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RESUMEN

Las variaciones climaticas en temperatura y precipitacion impactan significativamente la
productividad forestal. La precipitacion influye en la fisiologia y crecimiento de las
especies, mientras que la temperatura regula la fotosintesis, respiracion y transpiracion.
Este estudio desarrolld modelos bioclimaticos para evaluar cémo el cambio climatico
afectara la densidad de carbono de la biomasa aérea (DCBVa) en bosques de coniferas de
México para 2050 y 2070. Utilizamos datos de DCBVa del Inventario Forestal Nacional
y Suelos (INFyS) de México (2009-2012) y 19 variables bioclimaticas de WorldClim ver.
2.0. Los mejores predictores de DBCVa se obtuvieron mediante técnicas de 'machine
learning' con la libreria 'caret' de R. El modelo se entren6 con el 80% de los datos y se
validé con el 20% restante utilizando Modelos Lineales Generalizados (GLM). Se
generaron mapas de predicciones actuales de DBCVa utilizando los mejores predictores.
La DCBVa futura se calculd con el promedio de tres modelos de circulacion general
(MCQG) de proyecciones climaticas futuras del Proyecto de Intercomparacion de Modelos
Acoplados Fase 5 (CMIPS5), bajo cuatro Trayectorias de Concentracion Representativas
(RCP): 2.6, 4.5, 6.0 y 8.5 W/m?. Los resultados indican pérdidas de DBCVa en todos los
escenarios climéticos, alcanzando hasta 15 Mg C ha™!, y podrian ocurrir bajo el escenario
RCP 8.5 hacia 2070 en el centro del pais. Las variables relacionadas con la temperatura
fueron mas importantes que las de precipitacion. La validacion del modelo con datos
independientes sugiere que las variables bioclimaticas pueden explicar hasta el 20% de la
varianza total de DBCVa. Se espera que la temperatura en el area de estudio aumente 2.66
°C para 2050 y 3.36 °C para 2070, mientras que la precipitacion oscile en £10% respecto
a la actual, lo que podria redistribuir geograficamente la DBCVa de los bosques de
coniferas del pais. Estos hallazgos subrayan la necesidad de que la gestion forestal se
enfoque no solo en la conservacion de la biodiversidad, sino también en la capacidad de

almacenamiento de carbono en estos ecosistemas.

Palabras clave: Biomasa aérea, Modelos bioclimaticos, Cambio climatico, Bosques de

coniferas, Aprendizaje automatico
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ABSTRACT

Climatic variations in temperature and precipitation significantly impact forest
productivity. Precipitation influences the physiology and growth of species, while
temperature regulates photosynthesis, respiration and transpiration. This study developed
bioclimatic models to evaluate how climate change will affect the carbon density of
aboveground biomass (DCBVa) in coniferous forests in México for 2050 and 2070. We
used DCBVa data from the National Forest Inventory and Soils (INFyS) of Mexico (2009-
2012) and 19 bioclimatic variables from WorldClim ver. 2.0. The best predictors of
DBCVa were obtained using machine learning techniques with the R library 'caret'. The
model was trained with 80% of the data and validated with the remaining 20% using
Generalized Linear Models (GLM). Maps of current DBCVa predictions were generated
using the best predictors. Future DCBVa was calculated by averaging three general
circulation models (GCMs) of future climate projections from the Coupled Model
Intercomparison Project Phase 5 (CMIPS5), under four Representative Concentration Paths
(RCPs): 2.6, 4.5, 6.0 and 8.5 W /m?. The results indicate DBCVa losses in all climate
scenarios, reaching up to 15 Mg C ha™!, and could occur under the RCP 8.5 scenario around
2070 in the center of the country. The variables related to temperature were more
important than those of precipitation. Validation of the model with independent data
suggests that bioclimatic variables can explain up to 20% of the total variance of DBCVa.
The temperature in the study area is expected to increase by 2.66 °C by 2050 and 3.36 °C
by 2070, while precipitation will oscillate by £10% compared to the current one, which
could geographically redistribute the DBCVa of the forests of conifers of the country.
These findings underscore the need for forest management to focus not only on

biodiversity conservation, but also on the carbon storage capacity in these ecosystems.

Keywords: Aboveground Biomass, Bioclimatic Models, Climate Change, Coniferous

Forests, Machine Learning.
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INTRODUCCION

Los bosques abarcan aproximadamente el 31 % de la superficie terrestre global, unos 4.06
mil millones de hectareas, desempefian un papel crucial en la regulacion climatica al
funcionar como sumideros de carbono; se estima almacenan alrededor de 662 G t de
carbono, distribuidos en un 44 % en biomasa viva, 45 % en materia organica del suelo, y
11 % en madera muerta y hojarasca (FAO, 2022). México cuenta con alrededor de 64.8
millones de hectareas de bosques, lo que representa aproximadamente el 33 % del
territorio nacional (FAQO, 2022), abarcan varios tipos de bosques templados, latifoliados,
mixtos, tropicales (Arasa-Gisbert et al., 2018) y se estima que almacenan 1.69 G t C
(Rodriguez-Veiga et al., 2016). El cambio climatico influye en los bosques al alterar la
temperatura y las precipitaciones, lo que afecta el crecimiento de los bosques del mundo,
la biomasa y el secuestro de carbono (Guo et al., 2019; Ma et al., 2023).

Las bases cientificas para estudiar el cambio climéatico son incuestionables, los hallazgos
irrefutables, la temperatura media global de la superficie terrestre ha aumentado 1.09 °C
entre 2011-2020 en comparacion con 1850-1900, se intensifica mas en el hemisferio norte,
y mas sobre la tierra (1.59 °C) que en los océanos (0.88 °C); las precipitaciones aumentan
en las latitudes altas y disminuyen en los subtrdpicos, los extremos climaticos seran mas
frecuentes e intensos, y los sumideros de carbono serdn menos eficientes (IPCC, 2021).
En México, la temperatura media incrementé en 0.31°C por década, en el periodo de 1971
a 2020, y es mas pronunciado en la meseta del norte durante verano; bajo un escenario
climéatico SSP3-7.0 se proyecta un aumento de 0.82 °C para los afios 2020-2039y 1.63 °C
para los afios 2040-2059; se experimentan disminuciones significativas de precipitacion
en algunos estados del norte (Climate Risk Profile: México 2023).

Es bien conocido que la precipitacion y temperatura influye directamente en la
productividad de biomasa de los bosques, por ejemplo, la precipitacion es crucial en la
fisiologia de las especies, influye directamente en la transpiracion, la absorcion de
nutrientes, conductancia estomatal, disponibilidad de nutrientes (Bennett et al., 2020;
Cysneiros et al., 2021) y en las estrategias de crecimiento; su disponibilidad y variabilidad
afecta la eficiencia del uso del agua (Gao et al., 2017; Yuan et al., 2022), esto conlleva a



que la productividad de biomasa este en una relacién directa con la precipitacion (Arasa-
Gisbert et al., 2018).

Similarmente la temperatura influye en el crecimiento de las plantas afectando la
fotosintesis, la respiracion y la transpiracion (Guo et al., 2019; Xin et al., 2022). La
temperatura, regula las reacciones quimicas y las tasas de asimilacion de CO2 (Eamus,
2003). El aumento de la temperatura promueve el crecimiento de la biomasa en los
bosques boreales y lo inhibe en los bosques tropicales (Liu et al., 2013), pero también

muy altas temperaturas reducen el crecimiento, alteran la pigmentacion foliar, afectan el

sistema radicular y provocan estrés hidrico alterando los patrones de crecimiento (Sim-
Hee Han et al., 2012). Las plantas de climas templados muestran cierta tolerancia al frio;

pero temperaturas muy bajas afectan negativamente varios procesos, como la division
celular, fotosintesis, metabolismo en la respiracion, disminucion de su productividad
(Devi et al., 2023).

Por las variaciones climaticas, los bosques se estan volviendo cada vez méas dindmicos
(Pan et al., 2013), con ello, se modifica la composicién de especies de los arboles en el
ecosistema (Yuan et al., 2022). Las alteraciones simultaneas en temperatura y
precipitacion conducen a una reduccién/aumento en la biomasa de los ecosistemas, lo que
influye en la configuracion de la distribucién de los bosques del mundo (Keith et al.,
2009).

