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RESUMEN 

El objetivo de este estudio fue evaluar el impacto del cambio climático en la 

densidad de biomasa viva aérea (DBva) en los bosques húmedos del Amazonas 

mediante la creación de modelos de predicción dinámicos basados en variables 

bioclimáticas. Los datos de DBva se obtuvieron del proyecto Global Ecosystem 

Dynamics Investigation (GEDI) de la NASA, y las variables bioclimáticas del 

repositorio de WorldClim. Se consideraron cuatro Trayectorias de Concentración 

Representativas (RCP) 2.6, 4.5, 6.0, y 8.5 W m-2, proyectados para los años 2050 

y 2070. La investigación se centró en dos estratos dentro de la cuenca del 

Amazonas, una región clave para el almacenamiento de carbono y la regulación 

climática global. Se utilizó el ajuste de Modelos Lineales Generalizados (GLM), 

con el que se seleccionaron las variables bioclimáticas más influyentes mediante 

un algoritmo de selección exhaustiva “algoritmo genético”. Se analizaron 22,944 

puntos de muestreo distribuidos en ambos estratos. Los resultados indican que 

las variables relacionadas con la temperatura (Bio 1, Bio 5, Bio 7) fueron los 

predictores más significativos sobre la DBva, mientras que la variable relacionada 

con la precipitación (Bio 12) tuvieron una menor influencia. El estrato I mostró un 

promedio de 173.95 Mg ha-1 y el estrato II alcanzó 222.75 Mg ha-1. Las 

proyecciones climáticas para 2050 y 2070 sugieren una reducción considerable 

en la DBva, especialmente bajo el escenario RCP 8.5, con pérdidas de hasta 90 

Mg ha-1 de DBva. Este trabajo resalta la importancia de integrar variables 

climáticas dinámicas en los modelos de estimación de biomasa y se concluye 

que los cambios climáticos futuros tendrán un impacto negativo considerable en 

la DBva en el área de estudio. 

Palabras clave: Cambio climático, densidad de biomasa aérea viva DBva, 

Variables bioclimáticas y Modelos Lineales Generalizados (GLM). 
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ABSTRACT 

The objective of this study was to assess the impact of climate change on 

aboveground living biomass density (DBva) in the Amazon rainforests by creating 

dynamic prediction models based on bioclimatic variables. The DBva data were 

obtained from NASA's Global Ecosystem Dynamics Investigation (GEDI) project, 

and the bioclimatic variables from the WorldClim repository. Four Representative 

Concentration Pathways (RCP) 2.6, 4.5, 6.0, and 8.5 W m-2, projected for the 

years 2050 and 2070, were considered. The research focused on two strata within 

the Amazon basin, a key region for carbon storage and global climate regulation. 

Generalized Linear Modeling (GLM) fitting was used, with which the most 

influential bioclimatic variables were selected using an exhaustive selection 

algorithm “genetic algorithm”. A total of 22,944 sampling points distributed in both 

strata were analyzed. The results indicated that temperature-related variables 

(Bio 1, Bio 5, Bio 7) were the most significant predictors of DBva, while the 

precipitation-related variable (Bio 12) had the least influence. Stratum I showed 

an average of 173.95 Mg ha-1 and stratum II reached 222.75 Mg ha-1. Climate 

projections for 2050 and 2070 suggest a considerable reduction in DBva, 

especially under the RCP 8.5 scenario, with losses of up to 90 Mg ha-1 of DBva. 

This work highlights the importance of integrating dynamic climate variables into 

biomass estimation models and it is concluded that future climate changes will 

have a considerable negative impact on DBva in the study area. 

 

Key words: Climate change, Aerial Biomass Density (DBva), Bioclimatic variables 

and Generalized Linear Models (GLM). 
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INTRODUCCIÓN 

Los bosques son cruciales para la humanidad, ya que proporcionan alimentos, 

medicinas, biocombustibles, protegen suelos y agua, albergan más del 75% de 

la biodiversidad terrestre y ayudan a mitigar el cambio climático, en una superficie 

de 4,060 millones de hectáreas, 31% de la superficie terrestre (FAO, 2021). En 

específico, las selvas cubren el 10% de la superficie del planeta y almacenan una 

cuarta parte del carbono terrestre (Hurtado-Torres et al., 2022). La cuenca del 

Amazonas, como parte de las selvas del mundo, es fundamental para los 

sistemas climáticos globales, ya que absorbe grandes cantidades de carbono, lo 

que la convierte en uno de los principales sumideros naturales del planeta 

(Galbraith et al., 2010). 

Se estima que el carbono total de la biomasa muerta y subterránea es de 86 Pg 

C con un 20% de incertidumbre (Saatchi et al., 2007). Otras estimaciones indican 

un total de 93 ± 23 Pg C, sin embargo, si se considera la biomasa muerta y 

subterránea aumentaría en un 10 a 21% (Malhi et al., 2006), lo que la convierte 

en el sumidero de carbono más importante del planeta (CEPAL & Patrimonio 

Natural, 2013). Por lo anterior, a nivel mundial, destaca como la región de mayor 

relevancia ecológica, en la regulación climática y en la conservación de la 

biodiversidad (Medina P. & Carrillo Silva, s/f; Dinerstein et al., 2017). 

No obstante, el cambio climático afecta a todos los ecosistemas terrestres (Guo 

et al., 2019; FAO & PNUMA, 2020). El cambio climático es una variación del clima, 

que persiste durante largos periodos, atribuible a procesos naturales o 

actividades humanas que alteran la composición de la atmósfera y se suma a la 

variabilidad natural del clima (IPCC, 2013, 2018). Según estimaciones se prevé 

que la temperatura media global del aire aumente entre 1.8 y 4.0 °C para finales 

del siglo XXI (IPPC, 2013). Con un incremento de 3 a 4 °C en la región amazónica 

bajo el escenario RCP 4.5 (representative concentration pathway, por sus siglas 

en inglés), acompañado de cambios en la precipitación que podrían variar ± 25% 

(OCTA y CIIFEN, 2021). 
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Algunos estudios (Scholze et al., 2006; Panel Científico por la Amazonía, 2021) 

han demostrado que fenómenos asociados al cambio climático, como sequías 

extremas, inundaciones y un aumento en la frecuencia de incendios forestales en 

la cuenca Amazónica, han tenido un impacto profundo en los sistemas naturales 

y humanos, alterado considerablemente las reservas de biomasa y carbono de 

los bosques. 

El riesgo de cambios en la forma y distribución de los ecosistemas forestales del 

mundo depende (y de forma no lineal) del grado de calentamiento del planeta, 

las regiones boreales y árticas circumpolares resultan especialmente vulnerables 

(Scholze et al., 2006) aunque la cuenca Amazonia no es la excepción. 

Se ha demostrado que las variables climáticas (temperatura y precipitación) 

influyen directamente en la fisiología, crecimiento y productividad de las plantas 

(Grossiord et al., 2017; Marchiori et al., 2019; Damaceno et al., 2020). Por 

ejemplo, durante la fotosíntesis, la temperatura del aire regula la evaporación, la 

transpiración y otros procesos (OCTA y CIIFEN, 2021). Estudios han evidenciado 

que el aumento de la temperatura favorece el crecimiento de biomasa en los 

bosques boreales, pero en bosques tropicales, tiende a inhibir este crecimiento 

(Liu et al., 2013). Además, las temperaturas elevadas pueden limitar el desarrollo 

de las especies al modificar la pigmentación foliar, comprometer el sistema 

radicular, inducir estrés hídrico, en consecuencia, alterar significativamente los 

patrones de crecimiento de las plantas (Han et al., 2012). 

Mientras que la precipitación juega un papel fundamental, desde la disponibilidad 

y absorción de nutrientes, conductancia estomatal, incluso influir en la misma 

transpiración y fotosíntesis (Bennett et al., 2020; Cysneiros Costa et al., 2021). 

Así mismo, la disponibilidad y variabilidad de la precipitación influyen 

directamente en la eficiencia del uso del agua por las plantas, lo cual tiene un 

impacto crucial en todo el proceso de crecimiento de estas (Gao et al., 2017; 

Yuan et al., 2022). Por lo tanto, está claramente documentado que existe una 

relación estrecha entre la productividad de biomasa y las variables climáticas. 
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La biomasa se ha definido como la masa seca de todos los componentes de la 

vegetación por encima del suelo (toda la vegetación viva y no-viva), pero se 

refiere casi siempre solo a la biomasa viva (Gutierrez et al., 2014), usualmente 

se reporta en Mega gramos (Mg). Mientras que la densidad de biomasa hace 

referencia a esa biomasa por unidad de área. 

Algunos estudios han encontrado relaciones importantes entre la biomasa aérea 

y variables climáticas, por ejemplo, un estudio a escala global, indica que, en los 

bosques boreales, la densidad de carbono de la biomasa aérea tiene una relación 

positiva con la temperatura, al igual que la precipitación en los bosques 

templados y tropicales (Liu et al., 2013). 

A nivel continental, la precipitación se relaciona de forma positiva con la biomasa 

aérea de los bosques templados secos y bosques tropicales, mientras que la 

temperatura muestra una relación negativa con la biomasa aérea en los bosques 

tropicales húmedos (Stegen et al., 2011). En los bosques tropicales y 

subtropicales, la precipitación media anual se correlaciona de forma positiva con 

biomasa aérea y carbono (Guo et al., 2019; Paroshy et al., 2021), mientras que 

la temperatura media lo hace de forma negativa (Paroshy et al., 2021). 

Estas mismas relaciones parecen ocurrir a escalas más pequeñas, por ejemplo, 

en bosques subtropicales de China, la temperatura se correlaciona 

negativamente con biomasa aérea (Li et al., 2022). En plantaciones y bosques 

naturales de pinos (subgénero Pinus L.) en Eurasia, la biomasa de las acículas y 

las ramas aumenta a medida que aumenta la precipitación y todos los 

componentes cambian a diferentes ritmos con relación a los cambios de 

temperatura (Andreevich et al., 2020). En los bosques de Picea, la biomasa aérea 

del rodal y de árboles individuales se ve influenciada positivamente con mayor 

humedad y un aumento en la temperatura (Usoltsev et al., 2022). 

Como se puede notar, la literatura científica ha correlacionado las variables 

climáticas con la biomasa aérea, pero pocos estudios han evaluado el impacto 

del cambio climático sobre su densidad, especialmente en la cuenca del 

Amazonas. Es crucial enfocarse en predictores climáticos dinámicos, como 
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temperatura y precipitación, ya que las variables estáticas (altura, altitud, 

diámetro, exposición y pendiente etc.) no capturan estos efectos (Adhikari et al., 

2017; Guo et al., 2019; Ma et al., 2023). 

Basado en lo anteriormente expuesto, el objetivo de este estudio fue desarrollar 

modelos bioclimáticos, para evaluar los efectos del clima futuro sobre los cambios 

en la distribución geoespacial de la densidad de la biomasa viva aérea en la 

cuenca del Amazonas, al considerar cuatro posibles escenarios climáticos o RCP 

(Representative Concentration Pathways) por sus siglas en inglés: 2.6, 4.5, 6.0 y 

8.5 W m-2 para los años 2050 y 2070. Se hipotetiza que el cambio climático futuro 

impactará significativamente la distribución de la biomasa aérea de la cuenca del 

Amazonas. 
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REVISIÓN DE LITERATURA 

Cambio climático 

El cambio climático es la variación del clima identificable que persiste durante 

periodos de tiempo prolongados, el cual puede deberse a procesos naturales o a 

forzamientos externos (IPCC, 2013). Por otro lado, se define como el fenómeno 

atribuido, directa o indirectamente a la actividad humana, a las actividades que 

alteran la composición de la atmósfera global y que se suma a la variabilidad 

natural del clima observada durante el tiempo (IPCC, 2018). 

