su delicada textura, afectando su
comercializacion y calidad sensorial (Zhang et al., 2020). Por lo tanto, combinar el
almacenamiento a baja temperatura con otras tecnologias de conservacion es esencial para
prolongar de manera eficiente la vida util de las bayas frescas (Alvarez-Hernandez et al.,

2019).



El uso de atmosferas controladas ha demostrado ser eficaz para retrasar la senescencia y
mantener la calidad de las bayas regulando los niveles de oxigeno (O2) y dioxido de
carbono (CO) para crear condiciones Optimas de almacenamiento y transporte (Liu et al.,
2023) . Sin embargo, la exposicion de las bayas a concentraciones relativamente altas de
CO; puede provocar ablandamiento y decoloracion de la fruta (Forney et al., 2022). Por
otro lado, establecer niveles bajos de O puede conducir al desarrollo de sabores
desagradables o incluso inducir la fermentacion, lo que puede afectar significativamente
los atributos sensoriales de las bayas (Smrke et al., 2021). Ademas, los sistemas de
atmosfera controlada requieren un monitoreo y una regulacion precisos, lo que puede
requerir muchos recursos y ser costoso, particularmente para los productores de pequefia
escala (Gouda & Duarte-Sierra, 2024). Gonzéalez-Orozco et al. (2020) enfatizan que la
efectividad de estos sistemas depende no solo de las condiciones de almacenamiento sino
también del metabolismo especifico de cada tipo de baya, la duracion del almacenamiento
y el potencial de fluctuaciones de temperatura durante la manipulacion y el transporte. A
pesar de estas limitaciones, estudios como Popa et al. (2019) demostraron que someter a
las fresas orgénicas a atmoésferas controladas extendio su vida util, lo que resultd en una
mejor apariencia y el mantenimiento de parametros de calidad adecuados. El estudio
identifico que las condiciones dptimas de almacenamiento para las fresas organicas en una
atmosfera controlada eran 5% de O2 y 15% de CO», lo que mejora las practicas de
almacenamiento para frutas orgdnicas. El Cuadro 1 muestra los pardmetros dptimos para

el almacenamiento en atmosfera controlada de bayas.



Cuadro 1. Concentraciones recomendadas de CO2 y Oz, rango 6ptimo de temperatura,

humedad relativa y vida util estimada en el almacenamiento en atmosfera controlada para

bayas.
Parametros optimos Fresa Frambuesa Arandano
CO; 15 -20% 15 -20% 10-13 %
0: 5-10% 5-10% 8 —10%
Temperatura 0°C -0.5-0°C 0-5°C
Humeda Relativa 90 -95% 90 -95% 90 -95%
Vida qtil estimada 5 -7 dias 25 dias 10 — 18 dias

Adaptado de Blaszczyk et al. (2022)

Otro método comunmente utilizado para la conservacion de bayas es la conservacion
mediante atmdsferas modificadas, que implica la creacion de condiciones especificas de
envasado con una composicion de gas controlada, que consiste principalmente en O, CO>
y nitrogeno (Nz). Esta técnica tiene como objetivo minimizar la pérdida de peso, la
deshidratacion o el marchitamiento, prolongando asi la vida util de las frutas (Maksimovi¢
et al.,2022). Sin embargo, los altos niveles de CO» pueden provocar la pérdida de color e
impactar negativamente en el sabor, como se ve en el caso de las frambuesas (Gimeno et
al., 2022). Las atmosferas modificadas inhiben el crecimiento microbiano al reducir el
oxigeno disponible en el entorno de almacenamiento, limitando asi la proliferacion de
microorganismos responsables de la descomposicion de la fruta (Kahramanoglu, 2019).
Es importante sefialar que el éxito del envasado en atmdsfera modificada depende de
varios factores, como la composicion del gas, la temperatura de almacenamiento, el
material de envasado y las condiciones especificas de las bayas (Zhang et al., 2016). Por
lo tanto, si bien este método ofrece beneficios significativos, su aplicacion requiere una
optimizacion cuidadosa para evitar inconvenientes relacionados con la composicion del

gas y el control microbiano.

El uso de la irradiacion UV en bayas ha sido tema de estudio ya que se ha convertido en
una alternativa no térmica que ejerce un efecto nocivo sobre el ADN de muchos

microorganismos (Xu & Liu, 2017). En concreto, la irradiaciéon UV es el proceso mediante
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el cual se exponen los frutos a longitudes de onda con el fin de obtener efectos
beneficiosos sobre la calidad del fruto. Gracias a sus propiedades antimicrobianas, ha
demostrado ser una herramienta potencial para reducir la capacidad de proliferacion de
agentes patogenos en frutos como fresas, zarzamoras y arandanos (Jaramillo Sanchez et
al., 2021). Sin embargo, aunque la irradiacion UV puede reducir el crecimiento
microbiano, no siempre resulta en una extension de la vida util, como lo demuestra el
estudio de Forges et al. (2020), donde no se observé una extension de la vida 1til en fresas
tratadas con UV. Por otro lado, Idzwana et al. (2020) evaluaron el efecto de la radiacion
UV en fresas con un estado de madurez de >80 -85% que fueron expuestas a diferentes
dosis de radiacion y reportaron que las fresas con altos niveles de UV (1.0 kJ/m?) tuvieron
mayor firmeza, nulo crecimiento microbiano y mejor calidad de la fresa. Ademas, la
exposicion inadecuada a la radiacion UV puede provocar efectos indeseables, como
cambios en la textura o alteraciones en el perfil de sabor de las bayas, que podrian afectar

la aceptacion del consumidor.

Ante las limitaciones de las técnicas existentes, resulta imprescindible la busqueda de
alternativas mas eficientes y menos invasivas. En este sentido, los recubrimientos
comestibles han surgido como una solucidon prometedora para la conservacion de las bayas
(Iniguez-Moreno et al., 2024). El uso de recubrimientos comestibles ofrece una alternativa
ecoldgica y segura para los alimentos, complementando las estrategias de conservacion
actuales y proporcionando un enfoque mas sostenible para mantener la calidad de las

bayas.

Nuevas técnicas para prolongar la vida util de las bayas

La industria de las bayas ha experimentado un importante crecimiento en los Gltimos afios
tanto en produccién como en consumo debido a su alta demanda y aporte a la salud
(Kahramanoglu, 2019). Sin embargo, uno de los retos que enfrenta esta industria es la
corta vida 1til de las bayas, lo que limita su disponibilidad y conlleva importantes pérdidas
economicas (Shahbazi et al., 2021). Durante la poscosecha se han desarrollado diversos
métodos para mejorar la calidad poscosecha y reducir el deterioro causado por patégenos,

incluyendo el uso de alternativas naturales como extractos de plantas en recubrimientos



11

comestibles, peliculas, emulsiones, encapsulacion, entre otros (Taheri et al., 2020).

Un gran numero de estudios han demostrado que, la aplicacion de peliculas y
recubrimientos comestibles es una alternativa muy prometedora que no altera las
propiedades fisicoquimicas de las frutas, aumentando asi su conservacion (Khodaei et al.,
2021). El término pelicula comestible se refiere a una barrera fisica delgada y flexible
disefiada para cubrir la superficie de un alimento (Nandane & Jain, 2015). En cuanto a la
definicion de recubrimiento comestible, se utiliza para indicar una cubierta delgada que
se aplica directamente sobre el alimento; sin embargo, para garantizar la inocuidad de los
recubrimientos comestibles para el consumo humano, es fundamental que los elementos
utilizados en su formulacion cuenten con clasificacion como generalmente reconocidas
como seguros (GRAS, por sus siglas en inglés) (Ribeiro et al., 2020). Los recubrimientos
comestibles pueden tener composiciones variadas, tipicamente constituidas por
polisacaridos, proteinas, lipidos o su combinacion (da Silva et al., 2019). Adicionalmente,
los recubrimientos comestibles deben seleccionarse para que se adapten mejor a las
necesidades de cada alimento y proporcionen una proteccion eficaz, una vida util mas

prolongada y, sobre todo, una apariencia atractiva del producto (Paul et al., 2018).

La principal diferencia entre las peliculas y los recubrimientos comestibles radica en su
aplicacion, donde las peliculas comestibles primero se moldean y luego se aplican,
mientras que los recubrimientos comestibles se forman en una solucion liquida (Maan et
al.,2021). Esta técnica actiia como una barrera semipermeable, reduciendo el intercambio
de gases (p. €j., 02, CO), disminuyendo significativamente la respiracion, la oxidacion y
la pérdida de humedad en la fruta (Bersaneti ef al., 2021). Entre las cualidades de los
recubrimientos comestibles, sirven como vehiculos para transportar componentes activos
que aportan efectos antioxidantes, nutracéuticos, antimicrobianos, colorantes e incluso
saborizantes a las frutas u otros alimentos (Hernandez-Carrillo ef al., 2021). Algunos de
los agentes antimicrobianos incorporados en la matriz polimérica de peliculas comestibles
y recubrimientos comestibles incluyen acidos orgéanicos (p. €j., acidos acético, citrico,
malico, tartérico, sorbico y lactico), polipéptidos (p. €j., peroxidasa, lisozima, lactoferrina,

nisina) (Adhikary et al., 2020), sales minerales (p. €j., bicarbonato de sodio, sorbato de
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potasio y bicarbonato de amonio), aceites esenciales (p. €j., albahaca, naranja, limén y
tomillo) (Mohammadi et al., 2021) y, en particular, el uso de extractos de plantas (p. €j.,
moringa, cascara de granada, hojas de olivo, romero y orégano) (Tesfay et al., 2017). La
incorporacion de extractos de plantas en recubrimientos comestibles representa una
alternativa prometedora debido a sus notables propiedades nutracéuticas (Bajaj et al.,
2023). Estos extractos proporcionan beneficios antioxidantes y antimicrobianos y han
demostrado ser eficaces para retrasar el proceso de maduracion y senescencia de las bayas,

posicionandolos como un sustituto potencial y mas sostenible.

Los agentes antimicrobianos contienen sustancias capaces de inhibir el crecimiento y
proliferacion de patégenos en las bayas. Pueden ser de origen natural ya que se han
estudiado como una alternativa sustituible a los sintéticos (Arshad & Batool, 2017). Al
incorporarlos en recubrimientos comestibles, proporcionan proteccion adicional,
extienden la vida util de las frutas y mantienen su calidad sensorial al evitar cambios
indeseables en su apariencia, color, textura y sabor de los productos (Yang et al., 2022).
El uso creciente de estos agentes antimicrobianos de fuentes naturales como los extractos
de plantas demuestra que es una estrategia eficaz para conservar y proteger frutas como
las bayas, cumpliendo con las expectativas de los consumidores en términos de alimentos
seguros, frescos y de alta calidad (Tomadoni et al., 2018). El Cuadro 2 presenta algunas
aplicaciones de recubrimientos comestibles antimicrobianos que muestran efectos

inhibidores contra microorganismos en varias bayas.
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Cuadro 2. Algunas aplicaciones de recubrimientos comestibles antimicrobianos en bayas.

Agente Microorganismo
Matriz Baya Referencias
antimicrobiano objetivo
] o Extracto de desecho de
Hidroxietilcelulosa Fresa (Fragaria Li /
) ~ esparragos (Asparagus  Penicillium italicum (Livet al.,
y alginato de sodio X ananassa) 2021)
officinalis L.)
Aceite esencial de
(Ventura-
] canela y extracto de Colletotrichum Fresa (Fragaria )
Quitosano ) Aguilar et
calices de Roselle fragariae ananassa Duch.)
al.,2018)
(Hibiscus sabdariffa)
Extractos de rosella Levaduras y Aréandano )
) ) ) ) (Joshi et al.,
Goma arabiga roja/blanca (Hibiscus bacterias aerobias (Vaccinium 2021)
sabdariffa) mesofilas corymbosum)
P. digitatum,
P. expansum,
Frambuesa
) P. italicum, (Moreno et
Gelatina Extracto de propoleo (Rubus idaeus
A. alternata, al., 2020)
L)
A. carbonarius 'y
B. cinerea
Arandano o
] (Vieira et
Quitosano Extracto de Aloe Vera B. cinerea (Vaccinium 1..2016)
al.,
corymbosum)
Arandano de
] Aceite esencial de arbusto alto ) )
Almidon y (Piechowiak
) corteza de canela Levaduras y mohos (Vaccinum
gelatina etal., 2022)
(Cinnamomum verum) corymbosum L.
cv. Bluecrop)
) Frambuesas, (Junqueira-
Envase tereftalato i Moho gris, causada
o Sorbato de potasio Zarzamoras y Gongalves
de polietileno por B. cinerea
arandanos etal., 2016)

Quitosano

Aceite esencial de

limon (Citrus lemon)

B. cinerea

Fresa (Fragaria
X ananassa cv.