Se ha demostrado que la biomasa aérea de los bosques esta influenciada tanto positiva
como negativamente por la temperatura (Guo et al., 2019; He et al., 2022; Chen et al.,
2023). Por otro lado, se ha encontrado que la precipitacion se correlaciona positivamente
con la biomasa aérea (Dai et al., 2019; Xin et al., 2022). Estos estudios se han realizado
en bosques templados, tropicales y boreales (Liu et al., 2013), e incluso a nivel de especie
(Bennett et al., 2020; Girdn-Gutiérrez et al., 2024) demostraron que, en 10 especies de
coniferas, la precipitacion se correlaciona positivamente (0 < p <0.20) con la densidad de
biomasa aérea, mientras que la temperatura muestra una correlacion negativa (— 0.20 <p
<0). No obstante, la literatura revela que la magnitud de la correlacion de la biomasa aérea
en los ecosistemas forestales depende de la escala (Reich et al., 2014), del tipo de bosque
(Guo et al., 2019) y de la especie (Khan et al., 2019; Xin et al., 2022) entre otros.



Con base en lo expuesto anteriormente, el objetivo de este estudio fue desarrollar modelos
bioclimaticos para evaluar como el cambio climatico afecta la distribucion geoespacial de
la densidad de carbono de la biomasa viva aérea en los bosques de coniferas de México,
se consideran cuatro escenarios climaticos posibles segin las trayectorias de
concentracion representativas (RCP) 2.6, 4.5, 6.0 y 8.5 W/m2, proyectados para los afios
2050 y 2070. Se hipotetiza que las proyecciones climéticas futuras afectaran
significativamente la densidad de carbono de la biomasa aérea de los bosques de coniferas

de México.



REVISION DE LITERATURA

Bosques de coniferas en México

Los bosques de coniferas en México son frecuentes en zonas de clima templado y semi
frio, presentando una amplia diversidad ecolégica, los pinos en México se distribuyen de
una manera restringida en el pais, existen 35 especies del género Pinus representando el
37 % del total en el mundo, ocupando el 15 % de la superficie del territorio mexicano
(Rzedowski, 2006).

Los bosques de pino abarcan alrededor de 5,238,681 ha caracterizandose con el 80 % del
género Pinus spp los cuales se distribuyen en regiones montafiosas del territorio mexicano,
con temperaturas de 6° y 28° C y altitudes entre 1500 y 3000 msnm, de las especies
presentes en el pais algunas tienen un valor econémico por su aprovechamiento maderable
(Granados-Sanchez et al., 2007).

De las seis familias de coniferas reconocidas a nivel mundial, cuatro estdn presentes en
México, existen 94 especies de coniferas, 43 de las cuales son endémicas del pais
representando un 46 % del total, algunas de ellas se encuentran en peligro de extincion;
entre estas, el género Pinus destaca con 22 especies endémicas, seguido de Juniperus con
10, Abies con 5, Callitropsis y Picea con tres cada una, Ademas, 18 especies endémicas
tienen areas de distribucion restringidas a tres o0 menos estados (Gernandt y Pérez-De La
Rosa 2014).

Por su riqueza estructural los bosques en México contribuyen en el almacenamiento y
reserva de carbono, esto puede variar segln el tipo de bosque, y aspectos como el clima,
diversidad, topografia, suelo, pendiente y factores de perturbacion (Arasa-Gisbert et al.,
2018).

Las reservas de carbono en México abarcan un rango del 20 t C/ha’! para parcelas del
Inventario Nacional Forestal y Suelos y por debajo de 50 t C/ha’! de la densidad de

carbono aérea en terrenos planos (Cartus et al., 2014).



Variables bioclimaticas

Las variables bioclimaticas demuestran ser una herramienta flexible para mapear la
distribucion de cualquier entidad, tienen la capacidad de predecir alteraciones ante el
cambio climatico, se obtuvieron 16 parametros climaticos de estimaciones mensuales en
funcién a temperatura y precipitacion, con registros de valores medios estacionales y

extremos que constituyen un perfil climatico en Australia (Busby, 1991).

Las variables bioclimaticas son componentes cruciales en la investigacion climatica ya
que abarcan factores como precipitacion, temperatura y altitud. Estas variables
desempefian un papel importante en la prediccién del clima y en la compresion de

procesos ambientales segtin Fick y Hijmans (2017).

Fang et al. (2024) mencionan que variables como temperatura y precipitacion determinan
el crecimiento, adaptacion y distribucion de las plantas, incluyendo aquellas tolerantes a
la sequia como la Acacia senegal (L.) Britton, ante escenarios climaticos SSP1-2.6, SSP2-
4.5, SSP3-7.0 y SSP5-8.5 las variables Bio 3 (Isotermalidad ), Bio 4 (Estacionalidad de la
temperatura), Bio 11 (temperatura media del trimestre mas frio) y Bio 12 (precipitacion

anual), destacan con la mayor importancia en la precision en los modelos ecologicos.

Las variables climaticas desempefian un papel fundamental al influir en la distribucion de
las plantas, y caracteristicas de los ecosistemas, algunos estudios han identificado que
variables climaticas como la temperatura media del trimestre mas calido, temperatura
minima del mes maés frio, precipitacion anual y precipitacion de los trimestres mas calidos

y frios afectan en la vegetacion (Wang-Jun 2016).

Xin et al. (2022) elaboraron modelos de biomasa para tres especies de coniferas (Pinus
koraiensis Siebold & Zucc.) (Larix olgensisi A. Henry) (Pinus sylvestris var. mongolica
Litv.), determinaron variables como el area basal y altura dominante, mediante estadisticas
avanzadas evaluaron la eficacia del ajuste realizando la técnica de validacion cruzada en

los modelos, identificando las variables climaticas que contribuyen de manera



significativa a la biomasa de las especies de coniferas, obtuvieron como resultados que
los modelos de biomasa que incluyeron variables climaticas tuvieron el mejor ajuste,
ademas los autores encontraron que el efecto de las variables climaticas en los diferentes
componentes de la biomasa de las coniferas era consistente en los coeficientes de

regresion estimados por los modelos.

Seleccion de variables predictoras

La seleccion de variables predictoras puede afectar significativamente el rendimiento de
un modelo, por ello para seleccionar variables predictoras mediante el aprendizaje
automatico es fundamental considerar varios factores, como el impacto en el rendimiento
del modelo y la transferibilidad (Solberg et al., 2024). Se han utilizado métodos
automatizados para la seleccion de variables climaticas que influyen en la distribucion de
las plantas, especificamente la temperatura media y la precipitacion como factores

influyentes (Wang-Jun 2016).

Los algoritmos de aprendizaje automatico desempefian un papel crucial en las
predicciones espaciales, los que aprenden por conjuntos, como Random Forest (RF) y
Machine learning suelen utilizarse para cartografiar atributos de los bosques debido a su
capacidad de integrar varios modelos y mejorar la precision en comparacion con
algoritmos individuales (Lopez-Serrano et al., 2020). Se han utilizado algoritmos de
aprendizaje automatico como Random Forest en estudios para predecir reservas de
carbono en funcion de variables climaticas y del suelo, comprobando que pueden ser
robustos y eficaces en el manejo de datos complejos, superando analisis de regresion
simple y otras técnicas de aprendizaje automatico para la estimacion de biomasa forestal

(Bennett et al., 2020).

Luo et al. (2021) compararon tres algoritmos de aprendizaje automatico: RFR, XGBoost
y CatBoost, en la optimizacion de un modelo utilizaron un método de seleccion, evaluaron

indicadores de precision como R?, RMSE, RMSE % y Bias, los resultados mostraron que



el algoritmo CatBoost fue el mas preciso, con un RMSE de 26.81 Mg/ ha'! en la estimacion

de biomasa forestal aérea en bosques de coniferas en China.

Generacion de modelos predictivos

La generacion de modelos predictivos implica la utilizacién de algoritmos avanzados
como Random Forest, reconocidos por su robustez y eficiencia, variables como los rangos
de temperatura y precipitacion desempefian un papel crucial en la estabilidad del modelo,
garantizan una amplia variacion en las variables independientes al mejorar su capacidad

predictiva (Usoltsev et al., 2020).