El detener la deforestación de los bosques podría ser una de las acciones más 

económicamente viables para la adaptación al cambio climático, así como mitigar 

sus efectos y reducir la pérdida de biodiversidad, sin embargo, esta capacidad de 

amortiguamiento se ve afectada por la deforestación y la degradación de los 

bosques a raíz del cambio climático, por lo que no existe otra forma de afrontar 

el exceso de CO2 (FAO & PNUMA, 2020). 

Aunado a lo anterior, los procesos de deforestación liberan grandes cantidades 

de carbono a la atmósfera lo que origina problemas de degradación de los 

recursos forestales, los suelos e incluso de pérdida de biodiversidad (Ordóñez B 

& Masera, 2001). Además de la consideración de los efectos del cambio climático, 

las actividades humanas, los fenómenos meteorológicos intensos, los incendios 

forestales, las plagas y las enfermedades pueden generar efectos adversos 

sobre los bosques y reducir los bienes y servicios que prestan, su diversidad, 

productividad y su salud (FAO, 2021). 

Se ha reconocido que las principales amenazas a la captura de carbono y sus 

depósitos son principalmente el cambio climático y los eventos meteorológicos 

asociados a este, además de la deforestación y su efecto en la captura de 

carbono, lo que provoca la pérdida de la diversidad (UNESCO et al., 2023). En 

un estudio se determinó que el cambio climático afecta a la fotosíntesis, la 

respiración de las plantas y la descomposición de la materia orgánica, lo que 

impacta al flujo de carbono entre la tierra y la atmósfera; además se encontró 

que, con el aumento de la temperatura, los sumideros terrestres de carbono se 
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conviertan en fuentes, lo que implica un alto riesgo de pérdida de la capacidad 

de captura de carbono en condiciones de calentamiento extremo (Scholze et al., 

2006). 

En el área de la cuenca del Amazonas se ha estudiado el efecto del cambio 

climático, en un estudio se describen fenómenos que afectan a esta área, entre 

los que destacan la ocurrencia de sequias extremas, inundaciones, los cuales 

han tenido un impacto fuerte en los sistemas naturales y humanos, estos 

fenómenos han aumentado el número de incendios durante los periodos de 

sequía, al liberar carbono, humo y hollín a la atmósfera (Panel Científico por la 

Amazonía, 2021). En un estudio se indican que en la región donde se encuentra 

la cuenca del Amazonas existirá un mayor riesgo de sequía lo que puede generar 

la muerte progresiva de los bosques lo que afectará su salud y biodiversidad, lo 

anterior impulsado por la mayor presencia de incendios forestales; también se 

prevé la reducción de disponibilidad de agua por la reducción en las escorrentías 

(Scholze et al., 2006). 

Trayectorias de concentración representativas 

Las trayectorias de concentración representativas (RCP) se definen como 

escenarios que abarcan series temporales de emisiones y concentraciones de la 

gama completa de gases de efecto invernadero y aerosoles y gases 

químicamente activos, así como el uso del suelo y la cubierta terrestre (IPCC, 

2013, 2018). 

Con relación a lo anterior se menciona que las proyecciones de cambio climático 

utilizan modelos de diferente complejidad, desde simples hasta integrales, para 

simular cambios según escenarios de forzamientos antropogénicos, llamados 

trayectorias de concentración representativas (RCP), las cuales fueron realizadas 

en el marco del CMIP5 y proyectan que las concentraciones de CO₂ serán más 

altas para el año 2100 debido a un aumento continuo de emisiones, estas se 

comparan con el período 1986-2005 y muestran un aumento histórico de 0.61 °C 

entre 1850-1900 y el período de referencia, aunque el calentamiento ha superado 

estas cifras en años recientes (IPPC, 2013). 
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El Quinto Informe del IPCC introduce cuatro trayectorias de concentración 

representativas (RCP) para evaluar diferentes escenarios de emisiones y 

forzamiento radiativo hacia el año 2100: RCP 2.6, RCP 4.5, RCP 6.0 y RCP 8.5, 

cada RCP refleja un posible nivel de forzamiento y representa distintas políticas 

climáticas, desde mitigación hasta altas emisiones de gases de efecto 

invernadero, estos escenarios ofrecen datos sobre uso del suelo, emisiones por 

sector y concentraciones de gases de efecto invernadero, aunque no abarcan 

todas las posibles emisiones, especialmente aerosoles (IPPC, 2013). 

Variables bioclimáticas 

Se describe el desarrollo de BIOCLIM como uno de los primeros intentos del uso 

de la interpolación climática avanzada para crear un conjunto de variables 

bioclimáticas, estas variables fueron desarrolladas para capturar las limitaciones 

climáticas clave sobre el crecimiento de especies vegetales, con base en datos 

climáticos recopilados de varias estaciones meteorológicas, a través de métodos 

de interpolación de splines se generaron superficies climáticas que permitieron 

obtener datos estimados de temperatura y precipitación en puntos geoespaciales 

específicos, sin embargo la precisión de estos fue mejorada mediante la inclusión 

de la altitud como un factor de ajuste clave (Booth et al., 2014). 

Los datos derivados se convirtieron en 12 variables bioclimáticas esenciales que 

definían el "envolvente bioclimático" para cada especie estudiada; este marco 

permitió a BIOCLIM proyectar distribuciones de especies y modelar sus nichos 

ecológicos, que proporcionan una herramienta fundamental para estudios de 

cambio climático, invasión de especies y conservación, las variables 

bioclimáticas se obtienen a partir de los valores mensuales de temperatura y 

precipitación, transformándolos en variables con mayor relevancia biológica, 

estas variables se emplean comúnmente en el modelado de la distribución de 

especies y otras técnicas ecológicas (Booth et al., 2014). 

Las variables bioclimáticas incluyen tendencias anuales (como temperatura y 

precipitación media anual), estacionalidad (como el rango anual de temperatura 

y precipitación) y factores extremos o limitantes (como las temperaturas del mes 
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más frío y cálido, y las precipitaciones durante los trimestres húmedos y secos) 

tal y como lo indican (Fick & Himans, 2017). 

En relación con lo anterior (Liu et al., 2013; Luo et al., 2013; Fu et al., 2017; 

Bennett et al., 2020; Paroshy et al., 2021; Li et al., 2022; Xin et al., 2022) 

desarrollaron estudios en los que se han utilizado a las variables bioclimáticas 

para la estimación de carbono y biomasa aérea, en los cuales se evaluaron 

diversas relaciones de estas variables con factores bióticos y abióticos. 

Importancia de los bosques 

Es bien sabido que los bosques tienen un gran valor a nivel mundial, en este 

sentido se indica que los bosques son un elemento crucial para el cumplimiento 

de los objetivos de la Agenda 2030 instaurada en septiembre de 2015, estos 

proporcionan alimento, medicinas y biocombustibles para más de 1,000 millones 

de personas, protegen suelos y agua, albergan más del 75% de la biodiversidad 

terrestre y ayudan a mitigar el cambio climático, esta vegetación cubre un área 

de 4,060 millones de hectáreas, lo que representa el 31% de la superficie 

terrestre, aunque estos no se distribuyen de forma equitativa ya que en la zona 

tropical se encuentra el 45% del total de los bosques a nivel mundial (FAO & 

PNUMA, 2020; FAO, 2021). 

Los bosques tienen una gran importancia en la mitigación del cambio climático, 

a pesar de la disminución de su superficie entre los años 2011 y 2020 estos 

absorbieron más carbono del que emitieron gracias a la influencia de diversos 

factores, entre los que destacan la implementación de reforestaciones y un mejor 

proceso de manejo; por otro lado se destaca la importancia de los árboles en las 

áreas urbanas como las de Europa central en las que se ha detectado que estos 

pueden reducir la temperatura hasta 12 °C en la época de mayor incidencia de 

esta variable (FAO, 2022). 

La UNESCO et al. (2023) indica que los bosques suscritos a esta cubren una 

superficie de 69 millones de hectáreas y prestan múltiples bienes y servicios en 

pro de la naturaleza y de las personas, además se menciona que estos han 

capturado alrededor de 190 millones de toneladas de CO2 anualmente desde la 
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atmósfera desde el año 2020 y que los mayores sumideros de este compuesto 

se encuentran en las regiones tropicales y templadas. 

De forma similar se indica que los bosques tropicales son cruciales para el 

bienestar humano, ya que brindan servicios de suministro, regulación y 

culturales, su biodiversidad y extensión les permiten ofrecer funciones vitales, 

como la regulación del clima y prevención de inundaciones, estos servicios se 

ven amenazadas por decisiones de manejo y la creciente demanda de alimentos 

por lo que acciones como la restauración y los incentivos financieros pueden 

ayudar a preservarlos, sin embargo, garantizar la sostenibilidad de todos estos 

beneficios a largo plazo es un desafío (Balvanera, 2012). 

El área que conforma la cuenca del Amazonas tiene una gran importancia a nivel 

mundial con relación a los ciclos hidrológicos y de carbono, además de 

representar un punto crítico para la biodiversidad, así como ser un potencial 

centro para el crecimiento económico de la región, además de lo anterior esta 

región representa una fuente importante de evapotranspiración y de vapor de 

agua (Lathuillière et al., 2016; OCTA y CIIFEN, 2021). 

Biomasa y carbono 

La biomasa se puede definir como la masa total de los organismos vivos que se 

encuentran en un área determinada, así como el material muerto se puede 

considerar como biomasa muerta (IPCC, 2013, 2018). Por otro lado, el carbono 

en la vegetación corresponde a la biomasa aérea (tronco, hojas, ramas y follaje) 

y el que se encuentra contenido en la biomasa de las raíces (Ordóñez B & Masera, 

2001). 

Con relación a lo anterior (Gutierrez et al., 2014) presentan los siguientes 

conceptos: 

Biomasa aérea (Aboveground biomass -AGB): Biomasa superficial. Masa 

seca de todos los componentes de la vegetación por encima del suelo (toda la 

vegetación viva y no-viva), pero se refiere casi siempre solo a la biomasa viva 

(usualmente se reporta en Mg). 
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Biomasa Aérea Viva (Aboveground living biomass - AGLB): Masa seca de la 

vegetación viva sobre la superficie del suelo (usualmente reportada en Mg). 

Densidad: valor por hectárea (ej. densidad de biomasa aérea en Mg ha-1. 

El 99% de los bosques del mundo se encuentran en 193 países, el total de la 

biomasa mundial es de casi 606 gigatoneladas (Gt) o 149 toneladas por hectárea 

(ton ha-1), las mayores existencias de esta se encuentran en las regiones con 

bosques tropicales de América del Sur y en África occidental y central, con 

valores superiores a 200 ton ha-1; se estima que la biomasa muerta en los 

bosques del mundo es de 59.0 Gt de materia seca equivalente a 14.5 ton ha-1; 

por otro lado, las existencias de biomasa han disminuido alrededor de 8 Gt en el 

periodo de 1990 al 2000, la mayoría de estas en África y América del Sur, debido 

principalmente a que la superficie boscosa se ha reducido; lo contrario ocurre en 

los bosques de Asia, Europa y América del Norte (FAO, 2021). 