Camarosa)

(Perdones et

al., 2012)

Varios estudios han destacado el potencial de incorporar extractos de plantas en

recubrimientos comestibles para prolongar la vida util de las bayas. Saleh & Abu-Dieyeh.
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(2022) aplicaron un extracto etanolico de hojas de Prosopis juliflora como recubrimiento
para prolongar la vida 1til poscosecha de fresas. El estudio demostrd que el recubrimiento
aument6 la vida util en 2.32 veces a 4 °C, mejorando las caracteristicas sensoriales, la
firmeza, los s6lidos solubles totales, reduciendo los recuentos microbianos, la pérdida de
peso y aumentando los niveles de antioxidantes. Ademas, Yang et al. (2014) informaron
el uso de un recubrimiento comestible a base de quitosano con extracto de hoja de
arandano para preservar la calidad poscosecha de ardndanos. El recubrimiento redujo
eficazmente la descomposicion de la fruta y preservo el valor nutricional de los arandanos

frescos durante el almacenamiento poscosecha.

Ademas, la aplicacion de extractos vegetales a través de emulsiones ha demostrado ser
otra opcidn efectiva para mejorar la estabilidad y liberacion controlada de compuestos
bioactivos. Las emulsiones actiian como vehiculos para la encapsulacion y proteccion de
fitoquimicos naturales, permitiendo la liberacion gradual de estos compuestos durante el
almacenamiento de la fruta y logrando una vida ttil prolongada en las bayas. Actualmente,
se utilizan nanoemulsiones de aceites esenciales de Thymus vulgaris, Matricaria
chamomilla, Pistacia atlantica y Mentha longifolia. Estas nanoemulsiones demuestran
una mayor capacidad inhibitoria contra Botrytis cinerea en fresas en comparacion con los
aceites esenciales solos. La eficacia inhibitoria y la preservacion de la calidad de la fruta
de estos aceites se atribuyeron a su aplicacion a través de nanoemulsiones (Javanmardi et

al., 2023).

El uso de compuestos bioactivos en la industria alimentaria presenta algunas desventajas
debido a que son altamente susceptibles a la degradacion al ser expuestos a diferentes
factores ambientales, tienen alta volatilidad y son insolubles en agua (Panagiotopoulou et
al., 2022). Para superar estas limitaciones, una estrategia es encapsularlos para brindar
proteccion a los compuestos contra condiciones adversas, permitiendo la estabilidad y
eficacia de los compuestos (Popescu et al., 2023). La encapsulacidon es una técnica
innovadora que cubre al agente activo en una matriz protectora y controla su liberacion en
el momento adecuado (Mufioz-Shuguli et al., 2021). Arabpoor et al. (2021) demostraron

que el recubrimiento con aceite esencial de Eryngium campestre L. encapsulado en
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nanoparticulas de quitosano es eficiente para minimizar el crecimiento microbiano en

cerezas y puede aplicarse a frutas similares para garantizar la calidad.

Plantas como fuente de compuestos bioactivos

Las plantas producen compuestos bioactivos como parte de su metabolismo secundario,
los cuales, a diferencia de sus metabolitos primarios, son esenciales para el desarrollo de
funciones vitales de la planta y son indispensables para la sintesis de moléculas mas
complejas. Los metabolitos secundarios no son esenciales para la supervivencia y el
sustento de la planta (Jabeur et al., 2017), pero juegan papeles importantes en su
interaccion con el medio ambiente, como la defensa contra el ataque de microorganismos
y depredadores, la proteccion contra el estrés ambiental (p. ej., temperatura, sequia,
salinidad y radiaciéon UV) y la atraccion de polinizadores (Lopez-Romero ef al., 2015).
Sadh et al. (2018) definen a los compuestos bioactivos como aquellas sustancias quimicas

que pueden ejercer efectos farmacologicos y toxicoldgicos beneficiosos para la salud.

Los metabolitos secundarios producidos por las plantas no juegan papeles esenciales en
su crecimiento y desarrollo, pero si tienen funciones especificas dentro de la planta
(Nandagoapalan et al., 2016). Entre ellos se encuentran principalmente los compuestos
fendlicos (aproximadamente 8.000 tipos), que estan ampliamente distribuidos en el reino
vegetal y se caracterizan por tener al menos un anillo fendélico y uno o mas grupos
hidroxilo (-OH). Se clasifican en subgrupos como los acidos fenoélicos (p. €j., acido galico,
acido elagico y acido fertlico) y los polifendlicos, que a su vez se subdividen en otros
grupos como los flavonoides (p. ¢j., antocianinas, flavonas, flavonoles e isoflavonas) y los
taninos (p. ej., acido clorogénico y acido protocatecuico) (Zeljkovi¢ et al., 2021). Otro
grupo comprende los compuestos que contienen nitrégeno, también conocidos como
alcaloides (aproximadamente 12.000 tipos), que se caracterizan por el nitrogeno en su
estructura quimica y son prevalentes en varias partes de las plantas como flores, raices,
hojas y cortezas de arboles (p. €j., cafeina, nicotina, morfina y quinina) (Farzaei & Sayyari,
2023). Mientras tanto, los terpenos y terpenoides (aproximadamente 25.000 tipos)
constituyen el grupo mas diverso de metabolitos secundarios en las plantas. Dentro de esta

categoria se encuentran los carotenoides, que se dividen a su vez en carotenos y xantofilas
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(p. €j., limoneno, B-caroteno, licopeno y luteina). Su diversidad estructural se deriva de
las unidades de isopreno de cinco carbonos y la forma en que se unen para formar
estructuras lineales, ciclicas o ramificadas (Chen et al., 2021). Algunas actividades de

estos metabolitos secundarios presentes en varias plantas se presentan en el Cuadro 3.

En general, estos fitoquimicos realizan funciones diversas y de gran importancia en las
plantas, ademas de aportar multiples beneficios a la salud gracias a sus propiedades
medicinales, antioxidantes, antifingicas, entre otras (Khan & Javaid, 2019). Algunas
plantas son especialmente conocidas por su contenido de compuestos bioactivos y por su
aplicaciéon en la medicina tradicional, industria farmacéutica y agroalimentaria,
principalmente (Juri¢ et al., 2020). Sin embargo, estudios recientes han contribuido en la
busqueda de nuevos beneficios y aplicaciones en diferentes campos ya que representan

una fuente natural muy valiosa (El-Saber Batiha et al., 2021).



Cuadro 3. Actividad de compuestos bioactivos presentes de diversas plantas.
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Fuente

Principales metabolitos

Efecto o aplicacion
secundarios

Referencias

Hojasén (Flourensia

) Uso en la medicina tradicional, en
Flavonoides y compuestos ) o .
la industria alimentaria y

(Aranda-

Ledesma et al.,

cernua) polifendlicos ]
farmacéutica. 2022)
) ) ] Uso farmacologico como
Moringa Alcaloides, flavonoides, o ) )
) ) antioxidante, antifiingico, (Kumar Bargah,
(Moringa terpenoides, glucosidos, o ) . )
) antimicrobiano, antiinflamatorias, 2015)
pterygosperma Gaertn) esteroides y CTF ) o
antiulcerosas y diuréticas
o Flavonoides totales, dcidos
Achicoria (Cichorium ] ) o o ] (Abbas et al.,
fenolicos totales, taninos, Principal aplicacion farmacéutica
intybus L.) ) 2014)
saponinas
) ] Posible desarrollo de farmacos por o
Alcaloides, flavonoides, ] o (Dwivedi et al.,
Papaya (Carica papaya) ] ) sus propiedades antioxidantes y
saponinas y taninos o ) 2020)
antimicrobianas
Alfalfa (Medicago ) ) Agente antimicrobiano en el 4rea (Krol et al.,
Polifenoles y flavonoides ) ) .
sativa L.) médica e industrial 2019)
Taninos, flavonoides,
Frijol (Phaseolus glucoésidos, antocianinas, ] (Nawaz et al.,
) ) Farmacéutica
vulgaris) terpenoides, carotenoides y 2020)

acido ascorbico.

Sésamo (Sesamum

Actividad antioxidante y uso

Fenoles y flavonoides medicinal para tratar diversas

(Dravie et al.,

indicum L) 2020)
enfermedades
) Poseen actividad antioxidante y )
Nopal Fenoles totales, flavonoides, o ) ) (El-Beltagi et al.,
] ] antimicrobiana y diversas
(Opuntia ficusindica) taninos y alcaloides. 2019)
enfermedades
Compuestos fenodlicos (acido
Garambullo ) ) o . . .
fertlico), betalainas, acido Aplicacion en la industria (Yahia et al.,
(Myrtillocactus ) ) ) )
ascorbico, carotenoides y agroalimentaria y salud humana. 2023)
geometrizans)

tocoferoles

Importancia de los compuestos bioactivos

Recientemente, la industria agroalimentaria se ha interesado en el uso y aprovechamiento

de compuestos bioactivos naturales gracias a sus beneficios, a su capacidad para mejorar

la calidad de los alimentos y a su potencial para desarrollar productos innovadores (Bhalla
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et al., 2021; Wang et al., 2017). El uso de los metabolitos secundarios en la industria
agroalimentaria influye en su capacidad para prolongar la vida util de diversas frutas y
hortalizas, estos compuestos aportan perfiles sensoriales unicos en los alimentos y
mejoran algunas de sus caracteristicas organolépticas como el aroma y color, ademas de
poseer propiedades saludables, lo que representa una oportunidad valiosa para su
aprovechamiento (Haider et al., 2022). Por ejemplo, Buzon-Durdn et al. (2023)
investigaron los compuestos bioactivos en extractos hidrometanoélicos de Silene uniflora
y evaluaron su actividad antimicrobiana en B. cinerea (moho gris) y Colletotrichum
nymphaeae (podredumbre de la fruta por antracnosis) para proteccion poscosecha en
fresa, los resultados indicaron que el extracto de S. uniflora mostr6 inhibicion ante los
fitopatogenos evaluados y puede ser considerado un método alternativo para el

almacenamiento poscosecha en fresa.

Por otro lado, 1a necesidad del consumidor por adquirir alimentos naturales, seguros y con
gran aporte nutricional ha dirigido al sector agroalimentario y farmacéutico a la busqueda
de nuevas alternativas como la formulacion de nuevos productos que responda a las
necesidades del mercado (Yu et al., 2021). Los metabolitos secundarios son un papel
importante y de mayor valor para aquellos consumidores preocupados por su bienestar
(Fabra et al., 2018); asimismo, muchos metabolitos se encuentran de manera natural y no
requieren la adicion de productos quimicos sintéticos que muchos de ellos pueden ser
nocivos para la salud, convirtiendo a los compuestos bioactivos naturales en una opcion

sostenible y respetuosa con el medio ambiente (Sridhar ef al., 2023).

Los compuestos bioactivos ofrecen una amplia gama de aplicaciones en el area
agroalimentaria tales como saborizantes naturales, conservantes, pigmentos, aromas €
incluso fertilizantes (Chiocchio et al., 2023). Recientemente, la composicion fendlica de
semillas de melon (Cucumis melo L.) mostraron tener un mayor porcentaje de
naringenina-7-O-glucdsido y el acido galico que puede ser utilizado como ingrediente
funcional en la industria alimentaria (Mallek-Ayadi et al., 2019). El Abdali et al. (2022)
llevaron a cabo un estudio similar, donde se evaluo6 el andlisis fitoquimico del aceite

esencial de lavanda marroqui (Lavandula dentata L.) y obtuvieron mayormente
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componentes terpénicos como linalool, alcanfor, borneol y mostraron actividad
antioxidante e inhibitoria ante Alfernaria alternata, B. cinereay F. oxysporum,
demostrando su posible uso antifingico y bioinsecticida en la produccioén agricola y
almacenamiento de leguminosas. Mientras tanto, Hematian Sourki er al. (2021)
informaron las propiedades fitoquimicas de verbena de limon (Lippia citriodora H.B.K.)
y su aplicacion en el enriquecimiento de galleas. En el perfil fitoquimico se identificaron
geranial, neral y limoneno, asi como compuestos fendlicos como el 4cido trans-fertlico,
hesperidina y 4cido cumarico, las evaluaciones mostraron efectos positivos sobre el aroma
y el sabor de las galletas durante su almacenamiento, lo que representa una alternativa
para prolongar la vida til y mantener la integridad de los productos de panaderia con alto

contenido de grasa.