Arasa-Gisbert ef al. (2018). mencionan que los modelos lineales generalizados (GLM)
son una herramienta estadistica utilizadas en varios campos de la investigacion, ya que
estos ofrecen un marco flexible para analizar datos, los cuales no cumplen con los
supuestos de los modelos lineales tradicionales, los GLM son ttiles cuando se abordan
aspectos relacionados con variables de medicion que se desvian de los requisitos de los

modelos lineales.

Cartus et al., (2014) prevén que la densidad total de carbono aéreo en los bosques de

México sea de 2.21 Pg. C, un 30 % mas que en el informe de la FAO 2010 con 1.69 Pg C.

Validacion de modelos

La validacion cruzada por omision (LOOCV) es una técnica que se utiliza para evaluar la
precision de los modelos predictivos al omitir sistematicamente un conjunto de datos para

su validacion utilizando los datos restantes para el entrenamiento (Peng ef al., 2019).

La validacion cruzada repetida es una técnica importante en la evaluacion de los modelos
ya que utiliza métricas como R?, RMSE, RRMSE para evaluar el rendimiento del modelo,

determinaron los hiperpardmetros 6ptimos para el desarrollo del modelo, al combinar



estos enfoques los investigadores pueden mejorar la precision y generalizar los modelos
probandolos y refindndolos en diferentes conjuntos de datos conduciéndolos hacia

predicciones mas solidas y confiables (He et al., 2022).

Bennett et al. (2020) utilizaron la validacion cruzada de K-fold con el 90 % de los datos
para entrenamiento y el 10 % de prueba del modelo, evaluaron el rendimiento del modelo
y el poder explicativo mediante el R?> como indicador de la influencia de la variable
predictora de la AGB, dando los valores mas altos de la R? en los modelos con variables

climaticas.

Predicciones actuales y futuras

Guo et al. (2019) estimaron las densidades de carbono actuales y futuras (2050 y 2070)
en escenarios climaticos RCP 2.6, RCP 4.5 y RCP 8.5, en cinco tipos de bosques a nivel
mundial en respuesta a factores climaticos y del suelo, encontraron que los bosques
tropicales tienen mayor densidad de carbono en comparacion con los bosques boreales
que presentan las mas bajas en ambos escenarios, mientras que los bosques templados
presentarian impactos positivos tanto en el 2050 y 2070, la temperatura media anual
(MAT) tuvo diferentes efectos sobre la densidad total de carbono en diferentes bosques en

el 2070.

En el periodo de 1971 a 2020, la temperatura media en México increment6 en 0.31 °C por
década, con el cambio mas pronunciado observado en la meseta del norte durante los
meses de verano, bajo un escenario climatico SSP3-7.0 se proyecta un aumento de
temperatura media anual de 0.82 °C para los afios 2020-2039 y 1.63 °C para los afios
2040-2059 anticipandose que para este periodo el pais presentara un mayor riesgo de calor
extremo, las temperaturas mas altas y la disminucion de la precipitacion reduciran la
biomasa total neta en gran parte del pais hacia finales del siglo, afectando la produccién
de cultivos, en consecuencia, la seguridad alimentaria (Climate Risk Profile; México
2023).



Heiderman y Kimsey (2023) desarrollaron modelos lineales mixtos generalizados para
evaluar los impactos de las variables ambientales en el crecimiento y supervivencia de
Pseudotsuga menziesii Mirb. y Tsuga heterophylla Raf.con bajo escenarios climaticos
futuros RCP 4.5 y RCP 8.5 para los afios 2050 y 2080, presentaron disminuciones del 5.4
y 11.4 % respectivamente en los bosques de Pseudotsuga menziesii Mirb Franco, mientras
que en los bosques de Tsuga heterophylla Raf seria de un 6.6 y 8.9 % en el RCP 4.5 para
el 2050 y RCP 8.5 para el 2080.

Estudios afines

Reich et al. (2014) mencionan que la distribucion global de la biomasa forestal varia en
funcién de la temperatura y las precipitaciones, los bosques de Gimnospermas tienen una
mayor biomasa de raices en comparacioén con los bosques de Angiospermas, la relacion
de biomasa total con MAT fue positiva en 7 de 8 géneros boreales y templados frios (-1°C
< MAT < 9 °C) y una relacion negativa en templados calidos o subtropicales (13 °C <
MAT < 21 °C), ademds la temperatura media del trimestre mas calido del afio y la

precipitacion total de este mismo trimestre se relaciona linealmente con MAT y MAP.

Rodriguez-Veiga et al., (2016) estimaron la biomasa aérea (AGB) en los bosques
mexicanos utilizando datos del Inventario Nacional Forestal y Suelos (INFyS) e imagenes
de teledeteccion MODIS de vegetacion, estratificando la base de datos en siete tipos de
bosques, (perennifolio, caducifolio, mixto perennifolio y bosque tropical caducifolio)
realizaron modelaciones en MaxEnt obtuvieron predicciones de 180 t ha™!, los valores mas
altos de AGB por ha para México ocurren en altitudes, pendientes y precipitaciones mas

altas.

Chen et al., (2023) crearon un modelo con el método bayesiano para predecir la biomasa
aérea en bosques a nivel global en funcion de la edad, la prediccion media anual (MAP)
y la temperatura media anual (MAT), donde el bosque siempre verde de hoja ancha que
presenté un aumento de AGB promedio mas alto 50,83 + 76,02 Mg ha ' mientras que

para los bosques siempre verde de hoja acicular fue 42,9 + 46,76 Mg ha !, los efectos
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MAT cuantifican los cambios en la tasa de acumulacion de AGB por un cambio de 1 °C

en MAT y acumulacion inicial y saturada de AGB por un cambio de 1 mm en MAP.

Barreras et al. (2009) realizaron un mapeo y monitoreo de bosques en México utilizaron
datos satelitales y técnicas de aprendizaje automatico en predicciones generados por un
modelo, los autores consideraron atributos de los bosques como altura y densidad de los
arboles, los autores mencionan que este tipo de mapeos produce predicciones precisas con
un r 2 = 0.35 al predecir la altura de los arboles, para la densidad fue un r 2 = 0.23 en

bosques latifoliados y coniferos-latifoliados.

Pan et al., (2013) mencionan que las herramientas digitales a escala global se volveran
cada vez mas poderosas para analizar cuestiones ecologicas importantes para el futuro,
aunque actualmente la disponibilidad de imagenes tridimensionales a gran escala permite
mapear la estructura forestal no existe ningun sistema satelital que proporcione
informacion suficiente para este tipo de tareas, asi como la capacidad para utilizar
plenamente la informacion enfocada a la necesidad que exista para mapear la estructura

forestal y comprender la distribucion de los bosques y su impacto con el cambio climatico.

Liu et al. (2014) utilizaron el mapa de las zonas ecologicas globales por la FAO (2001)
para su clasificacion, que se compone de bosques boreales, templados, subtropicales y
tropicales en 897 sitios forestales, los autores realizaron una regresion obteniendo como
resultados que a nivel global la densidad de carbono de la biomasa aérea (DCBVa) maés
alto se encuentran en los bosques maduros con temperaturas medias anuales de 8 a 10 °C
y precipitaciones media anual de entre 1000 y 2500 mm en bosques con edades de 80 y

450.

Stegen et al. (2011) desarrollaron un modelo analitico para la variacion de la biomasa en
los bosques globales, encontrando que la correlacion entre la biomasa forestal y la
precipitacion del trimestre mas seco no fueron significativas, sin embargo, aumento con
la precipitacion del trimestre mas seco en los bosques templados (R? = 0.2, P = 0.009) y

tropicales secos (R?>= 0.33, P = 0.001), los resultados mostraron que existe una fuerte
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correlacion positiva entre la biomasa del bosque, temperatura y precipitacion anual, los
autores encontraron que los bosques tropicales albergan més de la mitad de la biomasa
mundial almacenada en la vegetacion terrestre sin embargo los bosques boreales y

templados también son importantes reservas de biomasa.