Se indica que el 99% del carbono del mundo se encuentra contenido en 192 

países, alrededor del 44% en la biomasa viva de los bosques, cerca del 45% se 

encuentra contenido en la materia orgánica del suelo y el resto en la madera 

muerta y la hojarasca de estos; se estima que el total de existencias de carbono 

en los bosques es de 662 Gt, de las cuales 300 Gt se encuentran en la materia 

orgánica sobre el suelo, 295 Gt en la biomasa viva y 68 Gt en madera muerta y 

hojarasca (FAO, 2021). Para el caso de las estimaciones del carbono contenido 

en la biomasa, se recomienda de forma general utilizar un factor de conversión 

de 0.5 toneladas de carbono por tonelada de biomasa en el proceso de 

estimación (IPCC, 1996). 

En el área que cubre la cuenca del Amazonas se han desarrollado diversos 

estudios (Malhi et al., 2006; Saatchi et al., 2007; Alves et al., 2010; Stegen et al., 

2011; Araujo-Murakami et al., 2016) los cuales se han enfocado en la estimación 

de la biomasa aérea viva, sin embargo, en cada caso se han obtenido resultados 

diversos, tal vez por la escala a la que fueron hechos, por la forma de estimación 

de es estos valores o por la evaluación de diversas interacciones de variables; 
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en los estudios referidos se ha observado que el promedio de esta variable oscila 

entre los 118 Mg ha-1 hasta los 350 Mg ha-1. 

Proyecto Global Ecosystem Dynamics Investigation 

El proyecto denominado Global Ecosystem Dynamics Investigation (GEDI), por 

sus siglas en inglés) de la NASA fue puesto en órbita en diciembre de 2018, este 

programa recopila datos entre las latitudes 51.6° N y 51.6° S, de esta forma 

proporciona mediciones de la densidad de biomasa aérea a escala mundial en 

superficies de 1 km2 esta información comprende el periodo entre 2019 hasta el 

2023, los productos generados por este proyecto constan de un conjunto de 10 

archivos en formato GeoTiFF relacionados con la biomasa (Dubayah et al., 

2023). 

Los datos generados por el proyecto GEDI han sido utilizados en diversos 

estudios. Por ejemplo, la información generada por la primera versión de este 

proyecto y se utilizó para ajustar modelos de predicción de la huella de la 

densidad de biomasa aérea en cada estrato definido; en el proceso de ajuste 

fueron incluidas variables relacionadas con la métrica de altura, las cuales son 

sensibles a la cobertura del dosel y determina si la correlación obtenida es 

negativa o positiva (Duncanson et al., 2022). 

Los resultados de este proyecto fueron utilizados por (Lahssini et al., 2024) en su 

estudio desarrollado en bosques tropicales de la isla de Mayotte en Francia, con 

el fin de evaluar la precisión de las observaciones de altura del dosel derivadas 

del GEDI, así como la influencia de estos y parámetros ambientales en las 

estimaciones de altura, se determinó que la penetración del haz LiDAR depende 

en gran parte de las características del bosque, por otro lado se identificó que la 

pendiente del terreno tiene un efecto significativo en las formas de onda recibidas 

que se devuelven a los sensores de GEDI; se indica que los modelos de regresión 

se pueden implementar para mejorar la precisión de estimación de la altura del 

dosel. 
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Modelos de Circulación General 

Los Modelos de Circulación General (GCM) por sus siglas en inglés, se definen 

como una representación numérica del sistema climático, que se basa en 

características físicas, químicas y biológicas de sus componentes, sus 

interacciones y su retroalimentación, y que analiza algunas o todas de sus 

características conocidas; estos modelos son una herramienta para estudiar el 

clima y simular en particular el clima mensual, estacional e interanual (IPCC, 

2013, 2018). Todos los GCM simulan el sistema climático global con diferentes 

alcances (atmósfera, océano, hielo marino y componentes de la superficie 

terrestre), a escala temporal y espacial, así como con diferente complejidad, de 

acuerdo con lo expresado por (Fenech et al., s/f). 

En el desarrollo del presente trabajo se utilizaron diversos GCM, estos fueron 

MIROC-6 (la sexta versión de MIROC o Modelo para la Investigación 

Interdisciplinaria del Clima) el cual de acuerdo con lo descrito por (K-1 Coupled 

GCM (MIROC) Description K-1 model developers, s/f; MIROC AGCM document 

writing team, 2021) consta de cinco componentes: atmósfera, tierra, ríos, hielo 

marino y océano, este modelo fue desarrollado en el Centro de Investigación 

Atmosférica y Oceánica, la Universidad de Tokio, la Agencia Japonesa de Ciencia 

y Tecnología Marino-Terrestre y el Instituto Nacional de Estudios Ambientales; 

este modelo se desarrolló con el fin de simular la circulación general atmosférica, 

se utilizaron variables como el viento, la temperatura y la presión a nivel mundial. 

También se utilizó el Modelo E2 del Instituto Goddard de Estudios Espaciales 

(GISS), este fue concebido como un modelo sobre el clima global para estimar el 

efecto de gases de efecto invernadero de origen antropogénico sobre la 

temperatura media global, además de probar el efecto de los aerosoles 

volcánicos, el cual ha sufrido diversas actualizaciones, una de las cuales 

corresponde a la versión GISS-E2, este modelo involucra representaciones de la 

atmósfera, el océano, el hielo marino, la superficie terrestre, así como considerar 

componentes radiactivamente activos y se incluye la química de aerosoles y 

polvos de emisiones (Schmidt et al., 2014). 
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El último GCM considerado fue el Modelo del Sistema Terrestre de Segunda 

generación, el cual fue desarrollado por el Centro Euromediterráneo sobre 

Cambio Climático (CMCC-ESM2), considera factores terrestres, atmosféricos, 

hidrológicos, oceánicos, utiliza un núcleo físico-dinámico y se tienen en cuenta 

retroalimentaciones del sistema terrestre, lo cual representa avances 

sustanciales con respecto a su predecesor CMCC-CESM, en general el 

componente terrestre utiliza información más amplia de los tipos de vegetación y 

los depósitos del carbono; este modelo tiene como fin promover la investigación 

sobre cómo evoluciona el clima y los ciclos biogeoquímicos a nivel mundial, 

mediante el estudio de la dinámica acoplada del ciclo clima-carbono (Lovato 

et al., 2022). 

Modelos Lineales Generalizados 

Los Modelos Lineales Generalizados (GLM) se han convertido en una buena 

alternativa para el ajuste de modelos que tienen datos no métricos, es decir que 

no cumplan con los supuestos estadísticos básicos de un modelo lineal clásico, 

estos pueden incluir ajustes de tipo logit, probit, de Poisson y modelos de 

regresión ordinal (López-González, 2011). Este tipo de modelos van más allá de 

los modelos lineales mixtos ya que las variables de respuesta no se distribuyen 

normalmente, son heterocedásticas y existe una relación lineal entre la variable 

de respuesta y las predictoras (Salinas Ruíz et al., 2023). 

Esta metodología de ajuste de modelos se ha utilizado en estudios como el 

desarrollado por (Antúnez et al., 2017) en el que se utilizaron estos para 

determinar las variables ambientales que afectan de forma significativa la 

abundancia y observar su tipo de relación con tres especies arbóreas en los 

bosques templados naturales del estado de Oaxaca, en este estudio se encontró 

que la relación lineal fue pobre entre la abundancia de las especies y las variables 

predictoras, de las 18 variables ambientales estudiadas la precipitación y la 

temperatura tuvieron una alta correlación, de forma global los modelos GLM 

explicaron 8.8%, 14.08% y 11.45% de la variación existente. 
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Este tipo de modelos también han sido utilizados en el estudio del impacto de las 

variables climáticas en la producción primaria neta (PPN), en los que mediante 

la aplicación de estos se determinó que las variables climáticas tienen efectos 

significativos (p < 0.01) sobre la PPN en el santuario de la vida silvestre 

Katerniaghat en Uttar Pradesh, India, en la evaluación de estos modelos se 

determinó que la temperatura en el año 2001 explica más del 75% de la varianza, 

se menciona que la combinación de las variables utilizadas explican un máximo 

del 88 y 80% en este mismo año, en general se observa que la temperatura es 

importante en los otros años estudiados (Tripathi et al., 2019). 

En un estudio realizado en los bosques de México, se empleó un modelo GLM 

para estimar las reservas de carbono, se utilizaron datos de 10,500 parcelas del 

inventario Forestal, se ajustaron dos tipos de modelos, en el primero por tipo de 

bosque y en el segundo se integraron los datos de todos los tipos de bosques 

estudiados mediante la interacción entre la precipitación, tipo de bosque, la 

temperatura y tipo de bosque, y talud y tipo de bosque; esta versatilidad en el uso 

de los GLM subraya su importancia en la investigación forestal y en la gestión de 

recursos naturales (Arasa-Gisbert et al., 2018). 

Estudios afines al proyecto 

La regresión se define como una técnica utilizada para modelar la relación entre 

variables, a decir de como una o varias variables dependientes se comportan 

respecto a una o más variables independientes (Bouza, s/f). Con base en lo 

anterior en el desarrollo de modelos de predicción que consideren variables 

climáticas, la modelación ha permitido determinar los efectos que el cambio 

climático tendrá en diferentes regiones del planeta y sus consecuencias en 

poblaciones naturales (Romero Sánchez, 2016). 

En un estudio se analizó la relación de factores climáticos y del suelo con la 

densidad de carbono sobre y bajo del suelo en diferentes bosques a nivel 

mundial; en este estudio se evaluaron varias vías de concentración 

representativa (RCP) (2.6, 4.5 y 8.5), derivado de esto se encontró que el índice 

de sequedad tiene un impacto negativo sobre los factores evaluados en los 
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bosques tropicales, sin embargo, la precipitación media anual mostro un efecto 

positivo en los bosques templados lo que dependió de si los valores estaban 

encima o por debajo de un umbral definido; en este sentido tanto la precipitación 

media anual como la temperatura se identificaron como factores clave que 

impulsan la variación de las reservas de biomasa, sin embargo su efecto difiere 

de acuerdo con el tipo de bosque estudiado (Guo et al., 2019). 

Por otro lado, se ha analizado la relación de la biomasa aérea (AGB) con las 

variables climáticas y alométricas, lo anterior con el objetivo de desarrollar un 

modelo de predicción de esta variable para un bosque de Pino Masson (Pinus 

massoniana Lamb.) en una subprovincia tropical de China, así como determinar 

el efecto de estas variables hacia el futuro, para esto se analizaron valores de las 

vías de concentración representativa (RCP) 2.6, 4.5 y 8.0 hacia los años 2041, 

2061 y 2080; los resultados obtenidos indicaron que el diámetro a la altura el 

pecho junto con el promedio de la temperatura de la temporada de crecimiento, 

la precipitación total de la temporada de crecimiento, la temperatura media del 

trimestre más húmedo y la precipitación del trimestre más húmedo fueron 

significativos para la predicción de los valores de AGB (Fu et al., 2017). 