Propiedades bioactivas de extractos de plantas

Los extractos de plantas son valorados por sus numerosas propiedades Unicas, las cuales
se atribuyen a los compuestos bioactivos presentes en ellos y que han despertado un gran
interés y beneficios a las industrias debido a sus potenciales cualidades y aplicaciones en
diversos campos (Azman et al., 2016). Estudios han reportado diversas propiedades,
siendo la actividad antioxidante la de mayor interés y que regularmente est4 asociada a la
presencia de compuestos fendlicos como polifenoles, acidos fenolicos, flavonoides y
taninos, que ayudan a proteger a las células del estrés oxidativo causado por los radicales
libres (Merghem & Dahamna, 2020). Sin embargo, en los extractos de plantas se pueden
producir dos tipos de antioxidante, polares (fendlicos) y no polares (vitamina E) y para
realizar su determinacién es recomendable realizar al menos dos métodos para
identificarlos (Ruto et al., 2018). En este contexto, el uso de antioxidantes de extractos de
plantas ha ido en aumento, especialmente dentro de la industria alimentaria, cosmética y
farmacéutica por ser considerados como seguros para consumo y provienen de fuentes
naturales y surgen como reemplazo de algunos antioxidantes sintéticos por posibles
efectos adversos para la salud (Messina et al., 2019). Shahid et al. (2018) mencionan que
el extracto de canela tiene una fuerte actividad antioxidante y demostrd ser efectivo para
reducir la oxidacion de lipidos de aceite de palma y puede ser utilizado para futuros

productos alimenticios.
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Las propiedades antimicrobianas son otra de las propiedades presentes en los extractos de
plantas, lo que significa que pueden inhibir el crecimiento de microorganismos patogenos
tanto Grampositivas como Gramnegativas (Gonelimali et al., 2018). Su capacidad
antimicrobiana ha llevado su aplicacion en la conservacion de alimentos, seguridad
alimentaria, en la agricultura como alternativa a los pesticidas quimicos y en la medicina
tradicional como tratamiento de enfermedades (Gedikoglu er al., 2019). Charles-
Rodriguez et al. (2020) desarrollaron y caracterizaron peliculas funcionales a base de
mucilago de semilla de chia negra (Salvia hispanica L.) funcionalizado con extracto
fendlico del fruto de Rhus microphylla como agente antioxidante y antifingico frente a
hongos fitopatdégenos como F. oxysporum'y Corynespora cassiicola, logrando buena
actividad antioxidante y efecto inhibitorio ante los hongos evaluados representando una
alternativa para mejorar la calidad de los productos alimenticios. En un estudio similar,
Hafsa et al. (2016) estudiaron la capacidad antioxidante e inhibitoria de peliculas activas
de quitosano con aceite esencial de Eucalyptus globulus contra algunas cepas bacterianas
como Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Candida
albicans'y Candida parapsilosis, obtuvieron gran actividad antioxidante en aceite esencial
de mayor concentracién y confirmaron su eficacia antimicrobiana en las cepas analizadas,
siendo un opcién importante en la aplicacion de envasados de alimentos, mejorando la

seguridad alimentaria y vida util de los alimentos.

Desde hace algun tiempo, las plantas han sido reconocidas por sus compuestos
terapéuticos sobre todo en la medicina tradicional por su forma de tratar enfermedades
gracias a sus propiedades antiinflamatorias (Schink et al., 2018). La busqueda de métodos
efectivos para tratar enfermedades inflamatorias ha impulsado el estudio, identificacién y
caracterizacion de diversos compuestos con propiedades antiinflamatorias (Parameswari
et al.,2019). Alkhalaf et al. (2019) realizaron estudios sobre la actividades antioxidantes,
antiinflamatorias y anticancerigenas del extracto de fruto y semilla de aguacate (Persea
americana) donde los extractos tanto de la semilla como del fruto exhibieron actividades
antiinflamatorias y anticancerigenas, los cuales pueden ayudar al desarrollo de nuevos

farmacos.
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Se tiene conocimiento que alrededor del 80% de la poblacion a nivel mundial aun depende
de compuestos derivados de plantas para tratar una amplia variedad de enfermedades y
que cerca de 20, 000 especies han sido utilizadas en la medicina tradicional con fines
terapéuticos (Valsalam et al., 2019). La induccion de metabolitos secundarios de plantas
ha sido objeto de estudio debido a fitoquimicos como polifenoles, flavonoides y taninos y
a su aporte para tratar o prevenir enfermedades cancerigenas ya que es la segunda causa
de muerte en el mundo (Noumi et al., 2020). Por lo tanto, investigaciones se han centrado
en identificar plantas con actividades anticancerigenas. Nelson et al. (2020) analizaron el
potencial anticancerigeno de extracto metanolico de Eclipta alba en varios tipos de células
cancerosas HCT-116, PC-3, RCC-45 y MCF-7 y evaluaron la toxicidad general donde
incluyeron células normales WI-38 en los ensayos, el cual demostré que el extracto
estudiado tiene una potente actividad contra células cancerosas HCT-116 y mostraron
caracteristicas ideales hacia células normales WI-38 siendo una opcidn para el tratamiento
de personas con cancer de colon. Esto confirma que los extractos de plantas son un método
factible que puede ejercer una amplia gama de aplicaciones, vinculadas a sus diferentes
propiedades (Yu et al., 2021). Por lo tanto, los estudios sobre la integraciéon de estos
compuestos en diferentes sistemas de envasado y recubrimiento son cruciales para mejorar
la vida util y la calidad de las bayas, proporcionando alternativas mas sostenibles y

saludables en la industria agroalimentaria.
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MATERIALES Y METODOS

Ubicacion y establecimiento del experimento

La presente investigacion se realizo en el Laboratorio de Fermentaciones y Biomoléculas
del Departamento de Ciencia y Tecnologia de Alimentos (DCTA) de la Universidad
Auténoma Agraria Antonio Narro (UAAAN), en Saltillo, Coahuila y el laboratorio del
Departamento de Ingenieria Quimica de la Facultad de Ciencias de la Universidad de Vigo
Campus Ourense, Espafia. La experimentacion de este trabajo consta de tres etapas:
I) Obtencion de extractos de E. fexana mediante dos métodos uno convencional y uno no
convencional; IT) Caracterizacion de extractos obtenidos en términos de su bioactividad;
y III) Evaluacion del efecto de los extractos obtenidos en la extension de vida de anaquel

de Zarzamora.

Etapa L. Obtencion de extractos de E. fexana mediante dos métodos uno convencional
y uno no convencional.

Reactivos

Todos los reactivos utilizados en esta investigacion son de grado analitico. La base en la
disolucion de los reactivos fue agua destilada, y metanol en algunas pruebas. En la Etapa I,
la determinacion de proteinas se realizd utilizando una mezcla digestora, acido borico e
indicador mixto, los cuales fueron adquiridos de Fermont (México) y acido sulfurico
obtenido de Jalmek (México). Para la determinacion de grasas, se empleo éter de petroleo
adquirido de Jalmek (México). En la determinacién de fibra cruda, se emplearon acetona
concentrada, 4cido sulfurico e hidroxido de sodio, adquiridos de Jalmek (México). En la
preparacion de los solventes, se utilizaron 4cido acético glacial, glicerol 30°B¢, acetato de
sodio y etanol, adquiridos de Carlo Erba Reagents (Francia). El cloruro de colina se
adquirié de Thermo scientific (China), mientras que el acido citrico fue suministrado por

Scharlau (Espafia).

Obtencion y preparacion de la materia prima
Las hojas de E. texana se recolectaron en abril de 2023, ubicado a 25°34'34.7"N
101°04'47.3"W en la Presa Palo Blanco, Ramos Arizpe, Coahuila, México (Figura. 1).
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Figura 1. Ubicacion geografica del punto de recoleccion de hojas de E. texana.

Las muestras fueron recolectadas y transportadas en bolsas de plastico al Laboratorio de
Fermentaciones y Biomoléculas de la UAAAN. Las hojas recolectadas se lavaron con
agua destilada y secaron en un horno (Biobase Biodustry Shandong Co., Ltd., Jinan, SHG,
China) a 60 °C durante 48 h (Jasso de Rodriguez et al., 2019). Posteriormente, las hojas
se molieron a baja velocidad en una licuadora (Osterizer, USA) hasta alcanzar un tamafio
de particula equivalente a la malla No. 20. Luego, se empacaron en bolsas de plastico

selladas y se almacenaron hasta su uso (Figura 2).

Figura 2. Obtencion y preparacion de la materia prima: A) Recoleccion de hojas de

E.texana; B) Proceso de trituracion; C) Tamizado.

Caracterizacion fisicoquimica de materia prima

Todas las metodologias se llevaron a cabo utilizando los métodos reportados por el
Me¢étodo Oficial de Analisis (AOAC, 1997). Se analizaron muestras de hojas de E. texana
para determinar humedad, cenizas, proteina bruta, grasa y contenido de fibra (Figura 3);
los resultados se expresaron como porcentaje del peso seco (PS). Todas las mediciones se

realizaron por triplicado.
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Figura 3. Determinacion fisicoquimica: A) Determinacion de proteina; B) Proceso de
digestion; C) Determinacion de grasas; D) Determinacion de Cenizas; E) Determinacion

de Humedad; F) Determinacion de Fibra.

Preparacion de disolventes eutécticos profundos (DEP)

Los DEP empleados en este estudio se elaboraron segun el método descrito por Garcia et
al. (2016), con algunas modificaciones. Los diferentes componentes se mezclaron
mediante agitacion magnética y se calentaron a una temperatura aproximada de 80 °C
durante 120 min hasta conseguir un liquido homogéneo e incoloro. Ademas, se agregd un
30% en volumen de agua destilada a la composicion para disminuir la viscosidad (El

Kantar et al., 2019). Una vez preparados, se almacenaban hasta su uso posterior.

Extraccion de compuestos bioactivos de hojas de E. texana

Los ensayos preliminares mediante extraccion convencional se llevaron a cabo en un
agitador orbital (Adolf Kiihner AG, Birsfelden, Suiza) en condiciones previamente
optimizadas (50% de etanol acuoso v/v a 50 °C durante 120 min a 150 rpm) (Tan Mei
Chin et al., 2021). Ademas, se realizaron 4 mezclas eutécticas diferentes utilizando las
mismas condiciones de extraccion convencional para seleccionar una mezcla adecuada.

Las mezclas estudiadas incluyeron DEP 1, compuesto por glicerol:acido citrico en una
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proporcion molar de 4:1 (Houasni et al., 2022); DEP 2, formulado con acetato de
glicerol:sodio en una proporcion molar de 4:1 (Bozinou ef al., 2022); DEP 3, consistente
en cloruro de glicerol:colina en una proporcion molar de 2:1 (Gémez-Urios ef al., 2023);
y DEP 4, preparado con cloruro de colina:acido acético:agua en una proporcion molar de
1:1:10 (Herndndez-Corroto et al., 2020). Después de los experimentos de extraccion
convencional, los extractos obtenidos se filtraron a través de papel filtro Whatman Ashless

Grado 42 y se almacenaron a oscuridad a 5 °C hasta su andlisis (Figura 4).

P =
-

Figura 4. Extraccion de compuestos bioactivos de hojas de E. texana: A) Preparacion de
los DEP; B) Proceso de extraccion por agitacion convencional; C) Filtracion de extractos

obtenidos.

Por otro lado, se empled la tecnologia de microondas combinada con el DEP seleccionado
para optimizar la recuperacion de compuestos bioactivos. Para ello, se emple6 un
microondas Monowave 450 (Anton Paar GmbH, Austria) equipado con un compresor de
aire para controlar la temperatura de la muestra. El equipo proporciona un control preciso
de variables como la temperatura y el tiempo de tratamiento y ajusta automaticamente el
consumo de energia para lograr la temperatura deseada. Fue necesario un periodo de
precalentamiento de 5 min antes de comenzar los ensayos de extraccion por microondas.
Durante el proceso de extraccion, se mantuvo una agitacion continua a 600 rpm. Para estos
experimentos, se colocaron 1.38 g de muestra en un recipiente de Pyrex (G30) de 30 mL
que contenia 15 mL de disolvente, y la mezcla se calent6 a la temperatura y el tiempo
requeridos. Una vez completado el proceso de extraccion, las mezclas resultantes se
recuperaron mediante filtracion al vacio utilizando papel filtro (Whatman Ashless, Grado

42) y se almacenaron para su posterior analisis, como se ha descrito anteriormente (Figura
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5). Los efectos de la temperatura y el tiempo se evaluaron utilizando un disefio
experimental (22 + puntos estrella) con un cuadruplicado en el punto central, dando como
resultado un total de 12 experimentos. En el Cuadro 4 se muestran las condiciones
experimentales, incluyendo las variables independientes: temperatura (X1, °C) y tiempo
(X2, min), y sus rangos de variacion, las cuales se determinaron a partir de experimentos
preliminares de una sola variable (datos no mostrados). Los datos experimentales se
ajustaron utilizando un polinomial de segundo orden, como se describe en la siguiente

ecuacion:

y=p, + Zk:[sixi " Zk:ﬁﬁxiz " Zk: | Z BXiX, (1)

donde Y es la variable de respuesta; f8, es coeficiente constante; S, B.y ﬂij son los

coeficientes de regresion lineal, cuadritica y de interaccidon, respectivamente; X;y
X; corresponden a variables independientes y k representa el namero de variables. Para
modelar los datos, se utilizé el complemento de anélisis de datos de Microsoft Excel, EE.
UU., para realizar el andlisis de regresion. La calidad del modelo se demostré mediante la
evaluacion de la falta de ajuste, el coeficiente de determinacion (R?) y la significancia

estadistica mediante la prueba F para analisis de variables.