Ma et al., (2023) evaluaron la relacion entre caracteristicas estructurales de los rodales y
la biomasa aérea en bosques (AGB) en 25 paises y el impacto del clima en estas relaciones,
para ello realizaron una transformacion logaritmica de cada variable ajustdndola a una
distribucion normal, mediante una regresion lineal multiple (MLR), los autores analizaron
el MAT y MAP y las caracteristicas estructurales de los rodales utilizando el factor de
inflacion de varianza (VIF > 10), encontraron una correlacion positiva (P < 0.05) entre
las estructuras del rodal y factores climéaticos indican la influencia entre el area basal (BA)
y AGB en relacion al clima como MAT (r=0.262, p <0.01) y MAP (r =0.231, p <0.05),

en el bosque templado estacional.

Luo et al., (2021) emplearon algoritmos de aprendizaje automatico y técnicas de seleccion
de variables para mejorar la precision de la estimacion de la biomasa aérea (AGB)
utilizando datos de teledeteccion, los autores compararon varios modelos seleccionados
por diferentes métodos de seleccion de variables, este estudio demuestra que se pueden
usar algoritmos de aprendizaje automatico y técnicas de seleccion de las mejores variables
para mejorar la precision de la estimacion de la biomasa aérea (AGB) utilizando datos de
teledeteccion, ademas muestra que el algoritmo CatBoost es ligeramente superior al

XGBoost.

Las altas temperaturas reducen las tasas de crecimiento en el desarrollo de las plantas,
alterando la pigmentacion en las hojas, aumentando la actividad de las enzimas
antioxidantes, afectan el crecimiento de las raices lo que provoca restricciones en la
absorcion de nutrientes provocando estrés en el desarrollo de los arboles, afectan también
procesos como la fotosintesis, transpiracion y conductancia en los estomas, el aumento de
la temperatura provoca el estrés hidrico, alteran los patrones de crecimiento y asignacion

de los recursos disponibles en el suelo (Sim-Hee Han, 2012).
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Las plantas tropicales y subtropicales son sensibles a las bajas temperaturas, mientras que
las plantas de climas templados muestran grados variables de tolerancia al frio, las bajas
temperaturas afectan negativamente varios procesos en las plantas, como en la division
celular, fotosintesis, metabolismo en la respiracion, reducen su productividad en las
plantas, las raices pueden restringir la absorcion del agua como mecanismo de tolerancia

al estrés por las bajas temperatura similar al de la sequia (Devi et al., 2023).

La precipitacion desempefia un papel crucial en aspectos fisioldgicos del desarrollo de los
arboles afectan la transpiracion, adquisicion de nutrientes y estrategias de crecimiento, la
variabilidad en las precipitaciones afecta la eficiencia del uso del agua por parte de los
arboles durante las altas tasas de transpiracion durante periodos secos (Gao et al., 2017).
La mayoria de las plantas requieren un rango de temperatura 6ptimo para su crecimiento
y desarrollo, al aproximarse a los limites de este rango, el crecimiento puede detenerse,
disminuir o incluso llevar a la muerte de la planta, el aumento de la temperatura puede
favorecer el crecimiento arboreo al extender su periodo de crecimiento y aumentar la
mineralizacion del nitrégeno, aunque estos efectos varian significativamente segun la

region y la especie del arbol (Sim-Hee Han, 2012).
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MATERIALES Y METODOS

Descripcion del area de estudio

Las coniferas en México se encuentran desde el nivel del mar hasta por encima de los
4,000 m de altitud, concentrandose la mayor diversidad en la Sierra Madre Occidental
(SMOc) y la Sierra Madre Oriental (SMO), asi como en otros sistemas montafiosos como
la Peninsula de Baja California y las Sierras del Norte de México; México alberga 49
especies de pino, lo que representa el 40 % de las aproximadamente 120 especies de pino
en el mundo (Gernandt y Pérez-De La Rosa, 2014). Abarcan aproximadamente desde los
32°N de latitud norte hasta los 19°N, y desde los 105°W de longitud oeste hasta los 98°W,
sobre suelos derivados de rocas igneas y metamorficas (Rzedowski y Huerta, 2006). Estos
ecosistemas se caracterizan por tener un clima templado a semi frio, con precipitaciones
anuales de 350 a 1200 mm y temperaturas medias que oscilan entre los 6 y 28° C
(Granados-Sanchez et al., 2007), con veranos lluviosos e inviernos secos y frios, cuya
vegetacion esta dominada por coniferas como pinos (Pinus spp.), abetos (Abies spp.),

cedros (Cupressus spp.) y enebros (Juniperus spp.) (Challenger, 1998).

Proceso de adquisicion y limpieza de Datos

Un total de 22 parametros de tipo, topografico, riqueza de especies, biomasa y carbono
(aéreo y subterraneo), indices de sanidad, clima, geografica y dasométricas, fueron
obtenidas de (Arasa-Gisbert et al., 2018). De ella, utilizamos los datos de densidad de
carbono en la biomasa viva aérea (DCBVa), coordenadas geogréficas (lat, long) y ID de
cada conglomerado, exclusivamente del parametro type= “bosques de coniferas”. La
densidad de carbono de la biomasa viva aérea (DCBva), es carbono total de la biomasa
por unidad de area, de la biomasa viva contenida en los arboles vivos, incluidos tallos,
ramas, hojas, semillas (IPCC, 2003). Los datos obtenidos corresponden a informacion del
inventario Forestal Nacional y Suelos (INFyS) de México (2009-2012). Ademas,
utilizamos 19 variables bioclimaticas de WorldClim version 2.0, correspondientes al

periodo de 1970 a 2000 (Apéndice B), en formato raster con una resolucion de 30
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arcseconds, publicadas en enero de 2020 (Fick y Hijmans, 2017), estas variables han sido
utilizadas previamente en estudios similares (Liu et al., 2013; Reich et al., 2014; Bennett
et al., 2020; Cysneiros et al., 2021; Xin et al., 2022; Li et al., 2022).

Se utilizo la libreria 'raster’ de R (Hijmans, 2010), empleando las coordenadas geograficas
de cada conglomerado para extraer los valores de las 19 variable biocliméticas (Bio). Para
identificar datos erréneos o atipicos en DCBVa, aplicamos un analisis de componentes
principales (PCA) a la matriz centrada y escalada de DCBVay 19 Bios, se utilizé la libreria
'FactoMineR" v.2.9 (L€ et al., 2008). Se consideran como datos atipicos aquellos que
quedan fuera de la elipse del PCA al 95 %, mismos que fueron excluidos de la base de

datos para asegurar la coherencia y fiabilidad de los resultados.

Modelado predictivo de DCBVa

Debido a la gran variabilidad climatica registrada en los bosques de coniferas del pais
(Rzedowski y Huerta, 2006), y con el objetivo de mejorar las predicciones de DCBVa, se
realizé una estratificacion bioclimatica de las areas de los bosques de coniferas en México.
Para ello utilizamos las 19 variables biocliméticas en formato réaster, utilizando la libreria
“GeoStratR” (Bivand, 2022), creando estratos (espacio geografico) en el mismo formato.
Los conglomerados del INFyS ubicados en cada estrato generado, se separaron para ser

analizados de manera independiente.

Para la seleccién de predictores (Bios) de DCBVa, en cada estrato, se empled la técnica
de 'machine learning' (ML) usando validacién cruzada con k folds=10, empleando la
técnica de seleccion hacia atras (backward selection). Se utilizé una cuadricula de ajuste
(tuneGrid) que considerd de 1 a 7 predictores (nvmax = 1:7) (Kuhn, 2008). De cada subset
de predictores arrojados por ML, se evalud la significancia estadistica de los coeficientes
de regresion (p<0.05) y el factor de inflacion de la varianza (VIF) a fin de evitar efectos

de multicolinealidad.
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Con el subset de predictores que cumplié estos criterios, el modelo fue entrenado
utilizando el método de Modelos Lineales Generalizados (glm) con la funcion de enlace
"identity". Para ello se utiliz6 80 % de datos (obtenidos aleatoriamente y por cuantiles) de
la matriz limpiada anteriormente. Este enfoque (glm), es apropiado para variables de
respuesta continuas y positivas (Arasa-Gisbert et al., 2018; Cysneiros et al., 2021), en este
tipo de estudios. El ajuste del modelo se realizé utilizando la libreria 'caret' de R (Kuhn,
2008). Se utilizaron pruebas de Hipotesis (<= 0.05) sobre los coeficientes de regresion
(Hy: Bi=0vsHy: B; #0,.., B;) del modelo final. Usamos la métrica “Img”, para
calcular la importancia de cada variable bioclimética (como porcentaje de lo que explica
el modelo), que proporciona una descomposicion de la varianza explicada en el modelo

en contribuciones no negativas (Grémping, 2006).