En un estudio se utilizaron 879 sitios de bosques maduros con el fin de evaluar 

como los datos climáticos obtenidos de WorldClim y la edad del arbolado influyen 

en la densidad de carbono en la biomasa (BCDa) de los árboles evaluados; los 

biomas forestales y las zonas ecológicas se clasificaron mediante distintos 

contextos espaciales y climáticos; los resultados obtenidos indicaron que la BCDa 

es más elevada en latitudes medias en las que las temperaturas medias anuales 

oscilan entre los 8 a 10 °C y con una precipitación media anual que oscila entre 

1,000 a 2,500 mm, además se determinó que en los bosques boreales la BCDa 

aumenta con la temperatura, mientras que en los bosques tropicales la BCDa 

tiende a disminuir con el aumento de esta (Liu et al., 2013). 

En un estudio se analizó el efecto de variables climáticas y del suelo sobre la 

biomasa aérea (AGB) en los bosques de Australia, se utilizaron modelos Random 

Forest y se concluye que el clima es el factor más importante, explican 
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aproximadamente el 50% de la variación de la AGB, la variable más importante 

fue la temperatura media del trimestre más seco, mientras que la densidad 

aparente fue la variable del suelo más significativa; las mayores concentraciones 

de AGB se encuentran en el suroeste y sureste del país; se sugiere la inclusión 

de factores como el régimen de perturbaciones y la diversidad de especies que 

pueden influir en el poder explicativo de los modelos, se resalta la influencia del 

clima más que el suelo en la distribución de AGB y sugiere que futuras 

investigaciones se enfoquen en factores más locales (Bennett et al., 2020). 

En un estudio realizado en bosques subtropicales perennifolios de la cuenca del 

río Xiangjiang, China, la que se encuentra representada en un 54.4% de su 

superficie por esta vegetación, se estimó la biomasa aérea (AGB) mediante la 

relación de la información del inventario nacional forestal continuo de los años 

1999, 2004, 2009 y 2014 y datos de sensores remotos climáticos, se ajustó un 

modelo SGBoost y la interpolación Kriging, se determinó que la AGB disminuirá 

con el aumento de las emisiones de los gases de efecto invernadero hacia los 

años 2050 y 2070 lo que indica un efecto negativo en el crecimiento, la estructura 

y la biodiversidad de los bosques estudiados, se concluye que los planes de 

gestión de las áreas forestales deben considerar los efectos del cambio climático 

con el fin de garantizar la sostenibilidad (Li et al., 2022). 

La concentración de carbono se evaluó a nivel mundial en un estudio en el cual 

mediante un modelo preliminar se encontró que las variables de temperatura 

media anual, estacionalidad de las precipitaciones, la estacionalidad de la 

temperatura y el rango diurno medio, tuvieron una correlación significativa, 

posteriormente se ajustó un modelo lineal de efectos mixtos con el criterio de 

información de Akaike (AIC) para determinar el conjunto de variables que influyen 

en el contenido de carbono; los resultados indicaron que los bosques 

estacionarios tropicales y templados fueron mejor evaluados y los bosques 

boreales estuvieron infrarrepresentados, a nivel mundial las concentraciones de 

carbono oscilaron entre el 30.5 y el 65.0%; se determinó que el modelo ajustado 

explico el 67.2% de la variación de las concentraciones de carbono al incluir los 
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efectos aleatorios, con cuatro variables climáticas y sus términos polinómicos 

como predictores (Paroshy et al., 2021). 

Por otro lado, en un estudio se utilizaron variables climáticas y de biomasa en el 

ajuste de modelos básicos de estimación de la biomasa total del rodal y biomasa 

de los componentes aéreos y subterráneos (raíces, tallos, ramas y agujas), en 

plantaciones de tres especies de coníferas en el noreste de China, se ajustaron 

modelos que incluyeron 19 variables climáticas de las cuales ocho estaban 

relacionadas con la precipitación y 11 con la temperatura; de lo anterior se 

determinó que ocho variables son influyentes sobre la biomasa, entre las que 

destacan, la temperatura media anual, temperatura mínima y la isotermalidad, 

por otro lado las variables relacionadas con la precipitación fueron la media anual, 

del trimestre más húmedo y la del mes más seco, todas estas se consideraron 

como las más importantes en el desarrollo de los modelos (Xin et al., 2022). 

El estudio de la dinámica de la vegetación tropical en el Amazonas en escenarios 

climáticos se evalúa en el trabajo desarrollado por (Galbraith et al., 2010), 

mediante el ajuste de modelos dinámicos de vegetación global (Hyland, Lund-

Potsdam-Jena y MOSES-TRIFFID), se utilizaron datos climáticos obtenidos de la 

Unidad de Investigación Climática de la región para el periodo de 1983 a 2002 

(temperatura, precipitación, humedad relativa, concentración de dióxido de 

carbono, velocidad del viento, radiación, déficit de presión de vapor y humedad 

del suelo), así como datos de teledetección con información de biomasa a una 

resolución de 1 Km, además de la humedad del suelo y propiedades hidráulicas, 

se determinó que hacia el futuro habrá un aumento de la temperatura y 

reducciones en las precipitaciones, lo que impactara de forma negativa a la 

biomasa amazónica. 

En un estudio se incluyeron variables climáticas en el ajuste de modelos 

alométricos para mejorar la estimación de la altura, volumen y el grosor de la 

corteza de los árboles en la Mata Atlántica en el estado de Río de Janeiro, Brasil; 

se utilizó un análisis factorial múltiple para evaluar la relación de las variables 

estudiadas; el diámetro a la altura del pecho, área basal, textura del suelo, 
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fertilidad del suelo y la variable de precipitación media anual, temperatura media 

anual, fueron incluidas en el modelo final de estimación; este estudio concluye 

que los modelos que consideran variables climáticas tienen mejoras significativas 

con valores menores del Criterio de Información de Akaike y valores del 

coeficiente de determinación (R2) más altos (Cysneiros Costa et al., 2021). 

Las variables climáticas se han utilizado en el ajuste de modelos de estimación, 

tal es el caso de un estudio hecho en varios tipos de bosques y regiones 

climáticas en el continente americano, en este se desarrolló el ajuste de modelos 

con el uso la biomasa máxima individual y el déficit hídrico del ecosistema para 

estudiar su relación con factores climáticos como la temperatura media anual, 

precipitación anual, precipitación del trimestre más seco, evaporación potencial y 

real, así como el déficit hídrico del ecosistema; se encontró que los modelos que 

consideran variables climáticas a escalas geográficas amplias y en climas 

restringidos tienen una influencia limitada, por otro lado se indica que el déficit 

hídrico establece un límite máximo en el desarrollo de esta variable (Stegen et al., 

2011). 

En un Meta-Análisis de 40 estudios de 25 países que consideraban diferentes 

biomas, que incluían bosques boreales, templados estacionales, selvas 

tropicales y estacionales tropicales, el análisis tuvo como fin determinar la 

relación de las características estructurales de los rodales y la biomasa aérea 

(AGB), así como evaluar el efecto de las variables climáticas en desarrollo de los 

factores anteriores; se encontró que las características evaluadas varían según 

el bioma que se haya estudiado, por otro lado se indica que los factores climáticos 

como la precipitación media anual y la temperatura media anual desempeñan un 

papel crucial en la regulación de las características evaluadas; se concluye que 

las características estructurales y climáticas influyen significativamente en el 

desarrollo de la biomasa aérea (Ma et al., 2023). 

En un estudio desarrollado en la península de Yucatán, México, en bosques 

tropicales semiperennifolos y semicadicifolios, fueron utilizados datos 

espectrales para el desarrollo de índices de vegetación como el índice diferencial 
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normalizado de vegetación (NDVI), bandas espectrales y variables climáticas, 

con el fin de estimar y cartografiar la biomasa, así como la incertidumbre asociada 

a esta; las variables climáticas estudiadas consideraron la temperatura media 

mensual, temperaturas mínimas y máximas, así como la media anual, también 

variables de precipitación como la de enero, febrero, noviembre y diciembre, 

además de considerar el valor anual de esta; se concluye que las variables a 

escala anual tienen una mayor influencia en los procesos de crecimiento de la 

biomasa (Ortiz-Reyes et al., 2021). 

En un estudio desarrollado a nivel mundial se evaluaron los patrones de 

acumulación de la biomasa forestal sobre el suelo (AGB) con relación a los 

patrones de acumulación de esta y los gradientes climáticos donde se desarrollan 

diferentes tipos de bosques, las principales variables climáticas utilizadas en el 

ajuste de los modelos fueron la temperatura media anual y la precipitación media 

anual, las variables de acumulación de AGB consideradas fueron la tasa inicial 

de acumulación, la AGB saturada y la edad de los bosques; el modelo ajustado 

fue del tipo bayesiano en el que se encontró que la temperatura tuvo un efecto 

positivo significativo en los bosques siempreverdes y un efecto negativo en los 

bosques caducifolios latifoliados, por otro lado la variable de precipitación influyo 

de forma opuesta en los mismos tipos de bosque (Chen et al., 2023). 
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MATERIALES Y MÉTODOS 

Descripción del área de estudio 

La Cuenca Hidrográfica Internacional del Río Amazonas abarca 

aproximadamente siete millones de km² (Medina P. & Carrillo Silva, s/f; Panel 

Científico por la Amazonía, 2021), limitándose entre 5° N y 10° S de latitud y 70° 

W y 50° W de longitud (Blitzkow et al., 2009). La mayor parte le corresponde a 

Brasil (67.69%), el resto 32.31% le corresponde a Perú (13.02%), Bolivia 

(11.20%), Ecuador (1.67%), Colombia (5.52%), Venezuela (0.79%) y 0.08% a 

Guayana (Medina P. & Carrillo Silva, s/f). 

La cuenca del Amazonas alberga una rica y diversa vegetación, que incluye 

bosques lluviosos siempre verdes, bosques estacionales, bosques inundados 

estacionalmente, bosques montañosos (Buscardo et al., 2016), selva tropical 

lluviosa, bosques tropicales secos, bosques templados cálidos y fríos, pastizales 

y matorrales fríos, y estepa, entre otros (Kern et al., 2022). Se estima un total de 

14,003 especies comprendidas en 1,788 géneros y 188 familias, más del 52% de 

estas especies (7,276) son arbustos, árboles pequeños, lianas, enredaderas y 

hierbas (Cardoso et al., 2017). En el área de estudio, existen 227 especies 

hiperdominantes de flora y las más abundantes son Euterpe oleracea Mart, 

Astrocaryum murumuru Mart. y Eperua leucantha Benth. (Ter Steege et al., 

2013). 

La delimitación del área de estudio se basó en el shapefile de ecorregiones 

terrestres, ecorregión número uno “Bosques húmedos tropicales y subtropicales 

de hoja ancha” (Dinerstein et al., 2017). La precipitación promedio en esta cuenca 

es de 2,200 mm año-1 (Costa & Foley, 1998; Fassoni-Andrade et al., 2021), pero, en 

regiones andinas (Perú, Bolivia, Ecuador y Colombia), se registran valores de 

hasta 6,000 mm año-1, incluso en algunos lugares ocurren 250 mm año-1, y esto 

es dependiente de la altitud y la posición de barlovento o sotavento (Espinoza 

Villar et al., 2008). A lo largo de la cuenca se registran temperaturas entre 26 y 

28 °C (OCTA y CIIFEN, 2021). Los máximos se registran en la zona ecuatorial 

central, por encima de los 29 ºC (Panel Científico por la Amazonía, 2021). Aunque 
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al oeste en los Andes se presentan temperaturas de hasta 2 °C (OCTA y CIIFEN, 

2021). 