Figura 5. Extraccion asistida por microondas de hojas de E. texana: A) Microondas
Monowave 450 (Anton Paar GmbH, Austria); B) Extracto de E. texana con DEP 4; C)

Recuperacion de mezclas mediante filtracion al vacio.
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Cuadro 4. Variables experimentales implicadas en el estudio.

Valor o
Variable Definicion y unidades Nomenclatura
rango

Fijo Relacion de extraccion liquido a sélido (v/iw) LSR 10.87 mL/g

Velocidad de agitacion (rpm) 120
Independiente Extraction temperature (°C) Te 140-200 °C

Extraction time (min) te 20-45 min
Dependiente  Contenido polifenolico total (mg EAG/g PS) CPT oyl

Contenido total de flavonoides (mg ER/g PS) CTF oyl

Actividad de eliminacion de radicales DPPH* (mg ET/g DPPH o0 y3

PS)

Actividad de eliminacion de radicales catidnicos ABTS ABTS o y4

(mg ET/g PS)

Poder antioxidante reductor férrico (mg ET/g PS) FRAP o y5

Optimizacion de las condiciones y validacion del modelo

Para lograr la maxima recuperacion de compuestos polifenolicos, flavonoides y actividad
antioxidante en los extractos, se empled una Metodologia de Superficie de Respuesta
(RSM, por sus siglas en inglés). La optimizacion se realizo utilizando la funciéon de
deseabilidad en Statgraphics Centurion version XVI (Statpoint Technologies Inc.,
Warrenton, VA, EE. UU.). La validacion del modelo se verificd mediante la realizacion

de cuatro ensayos experimentales en condiciones ptimas.

Etapa II. Caracterizacion de los extractos en términos de su bioactividad

Reactivos

Todos los reactivos utilizados en la Etapa II fueron grado analitico. La base en la
disolucion de los reactivos fue agua destilada, y metanol en algunas pruebas. El metanol,
pellets de hidréxido de sodio, nitrito de sodio, persulfato de potasio fueron adquiridos de
Carlo Erba Reagents (Francia). El 4cido galico (AG), el reactivo Folin-Ciocalteu (FC), el
cloruro de hierro (III) hexahidratado y la rutina se obtuvieron de Sigma-Aldrich
(Barcelona, Espafia). Trolox (dcido 6-hidroxi-2,5,7,8-tetrametilcroman-2-carboxilico) se

obtuvo de Acros Organics (Eslovaquia). El acido 2,2'-azino-di(3-etil-benzo-tia-zolina-6-
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sulfonico (ABTS), el 2,2-difenil-1-picrilhidrazilo (DPPH) y el TPTZ (2,4,6-tri(2-piridil)-
S-triazina) fueron suministrados por Alfa Aesar (EE.UU.). El carbonato de sodio y cloruro
de aluminio suministrado por Scharlau (Espafia). El colorante 2,6-diclorofenol-indofenol
(DCPIP) se obtuvo de Sigma-Aldrich (EE. UU.). El agar papa dextrosa (PDA) y el caldo
de papa dextrosa (PDB) se compraron a TM MEDIA (Titan Biotech Ltd., Delhi, India).
El cloruro de calcio fue comprado a Merck (J.T. Baker, Japon).

Caracterizacion de los extractos de E. texana

Contenido polifendlico total (CPT)

El CPT de cada extracto se evalu6 utilizando el método FC adoptado de Singleton &
Rossi. (1965), con algunas modificaciones. Se mezcld una alicuota de la muestra diluida
(0.3 mL) con 2.5 mL de reactivo de FC (1:10, v/v). Posteriormente, se agregaron 3.0 mL
de carbonato de sodio (7.5% p/v) y luego se agit6. Finalmente, se dejo reaccionar la
mezcla en oscuridad durante 1 h. Luego, se transfirieron 0.2 mL de cada muestra a una
microplaca de 96 pocillos para medir la absorbancia a 760 nm utilizando un
espectrofotometro Multiskan SkyHigh (Thermo Fisher Scientific, Waltham, MA, EE.
UU.). El CPT se calcul6 basandose en la curva de calibracion utilizando una solucién
estandar de AG (0.02, 0.04, 0.06, 0.09, 0.11, 0.13, 0.15, 0.18 y 0.20 g/L, R’ = 0.9959) y
se expresd como miligramos de equivalentes de AG (EAG)/g PS. Todas las mediciones

se realizaron por triplicado (Figura 6).

Figura 6. Contenido polifenélico total (CPT): A) Dilucion de las muestras; B) Reaccion

en microplaca de CPT; C) Medicion de absorbancia mediante espectrofotometria.

Contenido total de flavonoides (CTF)

El CTF en los extractos se determind mediante el ensayo colorimétrico segun el método
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descrito por Blasa et al. (2006). Inicialmente, se mezcld 1 mL del extracto diluido con
0.3 mL de NaNO> (5%, p/v) y se dejé reposar durante 5 min. Posteriormente, se agregaron
0.3 mL de AICI; (10%, p/v) y se incubaron durante 2 min, seguido de la adicién de 2 mL
de NaOH (1 N). Las muestras se mezclaron usando un vortex y luego se conservaron en
condiciones de oscuridad a temperatura ambiente durante 30 min. La absorbancia se
determind colocando 0.2 mL de cada muestra en una microplaca de 96 pocillos y se midio
a 510 nm empleando un espectrofotometro Multiskan SkyHigh (Thermo Fisher Scientific,
Waltham, MA, EE. UU.). Se utilizé rutina como estandar (0.05, 0.10, 0.15, 0.20, 0.25,
0.30, 0.35, 0.40 y 0.45 g/L, R’ = 0.9969) para construir la curva de calibracion y los
resultados se expresaron en miligramos de equivalentes de rutina (ER)/g PS. Todos los

analisis se realizaron por triplicado (Figura 7).
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Figura 7. Contenido total de flavonoides (CTF): A) Preparacion de las muestras; B)

Reaccion en microplaca de CTF; C) Lectura en microplaca y registro de absorbancias.

Actividad antioxidante por método DPPH

El método de eliminacién de radicales DPPH se llevo a cabo siguiendo el método de
Brand-Williams et al. (1995), con modificaciones menores. Brevemente, se mezclaron
0.2 mL del extracto disuelto con 2 mL de DPPH (6 x 10> M en metanol). Luego, la mezcla
se agitd y se dejo reaccionar en condiciones de oscuridad durante 15 min. La disminucién
de la absorbancia se midi6é a 515 nm con la ayuda de un espectrofotometro Multiskan
SkyHigh (Thermo Fisher Scientific, Waltham, MA, EE. UU.). Se utilizo Trolox como
patron de referencia y los resultados se expresaron en miligramos de equivalentes de

Trolox (ET)/g PS. Todas las determinaciones se realizaron por triplicado (Figura 8).
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Figura 8. Actividad antioxidante por método DPPH: A) Reaccidon en microplaca de

DPPH; B) Medicién de absorbancia mediante espectrofotometria.

Actividad antioxidante por método ABTS

La actividad eliminadora de radicales ABTS de los extractos se determind segun lo
descrito por Rodriguez-Rebelo ef al. (2024). El radical ABTS++ se formé mezclando una
solucion de ABTS 7 mM con persulfato de potasio 2.4 mM durante 16 h en completa
oscuridad y agitacion constante. Antes del analisis, la solucion de ABTS se diluy6 en agua
destilada hasta alcanzar una absorbancia de 0.70 a 734 nm. Posteriormente, se agregaron
0.03 mL de cada muestra diluida a 3 mL de solucion ABTS diluida y se midio la
disminucién de la absorbancia después de 6 min a 734 nm con un espectrofotdmetro
Multiskan SkyHigh (Thermo Fisher Scientific, Waltham, MA, EE. UU.). Se empleo6 el

Trolox como estandar de referencia, y los resultados se expresaron en miligramos de

equivalentes de Trolox (ET)/g PS. Todas las determinaciones se realizaron por triplicado

(Figura 9).

'Qﬁﬂ@&m

) 8 d.u

,"v" T Y,

7’

Figura 9. Actividad antioxidante por método ABTS: A) Preparacion de muestras; B)

Reaccion en microplaca de ABTS; C) Medicion de absorbancia por espectrofotometria.
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Actividad antioxidante mediante el método del poder antioxidante reductor férrico
(FRAP)

Se llevo a cabo el método FRAP segtin lo informado por Gullon ef al. (2017), con ligeras
modificaciones. El reactivo FRAP se prepar6é diariamente mezclando tampdn acetato
300 mM (pH 3.63), solucion 10 mM de TPTZ (2,4,6-tripiridil-s-triazina) en HC1 40 mM
y soluciéon 20 mM de FeCl;.6H>O en una proporcion final de 10:1:1 (v/v/v). Para este
andlisis, se agregaron 0.1 mL de extracto diluido a 3 mL de la solucién de trabajo de
FRAP. La absorbancia de la reaccion se registro a 595 nm después de un periodo de
incubacion de 6 min en un espectrofotometro Multiskan SkyHigh (Thermo Fisher
Scientific, Waltham, MA, EE. UU.). Los valores se determinaron con una curva de
calibracion como miligramos de equivalentes de Trolox (ET)/g de PS. Todas las

determinaciones se realizaron por triplicado (Figura 10).

Figura 10. Actividad antioxidante mediante el FRAP: A) Preparacion de muestras de
extractos; B) Reaccion de muestras en microplaca; C) Lectura de absorbancias por

espectrofotometro.

Contenido de polifenoles y flavonoides por analisis HPLC-MS/MS

La cuantificacion e identificacion de compuestos polifenolicos y flavonoides en extractos
obtenidos en condiciones Optimas de extraccion se realizaron mediante HPLC-MS/MS
(cromatografia liquida de alta resolucion acoplada a espectrometria de masas en tandem).
Los andlisis se realizaron utilizando un sistema de cromatografia liquida Agilent
Technologies 1200 Infinity acoplado a un espectrometro de masas en tandem de triple
cuadrupolo (MS/MS AB SCIEX Triple Quad 3500) equipado con una fuente de ionizacién
por electrosplay (ESI), que funciona en modo de iones negativos. Las muestras filtradas

(membranas de 0.45 pm) se inyectaron en un volumen de 5 pLL en una columna Luna C18
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(Phenomenex). Las fases moviles utilizadas fueron acido formico al 0.1% en agua
(disolvente A) y acido formico al 0,1% en acetonitrilo (disolvente B), con un caudal de
0.4 mL/min. El programa de gradiente lineal fue el siguiente: 2.0 % de disolvente B
durante 2 min, 2.0 % a 30 % de disolvente B durante 13 min, 30 % a 100 % de disolvente
B durante 2 min, 100 % de disolvente B durante 4 min, volviendo al 2 % disolvente B
durante 1 min, seguido de una retencién isocratica al 2% de disolvente B durante 2 min.
La generacion de iones se logro con una fuente ESI en las siguientes condiciones: voltaje
capilar de 3000 V, compensacion de la placa terminal de 500 V, flujo de gas seco a
8.0 L/min, presion del nebulizador a 2 bar y temperatura del calentador seco a 220 °C. La
adquisicion de datos se realizd en modo de monitoreo de reacciones multiples (MRM),
con transiciones especificas monitoreadas para cada compuesto en funcion de la masa del

ion original y los fragmentos caracteristicos.

Actividad antifungica

Se probaron dos cepas, Rhizopus stolonifer (no. de acceso 1384) fue adquirida por el
CINVESTAYV (Centro de Investigacion y Estudios Avanzados del Instituto Politécnico
Nacional, CDMX, México), mientras que Fusarium oxysporum (no. de acceso
MTO001892) se obtuvo del CICY (Centro de Investigacion Cientifica de Yucatan, Yucatan,
México). Las cepas de fungicas se cultivaron en medio PDA en placas Petri (9 cm de
diametro) a 25 °C durante 5 a 7 dias. Las esporas se recolectaron utilizando una solucién
de Tween 80 (0.1%, v/v) y cuantificadas mediante una cédmara de Neubauer.
Posteriormente, las suspensiones de esporas se diluyeron en caldo estéril hasta obtener

una concentracion de 10* esporas/mL (Figura 11).