Con el 20 % de los datos restantes, el modelo fue validado usando diferentes técnicas:
Validacion Cruzada por omision (LOOCV), Validacion Cruzada (CV; k=10), Validacion
Cruzada Repetida (RCV, k=10, rep=10) y Bootstrap (reps=100), calculando: raiz del error
cuadratico medio, (RMSE), coeficiente de determinacion (R?) y error cuadratico medio
(MAE) para evaluar el rendimiento del modelo, también usando la libreria de R ‘caret’

(Kuhn, 2008).

Prediccion actual, futura y tasa de cambio de DCBVa

Con los modelos biocliméaticos generados, se realizaron predicciones actuales de DCBVa
en cada estrato, empleando los predictores bioclimaticos correspondientes. Se utilizo la
libreria raster del software R (Hijmans, 2010) con el argumento type = "response”, para

generar mapas raster de predicciones de DCBVa.

Para predecir la DCBVa futura, se obtuvieron capas raster de 3 diferentes Modelos de
Circulacién General (GCM): MIROC-6, GISS-E2 y CMCC-ESM2, eligiendo de ellos,
unicamente los predictores biocliméaticos de la DCBVa para cada estrato. Los GCM
provienen de proyecciones climaticas futuras del Proyecto de Intercomparacion de
modelos acoplados fase 5 (CMIP5), a una resolucion de 2.5 grados. Se usaron cuatro



16

Trayectorias de Concentracion Representativas (RCP) desarrolladas por el Panel
Intergubernamental sobre el Cambio Climatico (IPCC, 2013), las cuales se caracterizan
por su Forzamiento Radiativo (FR) total proyectado para el afio 2100, oscilando entre 2.6,
4.5, 6.0 y 8.5 W/mz2, considerando los afios 2050 y 2070. Estos escenarios RCP se utilizan
para proyectar posibles trayectorias futuras del cambio climético, en funcion de diferentes

niveles de emisiones y esfuerzos de mitigacion.

A través del algebra de rasters, se promediaron las 3 capas raster de cada GCM, RCP y
afio. Con el promedio, se realiz6 la prediccion futura de la DCBVa para cada estrato.
Similarmente se utilizo la libreria raster R (Hijmans, 2010), argumento type = "response”,
para generar mapas raster de predicciones futuras de DCBVa. Para identificar los cambios
en la DCBVa futura con respecto al escenario actual, se utilizd la siguiente expresion:
DCBVa (futura) — DCBVa (actual). Los resultados resultan: 0, si los valores de los pixeles
son iguales en ambos escenarios; positivos, si la DCBVa es mayor en el futuro; y negativa,

si la DCBVa es mayor en el escenario actual.

Para visualizar las areas de bosques de coniferas de México vulnerables a los cambios en
DCBVa, debido al cambio climético, se generd un buffer de 40 km de radio alrededor de
cada sitio del Inventario Nacional Forestal y de Suelos (INFyS). Esto permitié delimitar
las areas boscosas que podrian verse potencialmente afectadas. Posteriormente, se
cuantificé el nimero de pixeles de cada categoria o tasa de cambio de la DCBVa dentro
de estos poligonos buffer. El resultado de esta ecuacion (tasa de cambio) fue presentada

en forma de mapa, para cada RCP y afio.

En adicion, la incertidumbre en las predicciones futuras de la DCBVa se cuantifico
utilizando el error estandar: (EE(0) = V[Var(0)). Para ello se utiliz6 como repeticion las
predicciones de DCBVa de: MIROC-6 + GISS-E2 + CMCC-ESMZ2, en cada RCP y afio,
las cuales fueron promediadas utilizando la libreria “raster ” (Hijmans, 2010) y calculando

y generando un mapa raster de EE(0).
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Predictores Bioclimaticos: Analisis Actual y Proyecciones Futuras

Con el objetivo de determinar la influencia de los predictores bioclimaticos futuros en los
cambios de DCBVa de los bosques de México, se empleo la prueba no paramétrica de
Wilcoxon, o prueba de rangos con signo. Esta prueba se utilizé para evaluar si existen
diferencias significativas entre las medianas de dos muestras: el predictor bioclimatico
actual y el predictor bioclimatico futuro (e. g., Bio 1 actual vs. Bio 1 2050, RCP 4.0). Se
utilizé un nivel de significancia del 95 %. Para ello, se extrajeron los valores actuales y
futuros (promedio de 3 MCG, RCP y afio) de los predictores de cada estrato (Bios),
utilizando las coordenadas geogréaficas de cada conglomerado y empleando la libreria
raster (Hijmans, 2010). Estos analisis fueron representados en gréficas de violin,
mostrando en color naranja las Bios derivadas de temperatura y en azul las Bios derivadas
de precipitacion, con la significancia estadistica indicada con el simbolo * en la parte

superior.
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RESULTADOS Y DISCUSION

Distribucion de la densidad de carbono de la biomasa viva aérea

El proceso de estratificacion de los bosques de coniferas de México generd tres estratos:
estrato | noroeste del pais (Fig. 1a; n = 60), estrato Il centro-sur del pais (Fig. 1b; n = 450)
y estrato 111, ubicado en la Sierra Madre Occidental, SMO (Fig. 1c; n = 463).
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Figura 1. Distribucion de los sitios del Inventario Nacional Forestal y de Suelos (2009 -
2012), estrato I (a), estrato II (b) y estrato III (c). Tamano de los circulos y color de la

rampa, indican los valores de la densidad de carbono de la biomasa viva area (Mg C ha

1).

Modelos para la prediccion de la densidad de carbono de biomasa viva aérea

Las variables bioclimaticas seleccionadas por los algoritmos resultaron estadisticamente
significativas (p < 0.05) para predecir la DCBVa. Los predictores (Bios) de DCBVa fueron
representativos tanto de variables de precipitacion (3 de 6) como de temperatura (3 de 6);
aunque a nivel de estrato, las variables de temperatura son mas importantes (Imp., Tabla
1) que las variables de precipitacion. Bio 5 (Temperatura méxima del mes mas calido) fue
el mejor predictor de DCBVa en 2 estratos (I y IlI) Ningun modelo presentd
multicolinealidad (VIF<1.16), lo que hace que no se sobreestimen las predicciones de
DCBVa.
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Tabla 1. Coeficientes de regresion para la prediccion de la densidad de carbono de la

biomasa viva aérea por estrato, en los bosques de coniferas de México.

Std. T Pr Residual VIF Imp.
Estrato Coeficiente Estimador 2.5 97.5

Err value >It) deviance (%)

| Bo (intercepta) 64.8332 22.7606 97.3943 23.2221 2.79  0.00772 **
n=48 B1 (Bio 5) -0.1897 -0.2932 -0.0544 0.0737 -2.57 0.01355*  13.246 1.02 10.33
B2 (Bio 18) 0.0586 0.0337 0.0829 0.0123 4.77 2.02e-05 *** 1.02 8.74

1 Bo (intercepta) 87.6362 66.3661 108.9076 10.4558 8.38 1.22e-15***
n=360 B1 (Bio 5) -0.2572 -0.3296 -0.1841 0.0376 -6.84 3.37e-11***  172.17 1.03 8.04
B2 (Bio 12) 0.0190 0.0106  0.0272 0.0037 5.12 4.91e-07 *** 1.03 335

Il Bo (intercepta) 26.6379 12.3682 40.4383 8.4994 3.13 0.00186 **
n=370 B1 (Bio 10) -0.0959 -0.1571 -0.0293 0.0391 -2.45 0.01461*  132.39 1.16 3.28
B2 (Bio 13) 0.0933 0.0708 0.1160 0.0135 6.93 1.8e-11 *** 1.16 14.95

Donde: Bo, B1y B2 = son los coeficientes de regresion; 2.5y 97.5: intervalos de confianza
de los coeficientes de regresion al 95 %,; Std. Err: error estdndar de los coeficientes de
regresion; VIF: factor de la inflacion de la varianza; Imp = valor de importancia de las
variables. Bio 05: temperatura maxima del mes mas célido (°C); Bio 10: Temperatura
media del trimestre mas célido (°C); Bio 12: precipitacion media anual (mm); Bio 13:
Precipitacion del mes mas lluvioso (mm); Bio 18: precipitacion del trimestre mas célido
(mm). Significancia estadistica: "* p < 0.05": Significativo; "** p < 0.01": Altamente

significativo; "*** p < 0.001": Muy altamente significativo.