En el área de estudio se han descrito suelos hidromórficos y no hidromórficos; es 

decir; áreas inundables y no inundables respectivamente (Damaceno et al., 

2020). También al Sur de la cuenca, se han caracterizado suelos entisoles y 

inceptisoles (Franciscon et al., 2019). 

En la Figura 1 se muestra la ubicación de los estratos de estudio a nivel global, 

diferenciados por colores en el panel izquierdo. En panel derecho se observa una 

vista ampliada de estos estratos, donde el estrato I aparece en color mostaza y 

el estrato II en color verde. 

Adquisición y preprocesamiento de datos 

Los datos de densidad de la biomasa viva aérea de aquí en adelante DBva (por 

sus siglas en español), se refiere al stock de biomasa por unidad de área, de 

biomasa viva aérea, fueron obtenidos en diciembre de 2023 de la plataforma 

EarthDATA (https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2017) de la NASA, 

del proyecto Global Ecosystem Dynamics Investigation (GEDI), lanzado en 5 de 

Figura 1. Ubicación del área de estudio a escala mundial (izquierda) y estratos 

bioclimáticos generados a través del índice Calinski-Harabasz (derecha). 

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=2017
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diciembre de 2018, donde se proporcionan estimaciones de DBva entre las 

latitudes 51.6° N y 51.6° S (Dubayah et al., 2023) en formato GeoTiff (*.tif), a una 

resolución de 1 km2 por pixel. 

Para predecir la DBva, se utilizaron las variables bioclimáticas obtenidas del sitio 

Worldclim (https://www.worldclim.org/data/worldclim21.html), corresponden a 19 

variables en formato raster, a la misma resolución de los datos de DBva (Fick & 

Hijmans, 2017; Fick & Himans, 2017). La información de las Bios ha sido utilizada 

en estudios similares para relacionarlas con biomasa y/o carbono (Saatchi et al., 

2007; Stegen et al., 2011; Liu et al., 2013; Fu et al., 2017; Arasa-Gisbert et al., 

2018; Guo et al., 2019; Bennett et al., 2020; Ortiz-Reyes et al., 2021; Paroshy 

et al., 2021; Li et al., 2022; Xin et al., 2022). 

En el área de estudio, se distribuyeron sistemáticamente 45,000 puntos, a una 

equidistancia de 12 km entre filas y columnas, se utilizó la librería ‘sp’ de R 

(Pebesma et al., 2024). Después, a través de la librería ‘raster’ (Hijmans et al., 

2023), a cada punto, se le extrajo el valor de cada capa (DBva y Bios). La limpieza 

de los datos de DBva consistió en: a) eliminar registros que no tuvieran valores 

(NA), b) registros con valor de cero, c) valores de DBva ≤ percentil 5, por su 

probable ubicación en lugares con poca o desprovistos de vegetación, Trancoso 

et al. (2010) y Beuchle et al. (2021) han documentado una tasa de deforestación 

del 20% y un incremento del 9.5% en el periodo de 2019 a 2020 en ciertas 

porciones de la cuenca, d) puntos fuera de la elipse (99%) de un análisis de 

componentes principales, realizado con datos estandarizados de DBva y 19 Bios. 

Debido a la gran cobertura geográfica del área de estudio, y con el fin de mejorar 

las predicciones de DBva se realizó una estratificación bioclimática, por lo cual se 

utilizaron las 19 variables bioclimáticas en formato raster, a través de la librería 

‘GeoStratR’ (Bivand, 2022), además se empleó el índice de Calinski-Harabasz 

("calinski"). Este criterio busca que la varianza entre los grupos sea lo mayor 

posible con relación a la varianza dentro de los grupos. 

https://www.worldclim.org/data/worldclim21.html
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Optimización y Validación de Modelos Predictivos de la densidad de 

biomasa aérea viva. 

Por la respuesta cuadrática de algunas Bios, con biomasa aérea (Guo et al., 

2019), las Bios fueron transformadas al cuadrado, lo que comprendió un total de 

38 variables. Para elegir los mejores predictores de DBva, se utilizó el algoritmo 

genético (AG) de la librería “glmulti” (Calcagno & de Mazancourt, 2010), bajo los 

siguientes criterios: a) método “I”, b) criterio de información de Akaike, c) nivel de 

interacciones 1, d) prueba gaussiana y, e) Técnicas lm (lineal model) y GLM 

(General Lineal Model). Proceso realizado de forma independiente en cada 

estrato. 

Con el conjunto de predictores derivados del proceso anterior, se usó el 70 y 80% 

de los datos (para los estratos I y II respectivamente), el modelo fue entrenado a 

través de Machine Learning (ML) con la técnica lm, con la librería ‘caret’ (Kuhn, 

2008), y se verificó el cumplimiento de los supuestos: homogeneidad de varianza, 

autocorrelación, colinealidad y normalidad, además de evaluar la significancia 

estadística (p < 0.05) de todos los coeficientes de regresión. De no cumplir todos 

estos criterios, se optaría por la técnica GLM; ésta, es apropiada para el análisis 

de variables de respuesta continuas y positivas (Arasa-Gisbert et al., 2018; 

Cysneiros Costa et al., 2021). 

 

Con el resto de los datos de cada estrato (30 y 20%), los modelos fueron 

validados con base en las técnicas: Validación cruzada de dejar uno fuera 

(VCDUF), Validación cruzada (VC; k=10), Validación cruzada repetida (VCR, 

k=10, rep=10) y Bootstrap (reps=100) con el uso la librería ‘caret’ (Kuhn, 2008). 

Las métricas calculadas fueron: raíz del cuadrado medio del error (RCME) y error 

medio absoluto (EMA). Para este tipo de estudios algunos autores (Fu et al., 

2017; Chen et al., 2023;) han utilizado entre 20 y el 30% del conjunto de los datos 

para la validación de los modelos. 
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Proyecciones de la densidad de biomasa viva aérea actuales y Futuras  

Con el modelo generado y los predictores en formato raster, se realizaron 

predicciones actuales de DBva con la librería ‘raster’ de R (Hijmans et al., 2023), 

se aplicó el argumento type = "response", para obtener mapas raster por estrato. 

Las predicciones futuras de DBva se realizaron con los promedios de los 

predictores (raster) de tres modelos de circulación general (GCM): MIROC-6, 

GISS-E2 y CMCC-ESM2, derivados de predicciones futuras del clima de la fase 

cinco del proyecto de intercomparación de modelos acoplados (CMIP5), se 

consideraron cuatro RCP: 2.6, 4.5, 6.0, y 8.5 W m-2 para los años 2050 y 2070, 

definidas por el Panel Intergubernamental sobre Cambio Climático (IPPC, 2013) 

Similarmente, se empleó el argumento type = "response", de la librería ‘raster’ 

(Hijmans et al., 2023) para obtener mapas de las predicciones de DBva en formato 

raster. En ambos casos, se utilizó la librería de R ‘geoData’ (Hijmans et al., 2024), 

para el acceso a las variables bioclimáticas directamente del sitio de Worldclim. 

Para evaluar los cambios en DBva atribuibles al cambio climático futuro en 

comparación con el escenario actual, se empleó álgebra de rásters mediante la 

expresión: DBva (futuro) - DBva (actual). Los resultados fueron los siguientes: 0 si 

los valores de los píxeles son iguales en ambos escenarios; positivo si DBva es 

mayor en el futuro; y negativo si DBva es mayor en el escenario actual. Se utilizó 

el Coeficiente de Variación (CV) para cuantificar la incertidumbre en las 

predicciones futuras de la densidad de la biomasa viva aérea (DBva), por último, 

se empleó la prueba no paramétrica pareada de Wilcoxon para evaluar las 

diferencias entre los valores de los predictores en condiciones actuales y futuras. 

La comparación se realizó en todos los escenarios proyectados con relación a 

los valores actuales, desglosados por cada RCP y año. 

Todos los análisis estadísticos, figuras y el procesamiento geográfico se 

realizaron con el software RStudio versión, 4.3.1 (R Core Team. R:, 2024). 
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Dado que los modelos LM no cumplieron con los supuestos de 

heterocedasticidad, autocorrelación, colinealidad y normalidad, o solo se 

cumplieron parcialmente, se optó por ajustar un modelo GLM, ya que este 

enfoque se considera más adecuado bajo estas condiciones (Arasa-Gisbert 

et al., 2018). El entrenamiento del modelo se llevó a cabo con la utilización de 

4,640 y 13,056 de los puntos de muestreo de los estratos I y II respectivamente, 

las variables que mostraron el mejor ajuste como predictoras en los modelos 

ajustados fueron Bio 52 y Bio 122 para el estrato I, así como Bio 12 y Bio 72 para 

el estrato II. 

Los modelos ajustados fueron Modelos Lineales Generalizados (GLM), 

desarrollados para incorporar variables que no cumplen con los supuestos de un 

Modelo Lineal (LM) clásico, la relevancia de los GLM radica en que amplían la 

capacidad de los modelos para ajustar datos no métricos en comparación con los 

modelos LM, lo que los convierte en una herramienta esencial para analizar 

conjuntos de datos en procesos de modelado predictivo (López-González, 2011; 

Salinas Ruíz et al., 2023). 

 

 

Figura 2. Proceso de manipulación de datos y validación de los modelos de 

predicción de la densidad de la biomasa viva aérea. 
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RESULTADOS Y DISCUSIÓN 

Densidad de biomasa viva aérea en el área de estudio 

El análisis identificó dos estratos en el área de estudio, con una superficie de 

4,611,956.45 km2 (estrato I) y 5,654,271.41 km2 (estrato II), en los que se 

establecieron 6,627 y 16,317 sitios de muestreo respectivamente. El estrato I 

presenta una DBva promedio de 173.95 Mg ha-1, mientras que el estrato II registra 

222.75 Mg ha-1, estos valores se encuentran dentro del rango reportado por 

(Stegen et al., 2011) el cual se encuentra entre 118.9 hasta 250.3 Mg ha-1 de AGB 

en inventarios forestales del estado de Rio Grande do Sul al sur de Brasil, otro 

estudio registró un rango de 166.3 a 283.2 Mg ha-1 de AGB en la cordillera de la 

Serra do Mar en el sudeste del Brasil, donde se utilizaron datos obtenidos 

mediante LiDAR (Alves et al., 2010). 

En otro estudio se reportaron hasta 268.61 Mg ha-1 de AGB en bosques 

amazónicos del Pando Occidental en Bolivia, a través de ecuaciones alométricas 

y es más alto que el valor de este estudio (Araujo-Murakami et al., 2016). Se 

estimó que la Biomasa viva aérea (AGLB) en la parte occidental de la cuenca del 

Amazonas varía entre 150 a 300 Mg ha-1 (Saatchi et al., 2007). Finalmente, (Malhi 

et al., 2006) indican un rango más alto de AGLB que varía de 250 a 350 Mg ha-1 

en parcelas permanentes de bosques amazónicos. 

En comparación, los valores obtenidos en este estudio se encuentran dentro del 

rango reportado por (Saatchi et al., 2007), (Alves et al., 2010) y (Stegen et al., 

2011), pero son menores que los mencionados por (Malhi et al., 2006) y (Araujo-

Murakami et al., 2016). No obstante, los resultados presentados permanecen 

dentro de los límites establecidos para ecosistemas tropicales. 