33

Figura 11. Prueba de actividad antifingica: A) Siembra de hongo en medio de cultivo
PDA; B) Hongo R. stolonifer; C) Hongo F. oxysporum; C) Conteo de esporas de

F. oxysporum y R. stolonifer.

El método de actividad antifingica se evalué mediante el método de microdilucion, segun
lo reportado por Flores-Lopez et al. (2016), con ligeras modificaciones. Los extractos de
E. texana se prepararon a diferentes concentraciones (0.1, 0.5, 1.0, 5 y 20%, v/v) en PDB
estéril. Luego, se agregaron 100 pL de cada concentraciéon y 100 pL. de suspension de
esporas en una microplaca estéril de 96 pocillos, obteniendo un volumen final de 200 pL.
y se evalud la densidad optica (DO) a 600 nm durante un periodo de 48 h (intervalos de
12 horas) en R. stolonifer y 96 h (intervalos de 24 h) en F. oxysporum a 25 + 2 °C
utilizando un lector de automdtico de microplacas (BIOBASE-EL 10A, Jinan, SHG,
China) (Figura 12). El porcentaje de inhibicidn del crecimiento (%) se evalué mediante la
siguiente ecuacion:
ODcontrol = ODimyestra

Inhibicién (%) = 0D x 100 ()
contro

donde, OD,,esra COrresponde a la densidad oOptica de cada tratamiento y ODqpio1 S€

refiere a la densidad optica del control. Todos los tratamientos se realizaron por triplicado.



34

Figura 12. Actividad antifingica mediante microdilucion: A) Preparacion de extractos a
diferentes concentraciones; B) Adicion de muestras en microplaca estéril de 96 pocillos;

C) Lectura de absorbancias a diferentes tiempos en R. stolonifer y F. oxysporum.

III) Evaluacion del efecto de los extractos obtenidos en la extension de vida de

anaquel de zarzamora

Reactivos

Todos los reactivos utilizados en la Etapa III son de grado analitico. Para la prueba de vida
de anaquel se utilizaron hidréxido de sodio y glicerol adquiridos de Jalmek
(México), fenolftaleina obtenida de ACS (México), el colorante 2,6-diclorofenol-
indofenol (DCPIP) se obtuvo de Sigma-Aldrich (EE. UU.). El agar papa dextrosa (PDA)
y el agar cuenta en placa (PCA) se obtuvieron de TM MEDIA (Titan Biotech Ltd., Delhi,
India). El cloruro de calcio fue obtenido de Merck (J.T. Baker, Japon). La peptona de
caseina obtenido de Solbiosa (México) y el acido ascorbico adquirido de Analytyka

(México).

Materia prima

Para la preparacion del recubrimiento comestible se utilizaron semillas de chia negra
(Salvia hispanica L.) de la variedad negra de Huaquechula, Puebla, México. Las
zarzamoras (Rubus fruticosus var. Tupy) se adquirieron en un mercado local en Saltillo,
Coahuila, México. Los frutos se seleccionaron visualmente en funcion del color, tamafio

y la ausencia de dafios fisicos o infecciones fungicas.
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Preparacion y aplicacion del recubrimiento sobre zarzamora

Para determinar el efecto del extracto optimizado de E. texana en la vida 1til de los frutos
de zarzamora, se incorpord a una formulacion de recubrimiento previamente optimizada
por Guia-Garcia et al. (2023), con modificaciones menores. Este consistio 0.24% (p/v) de
mucilago de chia liofilizado, 0.15% (p/v) de cloruro de calcio (CaClz) y 0.05% (p/v) de
glicerol. Se consideraron tres tratamientos: sin recubrimiento (control) y recubrimientos
comestibles que contenian 0.5% y 1.0% (v/v) de extracto, concentraciones seleccionadas
por su significativa actividad antifingica in vitro. Los tratamientos se aplicaron a los frutos
mediante aspersion, seguido de secado en estufa (Biobase Biodustry Shandong Co., Ltd.,
Jinan, SHG, China) a 25°C durante 25 min. Cada tratamiento se replic tres veces, con 10
frutos por réplica (n = 30 por tratamiento). Los frutos se almacenaron en bandejas de
polipropileno a 4 + 1 °C y 85% HR durante 15 dias. Las evaluaciones fisicoquimicas y

microbiologicas se realizaron a intervalos regulares (0, 3, 6, 9, 12 y 15 dias) (Figura 13).
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Figura 13. Montaje de la prueba: A) Formulacion del recubrimiento funcionalizado con
extractos de E. texana; B) Aplicacion del recubrimiento sobre zarzamora; C) Proceso

secado de los frutos; D) Almacenamiento de los frutos.

Analisis fisicoquimicos

Pérdida de peso

Las zarzamoras se pesaron individualmente (n = 30 por tratamiento) cada tres dias durante
el periodo de almacenamiento utilizando una balanza analitica (Ohaus, Nueva Jersey, EE.
UU.) (Figura 14). La reducciéon de masa del fruto (expresada como porcentaje de pérdida

de peso) se calculé mediante la siguiente ecuacion:

. W; — W;
Pérdida de peso (%) = W x 100 3)
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donde W; representa el peso inicial de la muestra y W; es el peso final de la muestra.

Figura 14. Pérdida de peso: A) y B) Determinacion de pérdida de peso en los frutos.

Acidez titulable (AT), pH y contenido de so6lidos solubles (CSS)

Para determinar la AT, pH y CSS se seleccionaron aleatoriamente 50 g de fruto de cada
tratamiento. Las muestras se molieron hasta obtener una mezcla homogénea, luego se
filtraron al vacio a través de papel de filtro Whatman No. 1. La AT se determin¢ utilizando
el método de titulacion descrito por AOAC (1997). Especificamente, 10 mL del jugo de
zarzamora previamente extraido se titularon con una solucion de hidréxido de sodio
(NaOH) de 0.1 mol/L. Se utiliz6é fenolftaleina como indicador y los resultados se
expresaron como porcentaje (%) de acido citrico. El valor de pH de los frutos de
zarzamora para cada tratamiento se midi6 utilizando un medidor de pH (Ohaus ST 20;
Parsippany, NJ, EE. UU.) insertando el electrodo en la muestra, de acuerdo con Vieira et
al. (2016). E1 CSS del jugo de zarzamora se determiné colocando una gota de la muestra
en un refractometro digital (PAL-1 Pocket, Atago, EE. UU.), como lo describe AOAC
(1997). Los resultados se expresaron como porcentaje (%). Para cada tiempo de muestreo,
se analizaron diez muestras por tratamiento para todas las pruebas fisicoquimicas (Figura

15). Todos los experimentos se llevaron a cabo por triplicado.
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Figura 15. A) Determinacion de acidez titulable; B) Determinacion de pH; C)

Determinacion de contenido solidos solubles.

Determinacion del acido ascorbico (AA)

El contenido de AA se midi6 utilizando el método de titulacion DCPIP, siguiendo el
procedimiento descrito por Ranganna (1977), con modificaciones menores. Brevemente,
se mezclaron 2 mL de jugo centrifugado, 5 mL de 4cido oxalico (4.0 % p/v) y 2 mL de
agua destilada hasta que se observo un ligero cambio de color en la solucion de DCPIP
(24,0 g/L en agua destilada). Se utilizé 4cido ascorbico como solucion estandar, preparado
a una concentracion de 20 g/L en agua destilada. Los resultados se expresaron como
mg/100 mL de AA por peso fresco (PF) (Figura 16). Todas las determinaciones se

realizaron por triplicado.

Figura 16. A) y B) Determinacion de acido ascorbico (AA).

Color

Los cambios de color en las zarzamoras se midieron utilizando un colorimetro Konica
Minolta (CR 400; Minolta, Japén) con el sistema CIE L*a*b* (Commission Internationale
de L'Eclairage). El color se determin6 tomando dos medidas de la superficie del fruto,

consistentemente en la misma zona, y utilizando diez frutos por tratamiento (Franco et al.,
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2017). Para cada medicion, el colorimetro se calibré utilizando una placa blanca estandar
proporcionada por el instrumento (Y = 93.41, x = 0.3139, y = 0.3206). Por lo tanto, el
color se expreso con tres valores: L* para la luminosidad, que va de oscuro a blanco, a*

para el rango de verde a rojo y b* para el rango de azul a amarillo (Figura 17).

Figura 17. A) y B) Medicion de color con ayuda de un Colorimetro Konica Minolta (CR
400; Minolta, Japon).

Firmeza

La firmeza de las zarzamoras se evalué utilizando un penetrometro digital (Fruit Hardness
Tester, FHT 200, Extech Co., EE. UU.), empleando una sonda de 3 mm de didmetro. Se
realizaron dos mediciones en lados opuestos de la zona central de diez frutos para cada
tratamiento (Guia-Garcia et al., 2023). Los resultados se reportaron en términos de fuerza

(N) (Figura 18).

Figura 18. A) y B) Determinacion de firmeza en zarzamora con el penetrometro digital

(Fruit Hardness Tester, FHT 200, Extech Co., EE. UU.).
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Analisis microbiologico

Se evaluaron los recuentos de bacterias meséfilas aerobias totales, asi como el conteo de
mohos y levaduras, durante el periodo de almacenamiento de cada tratamiento, siguiendo
el método de Olivas et al. (2007). Para ello, se homogeneizaron asépticamente 10 g de
zarzamoras con 90 mL de agua peptonada en bolsas Nasco Whirl-Pak (Wisconsin, EE.
UU.). Para la determinacion de microorganismos mesofilos aerobicos totales, se
prepararon diluciones seriadas en agua de peptona al 0.1% y se sembraron en agar PCA 'y
se incubaron a 37 °C durante 2 dias. Se utilizaron las mismas diluciones para la
cuantificacién de mohos y levaduras, las cuales se cultivaron en agar PDA e incubaron a
25 °C durante 5 dias (Figura 19). Después de la incubacion, los recuentos microbianos se
informaron como el logaritmo de unidades formadoras de colonias por gramo (log

UFC/g). Todos los analisis se llevaron a cabo con dos réplicas.

Figura 19. Analisis microbiologico: A) Preparacion de diluciones de los diferentes

tratamientos; B) y C) Inoculacion de las diferentes muestras.

Analisis estadistico

Los datos experimentales fueron evaluados estadisticamente mediante la realizacién de
un analisis de varianza (ANOVA) para determinar diferencias significativas y la prueba
de comparacion de medias utilizando el método de Tukey (p < 0.05) con el software

Minitab version 17.0 (State College, PA, EE. UU.).
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RESULTADOS Y DISCUSION

Caracterizacion quimica de materias primas

Para la valorizacion de las hojas de E. fexana, la caracterizacion quimica es fundamental
para determinar los potenciales bioproductos que se pueden derivar de su procesamiento,
incluyendo compuestos bioactivos y aplicaciones de polisacaridos. La composicién
quimica de las hojas de E. texana revelo la presencia de proteina cruda (6.5 + 0.4% PS),
lipidos (10.6 + 0.3% PS), cenizas (5.4 = 0.4% PS), humedad (2.6 + 0.7 %), fibra cruda
(16.7 £ 0,4%) y carbohidratos totales (59.3 &= 0.4%). El contenido de proteina y lipidos
fue superior al de otras especies del mismo hébitat, como las hojas de R. microphylla, que
oscilan entre 0.8% y 8.9% PS, respectivamente (Flores-Lopez et al., 2024). Estas
diferencias sugieren que las plantas poseen capacidades metabdlicas para almacenamiento
de nutrientes, particularmente en lipidos, que son esenciales para la conservacion de
energia y el mantenimiento de la estabilidad de la membrana celular en condiciones

adversas (Reszczynska & Hanaka, 2020).

El contenido de cenizas en las hojas de E. fexana fue similar al de las hojas de Prosopis
laevigata, otra especie de la misma familia (Fabaceae), que contiene 6.7% de cenizas
(Zapata-Campos et al., 2020). Esto refleja la composicion mineral de las hojas, esencial
para mantener la estructura celular y apoyar el transporte de nutrientes dentro de la planta.
También es destacable el contenido de humedad relativamente bajo, ya que favorece el
almacenamiento y reduce el riesgo de deterioro microbiano. Pérez-Olivera et al. (2022)
estudiaron cuatro especies de la familia Fabaceae: Bauhinia sp., Albizia sp., Leucaena sp.,
y E. polystachya, las cuales exhibieron contenidos de fibra cruda de 20.8%, 17.5%, 13.9%
y 19.7% PS, respectivamente, comparables con los observados en este estudio. Segun
Timm et al. (2023), la fibra se encuentra principalmente en la pared celular de las plantas,
donde desempana funciones estructurales y protectoras, contribuyendo a la retencion de
agua en los tejidos y mejorando la resistencia de las plantas a la sequia y temperaturas
extremas. Los carbohidratos totales constituyeron el componente principal de las hojas,
sirviendo como reserva de energia y contribuyen a la integridad morfoldgica de la planta,
lo cual es critico para su adaptacion (Krasavina et al., 2014). Este analisis quimico de las

hojas de E. texana proporciona la primera caracterizacion completa de este material
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vegetal, ofreciendo informacion valiosa sobre sus propiedades quimicas. Estos resultados
establen una base solida para explorar sus posibles aplicaciones en diversas industrias,

particularmente en los sectores agroalimentario y farmacéutico.