Bio 1: temperatura media anual (°C); Bio 2: rango medio diurno (temp max- temp min)
(°C); Bio 3: isotermalidad (Bio02/Bio07) (x100) (%); Bio 4: estacionalidad de la
temperatura (desviacion estandar x 100) (%); Bio 5: temperatura maxima del mes mas
calido (°C); Bio 6: temperatura minima del mes mas frio (°C); Bio 07: rango anual de la
temperatura (Bio5-Bio6) (°C); Bio 8: temperatura media del trimestre mas himedo (°C);
Bio 9: temperatura media del trimestre mas seco (°C); Bio 10: temperatura media del
trimestre més calido (°C); Bio 11: temperatura media del trimestre mas frio (°C); Bio 12:
Precipitacion anual (mm); Bio 13: Precipitacion del mes mas lluvioso (mm); Bio 14:
Precipitacion del mes mas seco (mm); Bio 15: Estacionalidad de la precipitacion
(Coeficiente de variacion) (%); Bio 16: precipitacion del trimestre mas humedo (mm); Bio
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17: precipitacion del trimestre mas seco (mm); Bio 18: precipitacion del trimestre mas
calido (mm); Bio 19: precipitacion del trimestre més frio (mm).

Las ecuaciones para la estimacion de la DCBVa en cada estrato quedaron de la siguiente

manera:

Estrato I: DCBVa (Mg C ha') = 64.8332 + -0.1897*Bio 5 (°C x10) + 0.0586*Bio 18 (mm)
Ec. 1

Estrato 1I: DCBVa (Mg C ha') = 87.6362 + -0.2572*Bio 5 (°C x10) + 0.0190*Bio 12
(mm) Ec. 2

Estrato I11: DCBVa (Mg C ha') = 26.6379 + -0.0959*Bio 10 (°C x10) + 0.0933*Bio 13
(mm) Ec. 3

La media de la DCBVa no sigue un patron entre estratos; es decir, no es menor en estrato
I y mayor en estrato 111. La media de DCBVa en el estrato Il representa en promedio hasta
1.6 veces mas que en el estrato | y I11; y varia desde 23.14 Mg C ha! (estrato ) hasta
42.57 Mg C ha® (estrato 1), con maximos de hasta casi 180 Mg C ha (Tabla 2) pero
también es la que posee la mayor variabilidad (CV >60 %). Ninguna de las variables
mostr6 normalidad (p < 0.0001) acorde a las pruebas de Shapiro-Wilk y Anderson-Darling
(Tabla 2).
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Tabla 2. Estadisticas descriptivas de la densidad de carbono de la biomasa viva aérea
observada y de sus predictores (periodo de 1950-2000), en los bosques de coniferas de

México.

Shapiro  Anderson
Estrato Variable n Min P25 Media Mediana P75 Max SD Cv

p-value p-value

DCBVa 423 1154 23.14 16.23 3335  62.05 15.04 65 0.0001 0.0001

I Bio 5 48 277 28.7 29.97 29.6 30.75 36 1.76  5.89 0.0001 0.0001
Bio 18 62 223 256.89 290 330.5 397 101.66 39.57 0.0001 0.0001

DCBVa 446 19.87 42.57 34.35 54.75 179.69  33.01 77.54 0.0001 0.0001

11 Bio 5 360 17.5 2278 25.72 25.3 28.7 34.6 393 1528 0.0001 0.0001
Bio 12 426 895.25 1109.42 1092 1314.25 2216 367.25 33.1 0.0001 0.0001

DCBVa 3.15 1276 26.26 23.24 3598 9292 16.56 63.05 0.0001 0.0001

I Bio10 370 14.7 17.4 18.55 18.3 19.4 26.3 1.74 939 0.0001 0.0001
biol3 53 154  184.03 181 219 357 5254 2855 0.0001 0.0001

Donde: DCBVA: Densidad de Carbono de Biomasa Viva Aérea observada (Mg C ha);
Bio 5: temperatura maxima del mes mas calido (°C); Bio 18: precipitacion del trimestre
mas calido (mm); Bio 12: precipitacion anual (mm); Bio 10: temperatura media del
trimestre mas célido (°C); Bio 13: precipitacion del mes més lluvioso (mm); n = nimero
de sitios en el estrato; Min: valor minimo; P25 y P75: percentil 25 y 75; Max: valor

maximo; SD: desviacidn estandar; CV: coeficiente de variacion (%).

Validacion de modelos predictivos de la densidad de carbono de biomasa viva area

Acorde a la pseudo R? derivada del procedimiento de validacion, las variables
biocliméticas explican en promedio 19% de la DCBVa (Tabla 3). EI método LOOCV es
el que calcula una R? méas baja (0.10), mientras que el resto de los métodos arrojan un
promedio de R? de 0.22 acorde a la validacion, al usar los modelos para predecir DCBVa
con datos independientes a los de entrenamiento, los errores de estimacion (RMSE)
podrian ser desde 13.18 Mg C ha? (estrato Ill) hasta 42.42 Mg C ha? (estrato 1),

observando las mejores estimaciones en el estrato I1I.



22

Tabla 3. Validacion de los modelos de regresion para la prediccion de la densidad de la

biomasa viva aérea en los bosques de coniferas en México.

Estrato Método Set n Pseudo R? RMSE MAE
Entrenamiento 48

LOOCV Validacion 12 0.031 38.319 30.806

I Ccv Validacion 12 0.177 29.908 29.379

RCV Validacion 12 0.177 31.949 31.272

Bootstrap Validacion 12 0.316 42.426 34.457
Entrenamiento 360

I LOOCV Validacion 90 0.128 29.938 21.789

Cv Validacion 90 0.249 28.493 21.720

RCV Validacion 90 0.246 28.620 21.685

Bootstrap Validacion 90 0.150 30.107 22.302
Entrenamiento 370

LOOCV Validacion 92 0.153 13.887 10.699

11 Ccv Validacion 92 0.231 13.181 10.543

RCV Validacion 92 0.238 13.330 10.600

Bootstrap Validacion 92 0.192 14.175 10.986

Donde: LOOCV: validacion cruzada por omision CV: validacion cruzada, RCV:
validacion cruzada repetida; n: tamafio de muestra; R% coeficiente de determinacion;

RMSE: raiz del error cuadratico medio; error medio absoluto.

Prediccion actual y futura de la densidad de carbono de biomasa viva aérea

Usando los modelos generados aqui, en los sitios del INFyS, se predicen desde 7.48 hasta
34.79 Mg C hal; desde 16.68 hasta 71.29 Mg C ha y desde 10.98 hasta 41.91 Mg C ha’
! para los estratos I, 11 y Il respectivamente (Figura 2a-2c). La mayor DCBVa se
observa/predice en estrato 1l (Figura 2b) en el centro del pais. Las diferencias mas altas
entre DCBVa observada — estimada, son de -19 'y +30; -52 y +124; -29 y +56 Mg C ha,

respectivamente.
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Figura 2. Prediccion actual de la densidad de carbono de la biomasa viva aérea, en
bosques de coniferas México, a través de modelos bioclimaticos: estrato I (a), estrato 11
(b), estrato III (c). Tamafo de los circulos y color de la rampa, indican los valores de la

densidad de carbono de la biomasa viva drea (Mg C ha™).