Carbono aéreo en el área de estudio 

Con base en un factor de conversión de 0.5 de biomasa a carbono (IPCC, 1996), 

se estiman 86.98 Mg C ha-1 y 111.38 Mg C ha-1 para los estratos I y II 

respectivamente, semejante (estrato II) con lo encontrado por (Guo et al., 2019) 

(106.6 ± 2.6 Mg C ha-1) de carbono aéreo (ACD). En su estudio (Hurtado-Torres 

et al., 2022) se estimó que el carbono almacenado en la biomasa aérea es de 
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56.3 Mg ha-1 en la selva mediana subcaducifolia en el estado de Yucatán, México. 

En el estudio realizado en la región Madre de Dios al suroeste del área de estudio, 

se estimó un promedio de 127.55 Mg C ha-1 (Gutierrez et al., 2014). 

Variables predictoras de la densidad de biomasa viva aérea 

En el estrato I fueron seleccionadas las variables Bio 5 (Temperatura máxima del 

mes más cálido) y Bio 12 (Precipitación anual) y para el estrato II se 

seleccionaron la Bio 1 (Temperatura media anual) y Bio 7 (Rango de temperatura 

anual). 

Las variables bioclimáticas seleccionadas mediante la aplicación de la 

metodología de algoritmo genético fueron altamente significativas (p < 0.0001). 

En el estrato I, las variables seleccionadas fueron una relacionada con la 

temperatura (Bio 5) y con la precipitación (Bio 12), con pendiente negativa y 

positiva respectivamente. Para el estrato II, se seleccionaron dos variables que 

representan valores de temperatura (Bio 1 y Bio 7), ambas con una relación 

negativa con la DBva. (Cuadro 1). 
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Cuadro 1. Coeficientes y estadísticos de ajuste del modelo de regresión para predecir la densidad de biomasa viva 

aérea en los bosques húmedos del Amazonas. 

Estrato Coeficientes Estimadores 2.5% 97.5% 
Error 

std 

Valor-

T 
Pr(>|t|) 

Desviación 

residual 

I 

(n = 4,640) 

β0 (intercept) 156.40 140.60 173.10 6.227 25.11 <2e-16 *** 1,556.30 

β1 (Bio 52) -0.0009 -0.0011 -0.0007 0.00009 -10.20 <2e-16 ***  

β2 (Bio 122) 0.00004 0.00003 0.00004 0.000002 19.89 <2e-16 ***  

II 

(n =13,056) 

β0 (intercept) 458.90 439.18 478.85 9.446 48.58 <2e-16 *** 1,005.40 

β1 (Bio 12) -0.0031 -0.0034 -0.0029 0.0001 -24.03 <2e-16 ***  

β2 (Bio 72) -0.0016 -0.0017 -0.0014 0.00009 -18.01 <2e-16 ***  

Donde: n: Número de sitios;  𝛽0,  𝛽1 𝑦  𝛽2: Coeficientes de regresión; 2.5% y 97.5%: Intervalo de confianza de 

los coeficientes de regresión al 95% de confiabilidad (%); Error std.: Error estándar de los coeficientes de 

regresión; Pr(>|t|): Probabilidad de obtener un valor de t más extremo que el observado si la hipótesis nula 

es verdadera; Bio 1: Temperatura media anual °C; Bio 5: Temperatura máxima del mes más cálido (°C); Bio 

7: Rango de temperatura anual (Bio 5 - Bio 6, °C); Bio 12: Precipitación anual (mm). Significancia estadística: 

“*** p < 0.0001”: Muy altamente significativo. 

Las ecuaciones predictoras de Biomasa Aérea Viva (DBva) obtenidas en el presente estudio fueron las siguientes: 

Estrato I: DBva (Mg ha-1) = β0 + β1*Bio 52 (°C x 10) + β2*Bio 122 (mm) Ec. 1 

Estrato II: DBva (Mg ha-1) = β0 + β1*Bio 12 (°C x 10) + β2*Bio 72 (°C x 10) Ec. 2
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En el estrato I, la densidad de biomasa viva aérea (DBva) presenta alta 

variabilidad (DE = 95.55) y valores máximos que alcanzan 1,165.01 Mg ha-1. El 

coeficiente de variación (CV = 54.93%) sugiere heterogeneidad en este estrato. 

En contraste, el estrato II registra menor variabilidad (DE = 65.63) y un CV más 

bajo (29.46%), lo que indica mayor uniformidad en la distribución de la biomasa. 

El análisis de normalidad a través de las pruebas de Shapiro-Wilk y Anderson-

Darling sugiere que ninguna de las variables sigue una distribución normal (p < 

0.0001), lo que justifica el uso de análisis no paramétricos (Cuadro 2). 

.
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Cuadro 2. Estadísticas descriptivas de la densidad de biomasa viva aérea y de las variables bioclimáticas actuales 

que componen el modelo de predicción en bosques húmedos del Amazonas. 

  
n Min P25 Media Mediana P75 Max DE CV Curtosis Asimetría 

Shapiro 
Valor-p 

Anderson 
valor-p 

Estrato I 

DBva 

4,640  

34.58 95.82 173.95 164.81 237.49 1,165.01 95.55 54.93 7.28 1.06 0.00 0.00 

Bio 52 11.20 31.70 31.56 32.70 33.50 35.80 3.74 11.86 8.90 -2.43 0.00 0.00 

Bio 122 379.00 1,586.00 1,695.34 1,789.00 1,918 2,504.00 336.34 19.84 4.75 -1.42 0.00 0.00 

Estrato II 

DBva 

13,056 

116.48 175.44 222.75 216.85 260.09 1,157.18 65.63 29.46 1.80 0.006 0.00 0.00 

Bio 12 11.80 25.50 25.87 26.00 26.50 27.80 1.03 3.99 9.61 1.31 0.00 0.00 

Bio 72 8.20 11.10 12.56 11.90 13.30 22.40 2.23 17.72 5.49 1.62 0.00 0.00 

Donde: DBva: Densidad de biomasa viva aérea (Mg ha-1); Bio 1: Temperatura media anual (°C); Bio 5: Temperatura 

máxima del mes más cálido (°C); Bio 7: Rango de temperatura anual (Bio 5 – Bio 6, °C); Bio 12: Precipitación media 

anual (mm); n: Número de sitios de muestreo en cada estrato; Min: Valores mínimos; Max: Valores máximos; P25 

y P75: percentil 25 y 75: DE: Desviación estándar; CV: Coeficiente de Variación (%). 
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Importancia de las Bios de escala anual 

Las variables bioclimáticas que representan escala anual (Bio 1 y Bio 12) 

seleccionadas por el algoritmo de selección en este estudio, han sido 

encontradas como buenos predictores de AGB en bosques húmedos 

subtropicales del sur de Brasil, entre otras como: número de meses secos, 

estacionalidad de las precipitaciones (Bio 15), Bio 5 y Bio 6 las cuales fueron 

significativas (p< 0.001) (Rosenfield & Souza, 2014). 

En el estudio desarrollado por Ortiz-Reyes et al. (2021) en bosques 

semicaducifolios en Yucatán, Bio 1 y Bio 12 predijeron también eficientemente la 

AGB, sin embargo, el valor de importancia de estas variables fue determinada 

directamente por el modelo random Forest. De manera similar, en los bosques 

del mundo, de más de 80 años, que representan una amplia variedad de biomas 

forestales, como bosques tropicales y los bosques tropicales lluviosos, estas 

variables muestran una relación directa significativa (p < 0.05) con BCDa (Liu 

et al., 2013). 

En el estudio realizado por Ma et al. (2023) en bosques de 25 países, estas 

variables (Bio 1 y Bio 12) son altamente significativas (p< 0.001) en la estimación 

de AGB, junto con otros factores como la densidad arbórea, diámetro a la altura 

del pecho y área basal. En plantaciones de coníferas en el noreste de China, 

estas variables, se asocian significativamente (p < 0.05) con la biomasa (Xin 

et al., 2022). Estas mismas Bios (Bio 1 y Bio 12) fueron utilizadas por (Khan et al., 

2019) para construir modelos alométricos en Larix gmelinii Rupr. y Betula 

platyphylla Sukaczev, demostraron que fueron buenos predictores de la biomasa 

con un valor de R2 de entre 0.36 a 0.76 de las variables, respectivamente y un 

análisis de varianza (ANOVA) con un valor de significancia de p < 0.05 para este 

proceso. 

En un estudio realizado en un bosque plantado de Yulin en la provincia de Shanxi, 

las especies dominantes en este son Pinus tabuliformis Carr., Populus alba L. y 

Styphnolobium japonicum (L.) Schott se consideraron las variables Bio 1 y Bio 12 

y la duración total de luz, entre otras (NDVI, edad del stand, pendiente, etc.), 
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resultaron ser altamente significativas (p < 0.001) para la estimación de AGB 

(Peng et al., 2019). En el estudio realizado por Adhikari et al. (2017) en Kenia, se 

concluye que la Bio 12 es la más importante para predecir AGB en bosques 

tropicales afromontanos, más que variables como: elevación, pendiente, 

exposición entre otras, en donde se determinó la influencia de las variables con 

la aplicación de una regresión reforzada (BRT). 

En los bosques templados y húmedos de todo el mundo, las variables Bio 1 y Bio 

12 explicaron el 68.3% y el 50.0% del carbono aéreo, respectivamente (Guo 

et al., 2019), este estudio evidencia que, a nivel global, los predictores 

bioclimáticos de escala anual son altamente efectivos y significativos (p < 0.001) 

para estimar la biomasa aérea. 

Por su parte Li et al. (2022) estimaron la AGB mediante un modelo de predicción, 

con base en valores de teledetección y variables climáticas, estas últimas 

correspondieron a las 19 variables bioclimáticas disponibles en el repositorio de 

WorldClim, este estudio se desarrolló en la cuenca del rio Xiangjiang en la 

provincia de Hunan, China, en bosques siempre verdes subtropicales, las 

variables climáticas más importantes en el modelo obtenido fueron la temperatura 

mínima del mes más frio (Bio 6) y precipitación del mes más seco (Bio 14). 

Importancia de las Bios de escala interanual 

En el presente estudio se encontró que la variable de escala interanual (Bio 5) es 

menos relevante que las variables de escala anual (Bio 1, 7 y 12), sin embargo, 

es importante señalar que las variables de escala interanual tienen relevancia en 

la estimación de AGB, ya que han sido utilizadas en diversas investigaciones 

relacionadas. 

En un estudio se estimó la biomasa aérea en los bosques de pino Masson (Pinus 

massoniana Lamb.) en la región subtropical de China, se utilizaron variables 

climáticas para ajustar modelos de predicción, estas fueron promedio a largo 

plazo de la temperatura de la temporada de crecimiento, precipitación total de la 

temporada de crecimiento, temperatura media del trimestre más húmedo (Bio 8) 

y la precipitación del trimestre más húmedo (Bio 16), se encontró que estas 
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variables fueron significativas (p < 0.05) en el proceso de estimación de la 

biomasa (Fu et al., 2017). 

En el estudio de Stegen et al. (2011) se evaluó la influencia de diversas variables 

climáticas en bosques templados, tropicales secos y tropicales húmedos 

distribuidos en América del Norte, Central y Sur, entre las variables analizadas se 

incluyeron la temperatura media anual (Bio 1), la precipitación anual (Bio 12), la 

relación entre la temperatura media anual y la precipitación anual, y la 

precipitación del trimestre más seco (Bio 17), los resultados mostraron que la 

significancia de estas variables varió según el tipo de bosque, con niveles poco 

significativos hasta altamente significativos (p < > 0.05). 