Seleccion del disolvente para la extraccion de compuestos bioactivos

Los ensayos preliminares se llevaron a cabo utilizando el método de extraccion
convencional para evaluar el solvente mas adecuado. Los resultados, resumidos en el
Cuadro 5, presentan el contenido de CPT, CTF y actividad antioxidante determinada a
través de los métodos DPPH, ABTS y FRAP. Entre los solventes evaluados, el DEP
compuesto por cloruro de colina:acido acético:agua en una proporcioén 1:1:10 (DEP 4)
mostrd los valores mas altos (p < 0.05) de CPT (31.5 £ 1.6 mg EAG/g PS), CTF (26.1 £+
0.5 mg ER/g PS), y capacidad antioxidante con el método FRAP (83.2 + 0.7 mg ET/g PS),
superando a las demas mezclas eutécticas. EI CPT del DEP 4 fue 1.6 veces mayor que el
obtenido con el solvente etanol/agua. Estos hallazgos pueden compararse con estudios
realizados por otros autores. Por ejemplo, Barbieri ef al. (2020) informaron que cuatro
formulaciones de DEP (glicerol:cloruro de colina (1:2 v/p), acido lactico:cloruro de colina
(1:3 v/p), 1,2-propanodiol: cloruro de colina (1:2 v/p), y acido oxélico: cloruro de colina
(1:1 v/p), todas con un 10% de agua (p/p) —extrajeron eficazmente CTF y FRAP de
Rosmarinus officinalis L., superando en eficiencia al etanol puro. Del mismo modo,
Pontes et al. (2022) informaron que los extractos de orujo de olivo obtenidos con un DEP
a base de cloruro de colina:adcido malénico (27.61 mg EAG/g) eran comparables a los del
etanol (25.32 mg EAG/g) en condiciones Optimas de extraccion (50 °C, 800 rpm y 3 h).
Por otro lado, el solvente etanol-agua al 50% utilizado en este estudio mostrd los valores
mas altos de actividad antioxidante para los métodos DPPH y ABTS (14.0+ 0.2y 111.4
+ 1.2 mg ET/g PS, respectivamente). Este resultado puede atribuirse a la capacidad de los
cationes de radicales libres para detectar compuestos tanto solubles en agua como solubles
en grasa, debido a su alta solubilidad en disolventes acuosos y de base alcoholica (Ren et
al.,2023). Ademas, Niciforovi¢ et al. (2010) enfatizaron que el contenido de antioxidantes
en los materiales vegetales se correlaciona con la concentracion de compuestos fenoélicos,
que desempefian un papel importante en la reduccion del estrés oxidativo al neutralizar
los radicales libres (Chou et al., 2024). En general, los resultados demuestran que el DEP

4 es el disolvente mas adecuado para la extraccion de compuestos bioactivos de E. texana,
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ofreciendo una mayor recuperacion de fendlicos y flavonoides, a la vez que exhibe fuertes
propiedades antioxidantes. Como resultado, se selecciono este solvente para optimizar las
condiciones operativas para recuperar compuestos bioactivos utilizando EAM y evaluar

su efecto en la calidad poscosecha de zarzamoras.

Cuadro 5. Contenido polifendlico total (CPT), contenido total de flavonoides (CTF),
actividad antioxidante (DPPH, ABTS y FRAP) obtenidos por extracciéon convencional de
hojas de E. texana realizadas con DEP y etanol/agua al 50% (temperatura de extraccion =

50 °C, tiempo de extraccion = 120 min, velocidad = 150 rpm).

CPT CTF Actividad antioxidante (mg ET/g PS)
Solventes (mg EAG/g (mg ER/g
DPPH ABTS FRAP
PS) PS)
50%
19.8+£2.6° 23.6+0.3° 14.0 £0.2° 111.4+1.2% 39.7+0.6°
etanol/agua

DEP 1 232+0.3> 18.8+2.14 6.9+2.7¢ 16.3+1.5¢9 773+1.0°
DEP 2 144+149 21.7+0.7¢ 11.8+0.2%  1002+3.7° 35.1+0.8¢
DEP 3 10.3+1.2¢  10.0+£0.9¢ 10.9 +2.0° 72.5 +2.3¢ 17.1 £0.9¢

DEP 4 31.5+£1.6° 26.1+£0.5% 12.8 +0.3% 749 +1.5°  83.2+0.7*

Los datos son la + desviacion estandar media (n=3). Letras diferentes indican una diferencia estadistica

(p < 0.005).

Optimizacion de la recuperacion de compuestos bioactivos mediante la extraccion
de DEP asistida por microondas

El disefio experimental realizado en este estudio permitié identificar las variables mas
influyentes en la recuperacion de compuestos fendlicos con actividad antioxidante. Los
resultados del Cuadro 6 se correlacionaron con las variables independientes (Temperatura
y tiempo) utilizando la Ecuacion 1. En el Cuadro 7 se presentan los resultados de este
andlisis, incluyendo los coeficientes de regresion, su significacion estadistica (basada en

la prueba t de Student), los pardmetros que miden la correlacion (R?) y la significancia
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estadistica de los modelos (basada en el parametro F de Fisher). Los valores del coeficiente
de determinacion (R?) oscilaron entre 0.820 y 0.953, lo que indica una fuerte correlacién
entre los datos predichos y los experimentales. Ademas, los altos valores de F para todas
las respuestas evaluadas (4.572-20.277) confirmaron la significancia estadistica de los
modelos. En general, el andlisis estadistico demostré que los modelos desarrollados
representan de manera precisa y confiable la relacion entre las variables independientes y
las respuestas evaluadas. Los modelos predichos (excluyendo los términos no
significativos) para CPT (y1), CTF (y2), y actividad antioxidante DPPH (y3), ABTS (y4) y
FRAP (ys) como funciones de las variables del proceso se expresan mediante las

siguientes ecuaciones:

CPT =71.76 + 9.14x, — 7.24x3 4)

CTF = 46.47 + 5.76x, — 5.08x3 5)
DPPH =292.25 + 8.53x; — 5.87x? (6)
ABTS =46.01 +3.70x; —2.11x, (7)
FRAP = 140.03 + 8.69x; — 9.69x7 — 4.77x3 ®)

Como tendencia general, los resultados mostrados en el Cuadro 6 demuestran que la
temperatura de extraccion influye positivamente en la recuperacion de compuestos
fendlicos y antioxidantes. Interesantemente, a temperaturas de 170 °C durante 50.2 min
(experimento 10), se logré la maxima recuperacion de CPT (73.5 = 0.7 mg EAG/g PS).
El andlisis de los coeficientes del modelo indic6é que el CPT se vio significativamente
afectado por el término lineal de la temperatura (x1) y su término cuadratico (Cuadro 7),
lo que indica un impacto pronunciado de la temperatura en la recuperacion de compuestos
fenolicos. Para CTF, el valor maximo (53.7 £ 0.3 mg ER/g PS) se obtuvo a 127.6 °C
durante 32.5 min (experimento 9). Los coeficientes de regresion del Cuadro 7 indican que
el término cuadratico para la temperatura(x;) sugiere que las temperaturas elevadas
reducen la recuperacion de flavonoides. Por otro lado, el efecto lineal del tiempo (x2)
mostrd que los tiempos de extraccion prolongados mejoran el CTF, lo que indica que tanto
la temperatura como el tiempo fueron factores criticos. Sin embargo, las temperaturas

excesivamente altas pueden afectar negativamente a la recuperacion de flavonoides.
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Cuadro 6. Condiciones operacionales ensayadas (expresadas en términos de variables
independientes dimensionales y adimensionales) y resultados experimentales obtenidos

para las variables dependientes y; a ys.

Variables independientes Variables dependientes

CPToy1 CTFoy: DPPHo ABTSo FRAPoys
Exp. Temperatura Tiempo
(mg EAG/g (mg ER/g y3 (mg y4(mg (mg ET/g

(C)oxi (min) o x2
PS) PS) ET/gPS) ET/gPS) PS)
1 140 (-1) 20 (-1) 49.3 29.4 283.5 41.0 120.2
2 200 (1) 20 (-1) 70.0 49.2 296.3 48.7 138.4
3 140 (-1) 45 (1) 50.2 353 274.1 43.0 113.5
4 200 (1) 45 (1) 65.8 43.7 303.5 51.1 127.6
5 170 (0) 32.5(0) 71.9 46.1 291.9 46.4 140.3
6 170 (0) 32.5(0) 71.7 46.9 2923 45.8 139.5
7 170 (0) 32.5(0) 71.7 46.4 292.5 459 140.3
8 170 (0) 32.5(0) 47.4 31.3 268.5 36.3 108.1
9 127.6 (-1.41) 32.5(0) 71.8 53.7 289.0 48.0 132.1
10 170 (0) 50.2 (1.4) 73.5 43.9 287.0 46.0 134.5
11 212.4 (1.4) 32.5(0) 67.9 39.1 291.0 39.2 130.2
12 170 (1.41) 14.8 (1.4) 49.3 29.4 283.5 41.0 120.2

En cuanto a la actividad antioxidante, los valores experimentales mas altos de DPPH y
ABTS se obtuvieron a 200 °C durante 45 min (experimento 4), con 303.5 + 2.6 mg ET/g
PSy51.1 £0.7 mg ET/g PS, respectivamente. Con base en los coeficientes de regresion
presentados del Cuadro 7, la temperatura (x1) ejercio un efecto positivo sobre la actividad
antioxidante medida por los ensayos DPPH y ABTS. Sin embargo, el tiempo (x2) no tuvo
un impacto significativo, lo que indica que la temperatura fue el principal determinante de
estas respuestas.

En el ensayo FRAP, el valor méximo (140.3 £ 0.5 mg ET/g PS) se obtuvo en el punto
central del disefio experimental (170 °C durante 32.5 min, experimento 7). El andlisis
estadistico indico que la temperatura fue la variable clave que influy6 en los valores de
FRAP. Sin embargo, el término cuadratico negativo para la temperatura (x1) sugiere que

las temperaturas excesivamente altas condujeron a una disminucion de los valores de
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FRAP. Estudios previos han reportado que temperaturas entre 110 y 130 °C mejoran la
viscosidad y tension superficial de los DEP, facilitando asi su penetracion en la matriz
vegetal (Pavli¢ et al., 2022; Serna-Véazquez et al., 2021). El potencial antioxidante
observado apoya el uso de temperaturas elevadas junto con DEP, particularmente aquellos
que contienen cloruro de colina, que posee una temperatura de descomposicion de oscila
entre 250 y 300 °C (Chen et al., 2018). Ademas, las propiedades unicas de los DEP,
derivadas de los enlaces de hidrogeno y las interacciones de Van der Waals, mejoran atin

mas la eficiencia de los procesos de extraccion (de Almeida Pontes ef al., 2021).

Cuadro 7. Coeficientes de regresion y parametros estadisticos que miden la correlacion y

significacion de los modelos.

Coeficiente yi y2 y3 Y4 ys

Interceptar (bo) 71.76 46.47 292.25 46.01 140.03
bi 9.14a 5.76a 8.53a 3.70a 8.69a

b> 0.29 2.64 -0.64 2.11c -1.85

b1z -1.31 -2.82 4.16 0.11 -1.00

b1 -7.24a -5.08b -5.87b -1.54 -9.69a

b2 -2.54 -0.69 0.24 -0.31 -4.77b

R’ 0.915 0.864 0.904 0.820 0.953
F-exp 10.843 6.388 9.477 4.572 20.277

Nivel de significancia (%) 98.975 96.856 98.624 93.961  99.753

# Coeficientes significativos con un nivel de confianza del 99%.
b Coeficientes significativos con un nivel de confianza del 95%.

¢ Coeficientes significativos con un nivel de confianza del 90%.