Acorde a las predicciones futuras al 2050 y 2070 (Figs. 3-5) con el modelo bioclimético
de cada estrato (ecuaciones 1-3), ante cualquier escenario climatico (RCP), solo se esperan
pérdidas de DCBVa. Los bosques ubicados en estrato 1l (Fig. 4a - 4h, centro y sur del
pais), serian los mas afectados, con disminuciones de entre -5y -10 Mg C hal, incluso de
hasta -20 Mg C ha* al 2070, mientras que los menos afectados serian los del estrato 111
(Figs. 5a — 5h. SMO) con pérdidas entre 0 y -5 Mg C ha. Las pérdidas de DCBVa mas

significativas ocurririan en el RCP8.5 y se espera sean mas en 2070.

Mg ha™'
® 25
® 50
® s

Mg ha™'
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Figura 3. Cambios en la densidad carbono de biomasa viva aérea en bosques de coniferas de México, bajo los escenarios RCP 2.6 al
8.5 (de izquierda a derecha), para los afios 2050 (arriba) y 2070 (abajo), en el estrato I. Areas coloreadas representan buffers de 40 km

de radio alrededor de cada sitio del INFyS; areas sin relleno de color, corresponden a zonas no boscosas.
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Figura 5. Lo mismo que figura 3, pero para el estrato III.
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Tabla 4. Numero de pixeles contenidos en el buffer de 40 km de radio alrededor de cada sitio de muestreo
del INFyS para diferenciar cambios en la densidad de la biomasa viva aérea en los bosques de coniferas de

México, ante escenarios climaticos futuros. Cada pixel mide 0.98 x 0.98 km de cada lado.

Cambiosen  RCP26 RCP45 RCP60 RCPS5

bstrato v 2050 2070 2050 2070 2050 2070 2050 2070
(-20—-15 W) 0 0 0 0 0 0 0 0
(-15--10|M) 0 0 0 0 0 35 0 107

I -10--5|E) 0 240 2361 2280 906 2885 3011 3180
(-5-0|C1) 3287 3047 926 1007 2381 367 276 0
0-5|0) 0 0 0 0 0 0 0 0
(-20—-15 M) 0 0 0 0 0 0 0 1148
(-15--10|M) 0 30 6 1526 0 3928 4796 22466

1 (-10—-5|E1) 17750 19473 23821 22317 23571 19912 19047 229
(-5-0|C1) 6093 4340 16 0 272 3 0 0
0-5|E) 0 0 0 0 0 0 0 0
(-20—-15 M) 0 0 0 0 0 0 0 0

0

(-15--10 M) 0 0 0 0 0 0 0
I -10--5|2) o0 6 0 0 0 0 1290 3281

(-5-0]0) 9680 9819 9825 9825 9825 9822 8535 6544

0-5/H) 145 0 0 0 0 3 0 0

Donde: Densidad de Carbono de Biomasa Viva Aérea observada (Mg C ha); RCP = rutas
representativas de concentracion. Color del cuadro en columna dos, corresponde al color

del pixel de las figuras 3-5.

Evaluacion de proyecciones climaticas en variables que predicen DCBVa en

bosques de coniferas de México

La prueba de Wilcoxon mostré evidencias suficientes (p<0.0001) para rechazar la HO de
igual de medianas entre la Bio actual y la misma Bio ante un escenario climatico futuro.
En todos los casos, la mediana de las Bios de temperatura estimada al 2050 y 2070 por
tres MCG, en cualquier escenario climatico, RCP (izg. Fig. 6), serd mayor a la actual

(Tabla 2). De manera general, se espera que la temperatura sea 2.66 °C (2050) y 3.36 °C
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(2070) més que la actual (Figs. 6a, 6¢ y 6e). Las areas del estrato Il, serian las vulnerables
al mostrar +2.7 °C al 2050, y menos vulnerables las areas del estrato 111 (+2.5 °C). Al
2070, la temperatura incrementa asi: estrato | > estrato Il > estrato Ill, desde 3.55 hasta
3.25°C.

La prueba demostro que, en los bosques de México, de forma general la precipitacion al
2050 y 2070 podria ser igual en el estrato | (Fig. 6b), disminuir (p < 0.0001) entre 5.3 %
(2050) y 6.4 % (2070) en el estrato 11 (Fig. 6d), y aumentar/disminuir en el estrato I11 (Fig.
6f). De forma individual (Actual vs Bio-RCP-Afio), existen también diferencias

Unicamente en el caso de variables de precipitacion (der. Fig. 6), no asi de temperatura
(izg. Fig 6).
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Figura 6. Prueba Wilcoxon para la comparacion de las medianas de la variable actual con
cada escenario climatico, en el estrato I (a-b), IT (b-c) y III (e-f). Bio 05: temperatura
maxima del mes mas calido (°C); Bio 10: temperatura media del trimestre mas céalido (°C);
Bio 12: precipitacion anual (mm); Bio 13: precipitacion del mes mas lluvioso (mm); Bio
18: precipitacion del trimestre mas calido(mm). Significancia estadistica: "* p < 0.05":
Significativo; "** p < 0.01": Altamente significativo; "*** p < 0.001": Muy altamente
significativo. Significancia estadistica: "ns": No significativo; "* p < 0.05": Significativo;
"% p < 0.01": Altamente significativo; "*** p < 0.001": Muy altamente significativo;

EHEE 1 <0.0001": Extremadamente altamente significativo.
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La incertidumbre (representada por el error estandar) estimada para DCBVa mostrada aqui
(Figura 7), para el escenario mas critico (RCP85 | 2070), muestra que el error estandar
oscila desde 2.5 Mg C ha* (estrato 111) hasta 8 Mg C ha* (estrato 11), muy por debajo del
RMSE (Tabla 3) estimado con datos independientes. Esta incertidumbre, es similar en

escenarios climéaticos menos criticos (RCP26 | 2050; Figuras no mostradas).

Figura 7. Incertidumbre (error estandar) estimada de la densidad de carbono de biomasa
viva aérea, en bosques de coniferas de México, para los estratos I (a), II (b) y III (c) para

el RCP8S5 y para el afio 2070.

La seleccion de predictores de la AGB mediante algoritmos automatizados (stepwise,
Machine Learning, redes neuronales etc.) en general es eficiente, estos han sido probados
en bosques naturales (Luo et al., 2021; Bjork et al., 2021) selvas (Ortiz-Reyes et al., 2021)
inclusive en plantaciones (He et al., 2022). Aunque las variables seleccionadas por estos
algoritmos son estadisticamente significativas, p<0.05 (Li et al., 2022), los modelos
generados aqui, presentaron efectos de multicolinealidad (VIF > 10), por lo que tuvieron

que ser evaluados para evitar este efecto y mejorar las predicciones.

Algunos autores (Zhang et al., 2022), han utilizado procedimientos lineales (Im) para la
prediccion de PPN (Produccion Primaria Neta) en pastizales, con resultados favorables.
Nosotros probamos esta técnica; sin embargo, quedd demostrado que, en este tipo de
estudios, es dificil satisfacer todos los supuestos de un modelo de regresion (g; ~N(0, 62),
por lo que finalmente se empled el procedimiento ‘glm’, como se ha hecho en este tipo de
estudios (Arasa-Gisbert et al.,, 2018; Cysneiros et al., 2021). Ademéas de estos
procedimientos, también se ha utilizado Random Forest (Cartus et al., 2014; Bennett et

15
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al., 2020; Yan et al., 2023) y modelos bayesianos (Chen et al., 2023) para la prediccion
de AGB a partir de variables de temperatura y precipitacion.

Variables predictoras de biomasa aérea

En este estudio los algoritmos utilizados eligieron tanto variables de temperatura (Bio 5y
Bio 10) como de precipitacion (Bio 12, Bio 13 y Bio 18) como mejores predictores de
DCBVa. Las variables de temperatura fueron las de mayor importancia en el modelo (de
8 a 10% de la pseudo R?), en el estrato | y Il (Tabla 1, Fig. 1a'y 1b) no asi para el estrato
I11. Segun algunos autores (Dai et al., 2016; Zhang et al., 2022), a escala global, las
variables de precipitacion y temperatura son las que mejor explican la prediccion de AGB.
En particular, la temperatura media anual (Bio 1) y temperatura del trimestre mas calido
(Bio 10) son variables climaticas que se asocian a la distribucién de la biomasa a escalas
amplias, las métricas demuestran que temperaturas parecen ser mas importantes que

variables de precipitacion (Reich et al., 2014).