Por su parte Zhou et al. (2022) estudiaron el efecto del cambio climático en el 

potencial de secuestro de carbono en siete tipos de bosques en la provincia de 

Yunnan en el suroeste de China, en el análisis se consideraron datos de 

temperatura media anual (Bio 1), temperatura media del trimestre más cálido (Bio 

10) y temperatura mínima del mes más frio (Bio 6), precipitación anual (Bio 12) y 

precipitación del trimestre más frio (Bio 19), los resultados mostraron que, en 

general la Bio 6 fue el principal factor limitante para la distribución de todos los 

tipos de bosques, con excepción de los bosques boreales. 

El estudio de Bennett et al. (2020) se utilizaron variables climáticas y edáficas 

para evaluar su relevancia en la predicción de la biomasa forestal de Australia, 

los resultados indicaron que la variable climática más importante en este proceso 

fue la temperatura promedio del trimestre más seco (Bio 9), especialmente en los 

modelos que únicamente incluían variables climáticas para la estimación de la 

biomasa forestal. 

Correlación de las variables bioclimáticas y la densidad de biomasa viva 

aérea 

En el presente estudio se encontró que las variables bioclimáticas de temperatura 

se correlacionan negativamente con DBva (Cuadro 1) de los bosques húmedos 

del Amazonas (Bio 1, 5 y 7), lo cual es congruente a lo encontrado por (Stegen 

et al., 2011; Li et al., 2022) en bosques húmedos y tropicales donde la 
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temperatura media anual (Bio 1) influía de forma negativa en el desarrollo de la 

biomasa, así como (Xin et al., 2022) en su estudio realizado en plantaciones de 

coníferas en China, encontraron que la Bio1 (temperatura media anual), la 

temperatura mínima registrada anualmente (TMIN) y la isotermalidad (Bio 3) son 

variables clave y que valores altos de estas afectan el contenido total de biomasa, 

sin embargo, estas tienen una correlación de forma negativa. 

Por otro lado, Ma et al. (2023) indicaron que la temperatura media anual (Bio 1) 

y precipitación media anual (Bio 12) puede restringir el desarrollo de AGB a través 

de la estacionalidad y períodos prolongados de sequía, para el caso de los 

bosques húmedos templados y tropicales se encontró que la Bio 12 se 

correlaciona de forma positiva, en este sentido (Galbraith et al., 2010) 

encontraron que el aumento de la temperatura media anual es un factor clave en 

las pérdidas de biomasa en el ajuste de modelos predictivos. 

Por otra parte Guo et al. (2019) evaluaron los cambios futuros en la densidad de 

carbono en cinco tipos de bosques a nivel global y determinaron que la 

precipitación media anual (Bio 12) tiene un efecto positivo significativo en el 

contenido total de carbono en las áreas estudiadas, en contraste, la temperatura 

media anual (Bio 1) mostró un efecto negativo en este factor para los años 2050 

y 2070. 

Acorde a la pseudo R2 calculada con el set de validación, los modelos explican 

entre 8.4 y 9.1% (estrato I), así como de un 4% hasta un 4.5% de la DBva en el 

estrato II (Cuadro 3). Lo cual es similar el estudio desarrollado por (Stegen et al., 

2011) donde se encontró que los valores de R2 de la relación de la biomasa con 

Bio 1 de 0.02 en todos los bosques estudiados y en los bosques tropicales con 

la misma variable el valor de R2 es del orden de 0.13, para el caso de la variable 

de la precipitación anual y su relación con la biomasa en los bosques la R2 fue 

de 0.03, para el caso de los bosques tropicales secos R2 de 0.37 y en bosques 

templados de 0.39. En un estudio realizado en los diversos bosques nativos del 

continente australiano donde el modelo obtenido que solo contenía variables 

climáticas tiene una R2 de hasta el 0.47 ± 0.04 de AGB (Bennett et al., 2020). 
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Cuadro 3. Validación de los modelos de regresión con cuatro métodos diferentes. 

Estrato Método Conjunto n Pseudo R2 RCME EMA 

I 

 Entrenamiento 4,640    

VCDUF Validación 1,987 0.084 89.17 71.93 

VC Validación 1,987 0.091 89.08 71.89 

VCR Validación 1,987 0.091 89.05 71.90 

Bootstrap Validación 1,987 0.084 89.58 72.21 

II 

 Entrenamiento 13,056    

LOOCV Validación 3,261 0.040 65.79 50.45 

CV Validación 3,261 0.043 65.73 50.43 

RCV Validación 3,261 0.045 65.67 50.44 

Bootstrap Validación 3,261 0.041 65.57 50.50 

Donde: VCDUF: Validación cruzada de dejar uno fuera; VC: Validación Cruzada; 

VCR: Validación Cruzada Repetida; n: Tamaño de muestra; R2: Coeficiente de 

determinación; RCME: Raíz del cuadrado medio del error; EMA: Error Medio 

Absoluto. 

 

La raíz del error cuadrático medio (RCME) estimada en el estrato I asciende a 

casi 90 Mg ha-1, mientras que en el estrato II es de poco más de 65 Mg ha-1 

(Cuadro 3). Estos valores superan lo reportados por (Ortiz-Reyes et al., 2021), 

quienes obtuvieron un RCME de 34.10 Mg ha-1 en selvas medianas 

subperennifolias y de 26.20 Mg ha-1 en selvas medianas subcaducifolias. Por su 

parte, (Xin et al., 2022) registraron RCME en un rango de 7.32 a 13.06 Mg ha-1 

en plantaciones de Pinus koraiensis Siebold & Zucc., Larix olgensisi A. Henry y 

Pinus sylvestris var. mongolica Litv. Adicionalmente, Fu et al. (2017) desarrollaron 

un modelo en bosques de pino en China, donde se obtuvo una estimación con 

un RCME de 52.82 kg. Las diferencias en los valores del RCME en la predicción 

de AGB, entre los distintos estudios se deben principalmente a la magnitud y la 

variabilidad de la variable dependiente. 

Predicción actual y futura de la densidad de la biomasa viva aérea 

Acorde a las predicciones generadas por los modelos bioclimáticos generados 

en este estudio, los valores actuales de DBva van desde 89.71 hasta 304.54 Mg 
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ha-1 en el estrato I (Figura 3. a) y desde 184.73 a 400.19 Mg ha-1 en el estrato II 

(Figura 3. b). 

Proyecciones de pérdida de la densidad de biomasa viva aérea: Análisis por 

escenarios, RCP y estratos 

Derivado del algebra de ráster de las predicciones futuras de DBva con el modelo 

bioclimático de cada estrato, menos las predicciones actuales de DBva en 

diversos RCP y horizontes temporales (2050 y 2070), los cambios en DBva 

debidos exclusivamente al clima y en ausencia de actividades antropogénicas, 

podría ser de la siguiente manera: Se proyecta una disminución de DBva de entre 

30 y 90 Mg ha-1 para los años 2050 y 2070, en todos los RCP analizados (Figura 

4. a-p), con cambios esperados en ambos estratos. En el estrato I se anticipa que 

los mayores cambios se concentrarán principalmente en la zona este (Figura 4. 

a-h), mientras que en el estrato II se prevé que estos se distribuyan a lo largo de 

toda su superficie, con un impacto más evidente en las zonas este y central 

(Figura 4. i-p). 

Con relación a lo anterior para el caso del estrato I las disminuciones registradas 

representan la proporción de afectación para el año 2050 de la siguiente manera, 

a) b) 

Figura 3. Predicción actual de la densidad de biomasa viva aérea (Mg ha-1) con los modelos 

bioclimáticos generados, en los bosques húmedos del Amazonas para los estratos I (a) y II 

(b). 
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0 – 30 (68.92%), -30 – -60 (28.44%) y -60 – -90 (0.93%), para el caso del año 

2070 los valores de disminución representan lo siguiente 0 – 30 (49.94%), -30 – 

-60 (42.25%) y -60 – -90 (4.6%). 

Para el caso del estrato II estos rangos de afectación registrados representan la 

proporción de afectación para el año 2050 de la siguiente manera, 0 – 30 

(22.35%), -30 – -60 (75.24%) y -60 – -90 (2.40%), para el caso del año 2070 los 

valores de disminución representan lo siguiente 0 – 30 (13.66%), -30 – -60 

(63.08%) y -60 – -90 (23.26%). 

En el estudio realizado por (Guo et al., 2019), se evaluó el efecto de las variables 

climáticas en el futuro sobre cinco tipos de bosques a nivel mundial, se determinó 

que, en los bosques tropicales, el índice de sequedad del suelo será el más 

importante para el año 2070, por otro lado, en los bosques templados, la 

precipitación media anual (Bio 12) tendrá un impacto significativo tanto en 2050 

como en 2070 en estos bosques. En los bosques boreales, se estimaron 

impactos bajo los escenarios RCP 4.5 (−0.22 ± 10.53 Mg C ha-1) y RCP 8.5 (−4.75 

± 10.80 Mg C ha-1) para el año 2070. De forma similar a este estudio, se indica 

que los cambios aumentaran gradualmente de los RCP 2.6 a 4.5 a 8.5 para los 

años 2050 y 2070 en los bosques templados, así como un patrón en 2050 para 

los bosques boreales. 

Por otro lado Fu et al. (2017) desarrollaron una ecuación de predicción de AGB 

en bosques de pino masón (Pinus massoniana Lamb.) en china subtropical, 

mediante la incorporación de variables climáticas y el diámetro a la altura del 

pecho, con el fin de evaluar los efectos del cambio climático sobre este factor 

hacia los años 2041 y 2080, se encontró que en el periodo de evaluación bajo los 

RCP 2.6, 4.5 y 8.5 la AGB aumentara en 24.8 kg ± 32.7%, 27.0 kg ± 33.4%, y 

27.7 kg ± 33.8% respectivamente. 

En su estudio Li et al. (2022) desarrollaron un modelo de estimación de AGB 

mediante valores de teledetección y su relación con variables climáticas, estas 

últimas correspondieron a las 19 variables bioclimáticas disponibles en el 

repositorio de WorldClim, este estudio se desarrolló en la cuenca del rio 
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Xiangjiang en la provincia de Hunan, China en bosques siempre verdes 

subtropicales, con el modelo ajustado se realizaron predicciones de AGB hacia 

los años 2050 y 2070 se consideraron los RCP 2.6, 4.5, 6.0 y 8.5, estas 

estimaciones indican que para el año 2050 habrá una disminución de 207.15, 

192.30, 180.24 y 176.26 Mg ha-1 y para 2070 de 196.55, 191.80, 175.08 y 170.58 

Mg ha-1 en cada RCP, con estos valores se menciona que la AGB disminuirá de 

forma constante en el siguiente orden: RCP 2.6 > RCP 4.5 > RCP 6.0 > RCP 8.5. 

En el presente estudio a diferencia de la mayoría, también se estiman posibles 

incrementos de DBva en la parte noroeste del estrato I (Figura 4. a-h) de 30 a 60 

Mg ha-1 en la mayoría de los RCP con excepción del RCP 4.5 para el año 2050, 

representan una superficie promedio de 464.41 km2 (Cuadro 4). En el escenario 

más crítico (RCP 8.5) para los años 2050, se espera una disminución de biomasa 

en una superficie promedio de 261,611.82 km2 y para el año 2070 se tendrá una 

disminución de 258,337.85 km2 (Figura 4. d y h). Para el caso del estrato II en 

este mismo RCP y años (2050 y 2070) se tendrá una disminución promedio de 

364,865.55 km2 y 333,832.19 km2 respectivamente (Figura 4. l y p). 