La optimizacion de las condiciones de extraccion se realizd para obtener un extracto
enriquecido en fitoquimicos y con alta capacidad antioxidante. Las condiciones 6ptimas
para las variables independientes fueron 194 °C y 25 min. Los valores predichos y
experimentales para todas las respuestas se resumen en el Cuadro 8. Los datos
experimentales mostraron concordancia variable con los valores de respuesta predichos,

con tasas de error que oscilaron entre 2.8 % y 26.1 %. Esto sugiere que, si bien el disefio
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experimental fue efectivo para optimizar la recuperacion de compuestos fenolicos y
antioxidantes de E. texana, ciertos parametros podrian requerir ajustes adicionales para
mejorar la precision de las predicciones. En estas condiciones Optimas, los valores
experimentales fueron de 76.2 + 0.6 mg EAG/g PS para CPT, 38.1 £ 0.7 mg ER/g PS para
CTF, y capacidades antioxidantes de 54.8 + 1.4 (ABTS), 306.1 = 3.8 (DPPH) y 118.6 +
2.0 mg ET/g PS (FRAP). A modo de comparaciéon, se han estudiado hojas de otras
especies de plantas para la extraccion de compuestos fenolicos utilizando EAM a
temperaturas elevadas. Por ejemplo, Ciulu et al. (2017) informaron el CPT de 38.0 mg
EAG/g PS después de extraer hojas de Stevia rebaudiana Bertoni con etanol al 75% a
150 °C, 15 min. De manera similar, Tsubaki et al. (2010) informaron que durante la
extraccion fendlica de diferentes tipos de té (verde, oolong y negro) utilizando EAM, el
CPT aument6 con la temperatura, oscilando entre el 25.3 % a 110 °Cy 74.4 % a 230 °C.
En cuanto a la actividad antioxidante, Torres et al. (2022) investigaron las hojas de ora-
pro-nobis y encontraron que los extractos de etanol exhibieron el mayor potencial
antioxidante a 110 °C (métodos DPPH y FRAP), mientras que los extractos acuosos a
150 °C exhibieron resultados superiores de ABTS. En este contexto, los extractos
obtenidos de E. fexana en condiciones Optimas representan una fuente relevante de
compuestos fendlicos y antioxidantes. Estos resultados ponene en manifiesto su potencial
como anternativa viable para el desarrollo de productos de valor agregado, con

aplicaciones prometedoras en las industrias agroalimentaria y farmacéutica.
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Cuadro 8. Valores predichos y experimentales en las condiciones 6ptimas basados en la
optimizacioén simultanea de todas las respuestas evaluadas CPT, CTF, DPPH, ABTS y

FRAP (temperatura de extraccion = 194 °C, tiempo de extraccion = 25 min).

CPT (mg CTF(mg DPPH(mg ABTS(mg FRAP (mg
EAG/gPS) ER/gPS) ET/gPS) ET/gPS) ET/gPS)

Valor
. 71.90 48.04 297.48 48.33 140.34
pronosticado
Valor
76.2 +0.6 38.1+0.7 306.1+3.8 548+14 118.6+2.0
experimental®

aMedia + desviacion estandar (DE) de tres determinaciones (n=3) a partir de tres réplicas

de extractos.

Cuantificacion de polifenoles y flavonoides por analisis HPLC-MS/MS

El género Eysenhardtia es una fuente notable de metabolitos secundarios, en particular
compuestos fendlicos y flavonoides, que han sido explorados y estudiados por su amplia
variedad de actividades bioldgicas, incluidos efectos antimicrobianos, antidiabéticos,
antiinflamatorios, antidiarreicos y citotoxicos. En este estudio, se emple6 un enfoque de
HPLC-MS/MS para cuantificar e identificar la composicion fendlica y flavonoides del
extracto optimizado de hojas de E. texana (Cuadro 9). Se identificaron un total de quince
compuestos, incluidos acidos fendlicos, flavonoides y un alcaloide. Los compuestos
predominantes fueron el p-hidroxibenzaldehido, el 4cido 3,4-dihidroxibenzoico y la
vainillina. Estos compuestos poseen propiedades bioactivas y son ampliamente utilizados
como aditivos en alimentos, fragancias, cosméticos, pinturas, productos farmacéuticos,
polimeros y plasticos (Kaufmann et al., 2024; Olatunde et al., 2022). También se
detectaron cantidades notables de 4cido 4-hidroxibenzoico, siringaldehido y 4cido galico.
Los flavonoides como la hesperetina, catequina y quercetina se detectaron en
concentraciones mas bajas. Ademas, se identifico cafeina, un compuesto de gran interés
por sus propiedades antimicrobianas, fungicidas, antiherbivoras y alelopaticas (Emanuil
et al., 2022). Este hallazgo sugiere que E. texana podria poseer efectos estimulantes (Osz

etal., 2022).
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Algunos de estos metabolitos también han sido identificados previamente en otros
extractos de la familia Fabaceae. Por ejemplo, Abdelhady & Abdallah. (2016) informaron
de compuestos fendlicos, en particular acido galico y quercetina, en especies del género
Leucaena. De manera similar, Kumar et al. (2018) identificaron CTF, flavonoides,
glucosidos, alcaloides, terpenoides, cumarinas y otros compuestos fendlicos en Astragalus
membranaceus. Krakowska-Sieprawska et al. (2020) emplearon HPLC-MS/MS para
detectar acido salicilico, acido cumadrico, 4cido 4-hidroxibenzoico y flavonoides como
quercetina y catequina en extractos de lupino amarillo (Lupinus Iluteus L.) obtenidos
mediante maceracion, extraccion con fluidos supercriticos (EFS) y extraccion enzimatica
asistida por fluidos supercriticos (EE-EFS). Si bien los métodos EFS y EE-EFS son
altamente eficientes, su alto costo pone de manifiesto la importancia de desarrollar

técnicas de extraccion mas accesibles, como las investigadas en este trabajo.

Cuadro 9. Identificacion de compuestos fendlicos y flavonoides por HPLC-MS/MS en

el extracto optimizado de hojas de E. texana.

Compuesto Formula molecular Contenido (pg/L)
Acido 3,4-dihidroxibenzoico C7HeO4 257.9+19.46
Acido 4-OH-benzoico C7HeO3 54.9 +4.14
Acido p-cumarico CoHgO3 21.2+1.60
Acido galico C7HeOs 36.5+2.75
Acido salicilico C7He03 6.8+0.6
p-hidroxibenzaldehido C7H6O2 968.4 +72.32
Acido vainilico CsHsO4 14.82 +1.12
Vainillina CsHsOs3 123.6 £9.33
Acido ftalico CsHeO4 194+5.0
Acido siringico CoH 1005 11.9£0.90
Siringaldehido CoH1004 49.8+3.76
Hesperetina Ci6H1406 42+0.1
Quercetina Ci1sH1007 2.6+£0.26
Catequina Ci5H1406 2.9+0.22

Cafeina CsHi10N4O» 4.25+0.32
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Actividad antifungica del extracto de hojas de E. texana

La Figura 20 muestra los efectos inhibitorios del extracto optimizado de E. texana sobre
R. stolonifer y F. oxysporum a diferentes concentraciones. Estos hongos se asocian
comunmente con el deterioro poscosecha en las bayas, lo que destaca la aplicacion
potencial del extracto para extender la vida util de estas frutas. Para R. stolonifer, las
concentraciones mas altas (5.0% y 20%) lograron tasas de inhibicion superiores al 80%
después de 24 h, alcanzando 100% de inhibicion dentro de las 48 horas de incubacion. A
concentraciones mas bajas (0.1%, 0.5% y 1.0%), la inhibicion fue inicialmente menor,
pero aument6 con el tiempo, logrando valores entre el 80% y 93% a las 48 h de incubacion.
Estos resultados superan los reportados por Valero-Galvan et al. (2014), quienes
evaluaron extractos acuosos al 20% de Larrea tridentata y F. cernua frente a Rhizopus
sp. durante un periodo de incubacion de 48 h, obteniendo valores de inhibicion de 60.3%
y 55.8%, respectivamente. Ademas, se ha reportado que el efecto inhibitorio en extractos
de Dalea carthagenensis (Fabaceae) se ha relacionado con la presencia de compuestos
como acido gélico y vainillina (Calderén-Santoyo ef al., 2024), los cuales se encontraron
en el extracto optimizado de E. texana. Asimismo, Lopez-Anchondo et al. (2021)
demostraron que la actividad antifingica estd directamente relacionada con el aumento en
la concentracion del extracto, observando un indice de inhibicion fingica del 54.8% en

R. stolonifer al emplear extractos de P. glandulosa.
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Figura 20. Efecto inhibidor medio (%) de los extractos de E. texana a diferentes
concentraciones frente a R. stolonifer (a) y F. oxysporum (b). Los valores se expresan

como media + desviacion estandar (barras de error).

En cuanto a F. oxysporum, las concentraciones a partir del 1.0% lograron una inhibicion
del 100% después de 96 h de incubacion. Ademas, las concentraciones mas bajas (0.1%
y 0.5%) exhibieron buenos efectos inhibidores, aunque no superaron el 90% en el mismo
periodo. Los resultados obtenidos en este estudio son superiores a los reportados en la
literatura, donde se observo un 53.9% de inhibicidn contra F. oxysporum a las 72 h de

incubacion utilizando extractos acuosos de F. cernua (Alvarez-Pérez et al., 2020).
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Ademas, se reportd una inhibicion del 59.2% de F. oxysporum utilizando extractos
etandlicos de hojas de P. juliflora en dimetilsulfoxido (DMSO) al 4% (Saleh & Abu-
Dieyeh, 2021). Estos resultados indican que la actividad antifingica observada puede estar
relacionada con la presencia de compuestos fenolicos en el extracto optimizado de
E. texana, como acido gélico, acido p-cumarico, siringaldehido y quercetina, que han
demostrado importantes efectos inhibidores contra F. oxysporum (Al-Huqail et al., 2019;
Salem et al., 2021). Esto sugiere que los compuestos bioactivos presentes en E. texana
desempefian un papel clave en la inhibicion de R. stolonifer y F. oxysporum. Ademas, el
efecto antiflingico parece resultar no solo de los compuestos individuales, sino también
de las caracteristicas estructurales y las interacciones sinérgicas entre los componentes de

la matriz del extracto (Charles-Rodriguez et al., 2020).

Efecto del extracto optimizado de E. texana en la calidad poscosecha de zarzamora
Pérdida de peso y acido ascorbico (AA)

La pérdida de peso es un parametro critico para evaluar la calidad poscosecha de la fruta,
ya que refleja los procesos de transpiracion y respiracion de la fruta (Agapito-Ocampo et
al., 2021). En este estudio, se evalud el efecto de un recubrimiento comestible que
contenia el extracto optimizado de E. texana en la pérdida de peso en zarzamora y se
compard con un control sin recubrimiento (Figura 21a). Las zarzamoras recubiertas (0.5%
y 1.0%) mostraron una menor pérdida de peso significativamente reducida en
comparacion con el control. El tratamiento con 1.0% de extracto (T3) presentd
consistentemente la menor pérdida de peso (17.1 £ 0.7%) en el dia 15, en comparacioén
con el 26.1 + 0.3% en el control, destacando la eficacia del recubrimiento para minimizar
la deshidratacion. Esta reduccion se atribuye a la barrera semipermeable formada por el
recubrimiento, que limita el intercambio de gases y humedad, preservando asi la calidad
de la fruta (Cajamarca et al., 2023; Kaynarca et al., 2023). Estudios previos han
demostrado que los recubrimientos comestibles son portadores efectivos de compuestos
derivados de las plantas. En este sentido, los resultados son consistentes con los reportados
por Saleh & Abu-Dieyeh (2022), quienes observaron una reduccion en la pérdida de peso
en fresas recubiertas con quitosano y extracto etandlico de hojas de P. juliflora. De manera

similar, De Bruno et al. (2023) evaluaron un recubrimiento comestible que contenia 1.0%,
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2.5% y 5.0% de extracto antioxidante natural de bergamota (Citrus bergamia Risso),
observando valores de pérdida de peso en fresas de 19.8%, 12.3% y 16.4%,
respectivamente, después de 14 d de almacenamiento a 4 + 1 °C. Estos hallazgos subrayan
el potencial de los extractos de origen vegetal, como E. texana, en la conservacion

poscosecha, ofreciendo una alternativa sostenible a los aditivos sintéticos.
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Figura 21. a) Pérdida de peso (%) y (b) contenido de 4cido ascorbico (AA) (mg/100 mL)
en el fruto de zarzamora durante el almacenamiento a 4 + 1 °C/85% HR durante 15 dias.
Para la pérdida de peso, diferentes letras mayusculas indican diferencias estadisticas entre

dias para para cada tratamiento (p < 0.05).
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La concentracion de AA en los frutos de zarzamora recubiertos y no recubiertos se
presenta en la Figura 21b. Durante el periodo de almacenamiento, los niveles de AA
disminuyeron en todos los tratamientos. Inicialmente, los frutos recubiertos (T2 y T3)
retuvieron niveles mas altos de AA (38.8 2.6 y 40.3 = 4.5 mg/100 mL, respectivamente)
en comparacion con los frutos no recubiertos (32.9 + 2.6 mg/100 mL). Sin embargo, al
dia 15, todos los tratamientos mostraron valores similares de AA (23.9 + 1.3 mg/100 mL),
sin que se observaran diferencias. Estos resultados son consistentes con los reportados por
Gol et al. (2015), quienes evaluaron los efectos de diferentes polisacaridos en la calidad
poscosecha de zarzamora india (Syzygium cumini L.) y reportaron valores de 4cido
ascorbico de 20.4, 18.8 y 18.1 mg/100 mL para los tratamientos de quitosano (1.5% y
1.0%) y carboximetilcelulosa (1.5%), respectivamente, después de 16 dias de
almacenamiento. Otros estudios también han informado una disminucion del contenido
de AA en los frutos de zarzamora durante 10 dias de almacenamiento tras la aplicacion de
inmersion en acido salicilico y CaCl., lo que subraya la dificultad de conservar este
antioxidante durante periodos de almacenamiento prolongados (Sabir et al., 2019). Los
resultados sugieren que, si bien el extracto de E. fexana contribuy6 a una mayor retencion
inicial de AA, su efecto fue insuficiente para mantener esta ventaja a lo largo del tiempo.
La disminucion de los niveles de AA puede atribuirse al proceso natural de maduracion y
a la degradacion de compuestos bioactivos, como compuestos fenolicos y antocianinas

(Barman et al., 2014; Lee & Kader, 2000).

Acidez titulable (AT), pH, contenido de solidos solubles (CSS)

Los parametros de AT, pH y CSS de los frutos de zarzamora almacenados a4 + 1 °C con
85% de HR se detallan en el Cuadro 10. En cuanto a la AT, los valores se mantuvieron
relativamente estables durante el almacenamiento, con ligeras variaciones entre
tratamientos. Bersaneti et al. (2021) reportaron valores consistentes de AT durante un
periodo de almacenamiento de 15 dias a 4 °C en zarzamoras recubiertas con almidon-
nistosa. Shigematsu et al. (2018) observaron que los cambios en la AT son impulsados
por los procesos metabdlicos dentro de las frutas y la actividad de los microorganismos,

lo que lleva a un aumento de los 4cidos organicos.
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Cuadro 10. Propiedades fisicoquimicas del fruto de =zarzamora durante el

almacenamiento a 4 + 1 °C/85% HR durante 15 dias.

Tiempo de
almacena- 0 3 6 9 12 15
miento (d)
TA 1.8+0.2 B 1.7+0.4 B2 2.8+024 284024 26+03M 27+£02M
T1 Control pH 3.1+0.1F¢ 3.4+0.0D0¢ 3.6+ 0.0 BCh 3.5+0.0P 3.7+0.07° 3.6+ 0.0 ABe
CSS  152+03%  151403%  154+0.1* 155403  153+02B8%  17.3+£02%°
TA  2.6+0.6"% 20+£0548% 21+0248Ch  28+024° 1.7+0.2 B¢ 1.4+0.2¢¢
T2
0.5% v/v pH 3.5+0.1¢0 3.8+0.1 B2 3.9+0.1 B2 3.9+0.1 B2 4.1+0.15 4.1+0.0%

CSS  13.0£05%  145+0.1°° 144+040° 152+0.1 ¢® 19.4+0.1 4 16.8 +0.0 B®
TA 1.7£02¢° 1.9+ (.3 BCa 1.8£0.2Bce 27£024  20+£028% 2210048
1.,/{3V/V pH 3.8+0.0B* 3.6+0.0 3.9+0.0" 3.6+0.0 3.9+0.0M 3.9+0.14
CSS  165£01%  16.1£05B* 154+02D 16.4+0.2 ¢® 19.6 +£0.5 A2 17.4+0.0 %

TA = acidez titulable (% de 4acido citrico); CSS = contenido de sélidos solubles (%). Las medias seguidas
de las mismas letras mayusculas en las columnas y mintsculas en las filas no mostraron diferencia

estadisticamente significativa segun la prueba de Tukey (p < 0,05).

Los valores de pH se mantuvieron constantes durante todo el periodo de almacenamiento,
observandose un ligero aumento en los frutos recubiertos al dia 15. Sin embargo, el
comportamiento del pH en todos los tratamientos fue muy similar. Estos resultados son
consistentes con los de Ascencio-Arteaga ef al. (2022), quienes reportaron valores de pH
de 2.6 y 3.6 en los primeros dias de almacenamiento para frutos de zarzamora con
recubrimientos comestibles a base de cera de candelilla y goma guar. Los valores de pH
mas bajos generalmente se asocian con una mejor conservacion de la calidad de la fruta,

ya que indican una menor actividad microbiana y una degradacion metabolica mas lenta

(Silva et al., 2019).

Los valores de CSS en los frutos tratados variaron de 13.0 = 0.5% a 19.6 = 0.5%,
permaneciendo estables en todos los tratamientos, sin observarse diferencias entre los
frutos recubiertos (T2 y T3) y el control. Los valores de CSS obtenidos coincidieron con
los reportados por Tumbarski et al. (2020) en frutos de zarzamora recubiertos con pectina,
que oscilaron entre 14.1% y 15.2% durante un periodo de almacenamiento de 16 d. Segin

Vieira et al. (2016), un aumento en el contenido de azucar generalmente se debe a la
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pérdida de agua en los frutos.

Color y firmeza

El color es un criterio fundamental de calidad que influye en las preferencias del
consumidor, y sirve como indicador para evaluar la efectividad de los tratamientos
poscosecha en frutas (McGuire, 2019; Toscano Avila er al., 2020). La aplicaciéon de
recubrimientos con extracto de E. texana influyd positivamente en la calidad poscosecha
de los frutos de zarzamora (Figura 22 a-c). Si bien se observaron algunos cambios de color
durante el almacenamiento, como una reduccion en los valores de a* (enrojecimiento) y
b* (tono amarillo), estos cambios fueron consistentes con los procesos naturales de
maduracion, atribuidos principalmente a la acumulacién de antocianinas y la
transformacion de pigmentos (Samaniego et al., 2020). Este comportamiento se alinea con
Pérez et al. (2021), quienes reportaron cambios de color en zarzamoras envasadas en
atmosfera modificada y recubiertas con goma guar, con valores de L* que oscilaron entre
20.1 a 21.0, valores de a* de 6.5 a 7.6 y valores de b* de 1.9 a 1.9 después de 13 d de
almacenamiento. A pesar de los cambios de color observados, la aplicacion del extracto
de E. texana no indujo alteraciones drasticas, preservando la calidad visual de los frutos,

lo cual es esencial para la aceptacion de los consumidores.
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Figura 22. Cambios en los parametros de color y firmeza del fruto de zarzamora durante
el almacenamiento a4 + 1 °Cy 85% HR durante 15 dias. Los valores son la media + DE.
En cuanto a la firmeza, diferentes letras en el mismo dia indican diferencias estadisticas

(p <0.05). a) L*, b) a*, c¢) b*, d) firmeza.

En cuanto a la firmeza de la fruta, la aplicacion de extracto de E. texana en un
recubrimiento a base de mucilago de chia ayud6 a preservar la firmeza durante todo el
almacenamiento (Figura 22 d). Si bien se observo una disminucion de la firmeza en todos
los tratamientos, la tasa de ablandamiento fue mas lenta de lo que normalmente se observa
durante la maduracion (Bersaneti et al., 2021). Pérez et al. (2021) reportaron una
tendencia similar, observando valores de firmeza ligeramente mas altos en zarzamoras

recubiertas con goma guar bajo almacenamiento en atmoésfera modificada. Por su parte,
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Cortés Rodriguez et al. (2020) observaron una pérdida de firmeza en zarzamora andina
(R. glaucus Benth) tratada con un recubrimiento a base de almidéon de yuca durante el
almacenamiento a 4 °C. Este ablandamiento se atribuye a la conversion del almidén en
azucares, la biosintesis de compuestos volatiles que contribuyen al aroma y la degradacion
de los polisacaridos de la pared celular como la pectina, la celulosa y la hemicelulosa
(Horvitz, 2017; Oliveira et al., 2014). Los resultados indican que los recubrimientos que
contienen extracto de E. texana no influyeron significativamente en el TA, pH, CSS, color
y firmeza, lo que sugiere un impacto limitado en estos parametros de calidad. Sin embargo,
la reduccion observada en la pérdida de peso pone de manifiesto la necesidad de realizar

mas investigaciones sobre su eficacia general para prolongar la vida 1til.

Analisis microbiologicos

Los recuentos de microorganismos mesofilos aerobicos, mohos y levaduras en los
tratamientos evaluados durante el periodo de almacenamiento se muestran en la Figura 23.
El uso de extractos de E. texana mejor6 la calidad poscosecha de las zarzamoras al reducir
el crecimiento microbiano y preservar la integridad de los frutos durante los 15 dias de
almacenamiento. Los tratamientos T2 y T3 exhibieron menores recuentos de
microorganismos mesoéfilos aerébicos (11.5 £ 0.5 y 11.1 = 0.2 log UFC/g,
respectivamente) en comparacion con el control (12.7 + 0.0 log UFC/g), lo que indica un
efecto antimicrobiano significativo. La actividad antimicrobiana observada puede
atribuirse a la presencia de varios fitoquimicos en E. fexana, como p-hidroxi-
benzaldehido, 4cido 3.4-dihidroxi-benzoico y vainillina, entre otros, conocidos por sus
propiedades antimicrobianas (Kakkar & Bais, 2014; Latreche & Rahmania, 2011). En un
estudio, Kaynarca et al. (2023) aplicaron una capa de extracto de orujo de uva combinado
con alcohol polivinilico a fresas y observaron un aumento en los recuentos de
microorganismos mesoéfilos aerdbicos de 6.7 a 9.8 log UFC/g después de 16 dias de
almacenamiento. La alta susceptibilidad de las zarzamoras al ataque microbiano puede
deberse a factores como la sobremaduracion, alta tasa de respiracion, rapido
ablandamiento y susceptibilidad al dafio mecénico, los cuales facilitan la descomposicion

y el crecimiento de patdgenos (Horvitz ef al., 2021; Pellegrino et al., 2024).
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Figura 23. (a) Recuento microbiologico de microorganismos aerobios mesoéfilos y (b)
mohos y levaduras durante todo el tiempo de almacenamiento a 4 + 1 °C/85% HR. Los

valores son la media + DE.

En cuanto al recuento microbiologico de mohos y levaduras, se observd un aumento sus
poblaciones durante el periodo de almacenamiento de 15 dias. Sin embargo, el tratamiento
T3 exhibi6 un recuento menor (11.0 + 0.0 log UFC/g) en comparacién con el control (12.5
+ 0.0 log UFC/g) al final del almacenamiento, siendo los mohos y levaduras
contribuyentes clave al deterioro de las frutas debido al bajo pH que se encuentra en las
bayas (Alvarez et al., 2018). Esta actividad antifingica probablemente se atribuye a los
compuestos fenolicos de los extractos, como acido galico, p-hidroxi-benzaldehido y
vainillina, conocidos por sus propiedades antifungicas (Huang et al., 2024; Jabeen et al.,
2023). Joshi et al. (2021) informaron de un efecto comparable en zarzamoras recubiertas
con alginato y liposomas de limoneno almacenados a 4 °C durante 20 d. Por su parte,
Prajapati & Jadeja. (2024) optimizaron la extraccion de betanina utilizando DEP en pitaya
(cloruro de colina-etilenglicol) y evaluaron su aplicacién en biopeliculas a base de

quitosano.
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La Figura 24 presenta la evaluacion visual de los frutos de mora a lo largo del periodo de
almacenamiento, mostrando un mayor deterioro superficial en el tratamiento control en
comparacion con los tratamientos recubiertos. Del mismo modo, los resultados de este
estudio destacan el uso potencial de los extractos de E. texana como una barrera eficaz
contra el ataque microbiano, mejorando la vida util poscosecha de zarzamoras. Este
enfoque ofrece una alternativa prometedora para prolongar la frescura de la fruta al tiempo

que se reduce el deterioro y se mantiene la calidad durante el almacenamiento.
T1
Control

T2
0.5% v/v

T3
1% viv

Tiempo de almacenamiento (d)

Figura 24. Cambio gradual de los frutos de zarzamora a lo largo de un periodo de

almacenamiento de 15 diasa 4 = 1 °C/85% HR.
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CONCLUSIONES
Las condiciones y técnicas de extraccion juegan un papel crucial en la determinacion de
la composicion y la bioactividad de los compuestos en los extractos de plantas. En este
estudio, el extracto de E. texana se caracterizd por su alto contenido fendlico y notable
actividad antioxidante. Utilizando un disefio compuesto central, se optimizaron las
condiciones de la EAM, identificando el DEP 4 (una proporcion de 1:1:10 de cloruro de
colina, 4cido acético y agua) como el mas eficaz para mejorar el CPT, CTF y actividad
antioxidante (DPPH, ABTS y FRAP). Las condiciones 6ptimas de extraccion fueron
194 °C y 25 min. El extracto resultante exhibi6 una fuerte actividad antifingica contra
R. stolonifer y F. oxysporum. Ademas, este extracto incorporado en un recubrimiento
comestible conservé eficazmente los atributos poscosecha de las zarzamoras al reducir la
pérdida de peso y controlar el crecimiento microbiano en condiciones de almacenamiento
a4+1°Cy85% HR durante 15 dias. Este enfoque no solo alarga la vida 1til de las frutas,
sino que también se alinea con la creciente demanda de soluciones sostenibles y
respetuosas con el medio ambiente en el sector agroalimentario. Este estudio subraya el
potencial del extracto de E. texana como una estrategia innovadora para extender la vida
util de frutas perecederas, enfatizando la importancia de seleccionar métodos de
extraccion apropiados para preservar las propiedades bioactivas para su aplicacion en las

industrias agroalimentaria y farmacéutica.
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