 

 

 

 

 



39 

 

   

    

    

    
Figura 4. Cambios en la densidad de biomasa viva aérea en los bosques 

húmedos del Amazonas bajo los escenarios RCP 2.6 a 8.5 (de izquierda a 

derecha).para el año 2050 (a-d) y 2070 (e-h) del estrato I. Para el estrato II para 

el año 2050 (i-l) y 2070 (m-p), las áreas con color representan la superficie del 

estrato. 

Si en el año 2070 se presenta el RCP 8.5, se verá afectada una superficie de más 

de 77 millones hectáreas en el estrato I y de más de 100 millones de hectáreas 

en el estrato II, con disminuciones de entre 30 y 90 Mg ha-1 de DBva (Cuadro 4). 

En el RCP 8.5 para ambos años y el RCP 6.0 al 2070 el rango de pérdida con 

mayor superficie afectada fue de 30 a 60 Mg ha-1 en el estrato I, para el caso del 

estrato II esto ocurre en todos los RCP y años (Figura 4. d, h, g, i-h ), para el 

estrato I se espera una reducción promedio de 279,532.38 km2, mientras que en 

el estrato II, el promedio de reducción es de 749,722.87 km2 (Cuadro 4).

a) b) c) 

e) f) g) 

i) j) k) l) 

m) n) o) 

d) 

h) 

p) 
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Cuadro 4. Superficie para cada rango de pérdida o ganancia (km2), de la Densidad biomasa viva aérea de los 

bosques húmedos del Amazonas en escenarios climáticos al 2050 y 2070. 

Estrato I 

 RCP 8.5 RCP 6.0 RCP 4.5 RCP 2.6 

Cambios en 
DBva 

2050 2070 2050 2070 2050 2070 2050 2070 

(-90 – -60 | ) 29,337.65 145,172.25 0.00 0.00 0.00 2,177.90 0.00 0.00 
(-60 – -30 | ) 424,328.30 392,236.24 181,620.11 370,393.14 117,265.18 363,154.82 176,602.39 210,658.83 

(-30 – 0 | ) 331,169.52 237,605.06 594,119.40 399,837.55 659,178.94 402,164.92 595,977.02 540,333.71 
(0 – 30 | ) 5,209.89 14,583.42 14,711.53 20,198.99 14,433.95 23,359.09 18,213.26 39,266.33 

(30 – 60 | ) 832.73 1,259.77 4.27 469.74 0.00 21.35 85.41 619.21 

Estrato II 

(-90 – -60 | ) 97,705.44 757,243.55 0.00 135,900.34 211.26 103,409.32 7,288.30 0.00 
(-60 – -30 | ) 975,258.71 241,147.58 830,042.02 940,972.02 890,587.70 952,231.91 598,612.17 568,930.84 

(-30 – 0 | ) 21,632.51 3,105.45 264,554.64 17,724.29 203,797.70 38,955.42 488,696.19 525,665.82 
(0 – 30 | ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

(30 – 60 | ) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Donde: DBva: Densidad de biomasa viva aérea (Mg ha-1); RCP = Vías de concentración representativas. 
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Evaluación de las proyecciones climáticas sobre las variables de 

predicción 

Los resultados de la prueba de Wilcoxon para el estrato I, al comparar las 

medianas de los valores actuales de las Bios y cada escenario climático, arrojo 

que la temperatura máxima del mes más cálido (Bio 5) actualmente tiene una 

media de 31.6 °C cuyo valor es estadísticamente diferente (p<0.0001) al valor 

estimado para el año 2050 en todos los escenarios con un valor promedio de 35.7 

°C lo que representa un incremento de 4.1 °C, lo mismo ocurre para al año 2070 

con un valor proyectado de 36.4 °C lo que representa un incremento de 4.8 °C 

sobre al valor actual (Figura 5. a, de color naranja) 

 

De forma similar el valor de precipitación anual (Bio 12) es estadísticamente 

diferente (p<0.0001) con un valor actual de 1,788 mm a lo proyectado para el año 

2050, con un valor promedio de 1,709 mm anual, lo que representa una 

disminución de 79 mm de precipitación, para el año 2070 el valor promedio de 

1,702 mm representa una reducción de 86 mm (Figura 5. b, de color azul). 

 

Figura 5. Prueba de Wilcoxon para comparar medianas de la variable actual con 

cada escenario climático, en el estrato I. Bio 5: Temperatura máxima del mes más 

cálido (°C); Bio 12: Precipitación anual (mm). Niveles de significancia: **** 

(Significativo al 0.0001) 
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Los resultados de la prueba de Wilcoxon para el estrato II, al contrastar las 

medianas de los valores actuales de las Bios y cada escenario climático, 

demuestra que la temperatura promedio anual (Bio 1) actualmente tiene una 

media de 26 °C cuyo valor es estadísticamente diferente (p<0.0001) el valor 

proyectado al año 2050 en todos los escenarios con un valor promedio de 28.1 

°C lo que representa un incremento de 2.1 °C, lo mismo ocurre para al año 2070 

con un valor proyectado de 28.6 °C lo que representa un incremento de 2.6 °C 

sobre al valor actual (Figura 6. a, de color naranja). 

 

De forma similar el valor del rango de temperatura anual (Bio 5 - Bio 6, Bio 7) es 

estadísticamente diferente (p<0.0001) con un valor actual de 11.9 °C a lo 

proyecto para el año 2050, con un valor promedio proyectado de 12.8 °C, lo que 

representa un incremento de 0.9 °C, para el año 2070 el valor promedio de 13.2 

C representa un incremento de 1.3 °C (Figura 6. b, de color naranja). 

 

Figura 6. Prueba de Wilcoxon para comparar medianas de la variable actual con 

cada escenario climático, en el estrato II. Bio 1: Temperatura media anual (°C); 

Bio 7: Rango de temperatura anual (Bio 5 – Bio 6, °C). Niveles de significancia: 

**** (Significativo al 0.0001). 

En el presente estudio la incertidumbre se representa con el coeficiente de 

variación (CV), estos valores indican que para el año 2050 y en todos los RCP 

se tendrá un valor promedio de 11.36% y 5.57% estrato I y II respectivamente 
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respecto a las predicciones realizadas, por su parte para el año 2070 esta 

variable representa en promedio el 15.03 y 8.18% estrato I y II (Cuadro 5). 

 

A manera de ejemplo se muestran las predicciones con menor CV en las 

estimaciones (Figura 7. a y c) de los estratos I y II respectivamente, así como las 

que tienen mayores valores de esta variable (Figura 7. b y d), sin embargo, en 

las figuras citadas los rangos de variación más extremos se encuentran fuera de 

los estratos correspondientes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a) b) 

c) d) 

a) b) 

c) d) 

a) b) 

c) 

Figura 7. RCP y años con menor y mayor Incertidumbre estimada para la 

densidad de la biomasa viva aérea, estrato I año 2050 RCP 4.5 año 2070 RCP 

8.5 (a y b), estrato II año 2050 RCP 6.0 y año 2070 8.5 c y d) 
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Los valores de las medias de los coeficientes de variación en los años y RCP 

estudiados son menores en el área que comprende al estrato II con relación a el 

estrato I en donde en promedio las estimaciones son del 13.20 y 6.87% 

respectivamente para cada estrato (Cuadro 5). Estas variaciones podrían 

deberse a lo que expresa (Malhi et al., 2006), que indicaron que la mayor cantidad 

de biomasa se encuentra en la Amazonia central y las Guayanas, que es 

alrededor de 15% más baja en el este y los valores más bajos se encuentran al 

norte y en al sur de la región. 

 

Cuadro 5. Estadísticas descriptivas de las predicciones de la densidad de 

biomasa viva aérea en los bosques húmedos del Amazonas. 

Estrato I 

 RCP 8.5 RCP 6.0 RCP 4.5 RCP 2.6 

 2050 2070 6050 6070 4550 4570 2650 2670 

Min 0.021 0.008 0.000 0.020 0.000 0.005 0.000 0.000 

1 st. Qu. 7.698 11.651 6.523 8.928 5.644 7.673 6.015 5.519 

Mediana 14.095 20.822 11.075 15.195 9.659 13.584 10.622 10.514 

3rd Qu. 20.401 32.218 16.704 21.809 15.009 19.334 16.439 16.987 

Max. 52.897 83.104 61.075 55.252 44.359 46.637 49.783 74.324 

Estrato II 

Min 0.015 0.000 0.000 0.000 0.000 0.002 0.000 0.000 

1 st. Qu. 3.841 5.948 1.950 3.051 1.880 3.220 3.039 2.652 

Median 7.129 12.303 3.606 7.335 4.038 7.319 7.279 5.765 

3rd Qu. 11.852 22.716 6.741 12.838 7.816 13.526 12.262 10.853 

Max. 40.868 117.880 30.094 40.768 34.813 64.523 54.710 43.911 

Donde: RCP: Vías de concentración representativas; 1st. Qu y 3rd Qu: Primer y 

tercer cuartil; Mediana: Mediana de los valores; Min: Valores mínimos, Max: 

Valores máximos. 
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CONCLUSIONES 

Fueron obtenidos dos modelos de predicción de biomasa viva aérea, en los que 

las variables más importantes fueron las que tienen una cobertura anual Bio 1 

(Temperatura media anual) y Bio 12 (Precipitación anual) con el 3.24 y 5.72% de 

este valor respectivamente. Los modelos desarrollados demostraron una buena 

capacidad predictiva en los bosques húmedos del Amazonas considerando 

únicamente variables bioclimáticas. 

En toda la superficie del área de estudio (estrato I y II) existirán en su mayoría 

cambios en las existencias de biomasa viva aérea, con disminuciones desde 30 

hasta 60 Mg ha-1 en todos los RCP y años estudiados, la mayor disminución de 

la biomasa viva aérea será en la parte sureste (estrato I) y centro (estrato II) del 

área de estudio, en las cuales se prevé una disminución de hasta 90 Mg ha-1 en 

el RCP 8.5 para el año 2070. Por otro lado, se proyecta un cambio positivo en la 

parte noroeste del estrato I, con incrementos de la biomasa viva aérea de hasta 

30 Mg ha-1 en todos los RCP y años, así como incrementos de hasta 60 Mg ha-1 

en el RCP 8.5 para ambos años. 

Se proyecta que la biomasa viva aérea se reduzca en una superficie promedio 

de 257,222.21 de Km2 en el estrato I y en una superficie promedio de 360,986.38 

Km2 en el estrato II, sin embargo, en el estrato I se proyecta que en una superficie 

promedio de 9,605.73 Km2 existirán incrementos desde 30 hasta 60 Mg ha-1, lo 

que no ocurrirá en el estrato II. 

La prueba de Wilcoxon indica que el cambio climático tendrá efectos negativos 

significativos sobre la biomasa viva aérea, al determinar un incremento de 

temperatura media anual de hasta 2.1 °C para el año 2050 y de 2.6 °C para el 

2070 y una disminución de la precipitación de hasta 79 mm para el año 2050 y 

86 mm para el 2070. 
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