Se ha demostrado que variables biocliméaticas de temperatura (Bio 1 y Bio 5) y de
precipitacion (Bio 12) estan asociadas con la acumulacion del AGB de los bosques (Chen
et al., 2023), en ecosistemas boreales (He et al., 2022), estacionales templados (Keith et
al., 2009), selvas tropicales (Chen et al., 2018), y estacionales tropicales (Guo et al., 2019;
Ma et al., 2023). Como puede notarse, Bio 5 y Bio 12 (Appendix B), son buenos
predictores de AGB en diferentes tipos de ecosistemas. Por ejemplo, un estudio realizado
en la SMO (estrato Il de este mismo estudio) menciona que la temperatura promedio (Bio
1) es la més importante para predecir AGB en bosques templados (L6pez-Serrano et al.,
2020).

En bosques de Australia, abarcando 15 tipos de bosques dominados especialmente con
eucaliptos (Bennett et al.,2020), demuestran que las variables climaticas, son mejores
predictores de AGB, que variables del suelo, siendo Bio 9 (Temperatura media del

trimestre mas seco) la variable mas importante. Independientemente de las métricas, al
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igual que en nuestro estudio, las variables de temperatura parecen ser las mas importantes
para predecir AGB (Tabla 1).

No obstante, la relacion de las variables bioclimaticas con AGB, es completamente
dependiente del tipo de ecosistema, de la especie, pero también de la region del mundo,
por esta razon otros autores enfatizan que la precipitacion media anual (MAP), posee una
importancia relativa mayor (0.19 %) que MAT (0.05 %) para la prediccion de AGB en
plantaciones de Larix del norte y noreste de China, incluso, su importancia también es

dependiente de la estructura del modelo (He et al., 2022).

Continuando con la narrativa anterior, la relacion entre precipitacion y AGB puede ser
compleja, ya que se pueden observar diferentes respuestas segun el tipo de bosque y
condiciones climaticas. Esta variable influye significativamente en la acumulacion de los
diferentes componentes de biomasa aérea (ramas, tallos, raices y aciculas) en plantaciones
de coniferas, por ello es importante considerarla en modelos de prediccion y en la
evaluacion de la relacion clima-bosques (Xin et al., 2022), pero en conjunto, variables
climéticas de temperatura y precipitacion pueden mejoran las estimaciones de AGB (Dai
et al., 2019). Por ejemplo, en bosques tropicales (Adhikari et al., 2017), utilizaron 13
variables predictoras de AGB, incluyendo: geograficas, topograficas, hidroldgicas, de
suelo, incluso de la especie (cobertura), etc., encontrando que la influencia relativa de
MAP sobre AGB es de 37.6 % siendo la més importante, mientras que MAT, posee una

influencia relativa menor al 1 %.

Correlacion entre variables bioclimaticas y densidad de carbono

La correlacion de DCBVa con variables de temperatura (Bio 5 y Bio 10) en bosques
templados de México es negativa, pero positiva con las variables de precipitacion (Tabla
1). Algo similar encontraron (Khan et al., 2019), una correlacion negativa (-0.46 > r < -
0.63; -0.43 > r <-0.60) entre biomasa de fuste de Larix gmelinii y Betula platyphylla con

MAT. De la misma forma, en otros estudios se demuestra que MAT se correlaciona
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negativamente con AGB, ya sea a nivel especie (Xin et al., 2022) o a nivel rodal (Li et al.,
2022).

Similar a este estudio, en bosques templados y bosques secos, se observa una correlacién
positiva entre DCBVa y MAP (Stegen et al., 2011) y esta misma relacion se observa en
otros estudios por ejemplo (Khan et al., 2019) encontraron que MAP se correlaciona
positivamente con biomasa de fuste de Larix gmelinii (0.84 > r < 0.92) y Betula
platyphylla (0.76 > r < 0.88), mientras que (Xin et al., 2022) observaron que MAP se
correlaciona positivamente y significativamente (p < 0.05) con AGB de Pinus koraiensis
Siebold & Zucc., Larix olgensisi A. Henry y Pinus sylvestris var. mongolica Litv.

Por otro lado, el estudio realizado por Reich et al., (2014), revela que a escala global (>
6200 bosques y 61 paises), MAT se correlaciona positivamente con la biomasa del follaje,
aungue los patrones geogréficos de correlacion no son consistentes. (Liu et al., 2013)
encontraron que mientras en los bosques boreales la temperatura se correlaciona
positivamente, en bosques tropicales ocurre lo contrario. Estudios realizados por Guo et
al., (2019) en bosques boreales, demuestran que MAT puede explicar (R?) desde 26 hasta
45 % de la densidad de carbono y se correlaciona de forma positiva; mientras que MAP
puede explicar desde 28 hasta 67 % de la densidad de carbono (aérea y subterranea); sin
embargo, la correlacion es positiva entre estas dos variables cuando la precipitacion es

desde 0 a 1000 mm, y negativa cuando es mayor a 1000 mm.

Contrario a este estudio, en bosgues boreales y templados, se ha encontrado una relacion
positiva entre DCBVa y MAT (Keith et al., 2009) , pero negativa en regiones humedas
(Stegen et al., 2011).

Capacidad predictiva de los modelos

La validacion de un modelo es crucial para evaluar la capacidad predictiva que posee un
modelo, en base con nuevos datos. En realidad, en esta tematica (relacion AGB -

predictores climaticos), son pocos los estudios que realizan este proceso (Cartus et al.,
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2014; Opelele et al., 2021; He et al., 2022; Zhang et al., 2022). Como es conocido, al
generar un modelo con el procedimiento ‘glm’, no se calculan estadisticos como: R?,
RMSE, MAE etc.; al realizar la validacion de nuestros modelos, fue posible calcular estas
métricas y evaluar, la capacidad predictiva de cada modelo. Observamos que las variables
biocliméticas pueden explicar hasta 22 % de la DCBVa, en este tipo de bosques (Tabla 3),
un valor considerable razonable cuando se trata de modelos a nivel de eco-region (Guo et
al., 2019), no asi a nivel especie (Khan et al., 2019; Xin et al., 2022) ya que, a esta escala,

las variables pueden explicar hasta 84 % de AGB.

En general la técnica de “validacion cruzada’, ha sido la mas utilizada para validar modelos
para estimar AGB (Opelele et al., 2021; Li et al. 2022; He et al., 2022; Wang et al., 2023);
en este estudio nosotros la utilizamos ademas de otras tres técnicas (Tabla 3). Resaltar
que, cuando se trata de predictores climaticos, estos pueden explicar alrededor de 20 %
(Tabla 3), mientras que cuando se predice AGB a partir de predictores derivados de indices
de vegetacidn, e. g. indice de vegetacion de diferencia normalizada, NDVI, informacion
aspectral (Opelele et al., 2021), o imagenes Opticas de satélite y vehiculos aéreos no
tripulados (Wang et al., 2023), se puede explicar (R?) hasta 80 % de AGB. La inclusion
de diferentes variables predictoras como MAP, MAT, contenido de arcilla, pH, indice de
sequedad y edad del rodal, pueden explicar hasta 44.4 % de DCBVa en bosques templados
(Guo et al., 2019).

Sin embargo, predictores exclusivos del rodal (diametro a la altura del pecho, edad,
densidad del rodal), pueden explicar hasta 98 % de la varianza de ABG (He et al., 2022).
La métrica RMSE, es completamente dependiente de las unidades y de la escala de las

variables dependientes, por eso se observan diferencias tan distantes entre estudios.
Proyeccion actual y futura de la densidad de carbono de biomasa viva aérea
Ante cualquier escenario climatico (RCP - afio), nuestros modelos predicen pérdidas de

DCBVa, desde 5 Mg C ha* (2050) hasta 20 Mg C ha* al 2070 (Figs. 3-5) en los bosques

de coniferas de México. A escala global, en bosques templados, se predicen cambios
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positivos en la densidad de carbono total (TCD), con un promedio de 2.23 Mg C ha!
(RCP26, 45 y 85; 2050) y de 1.99 Mg C ha! al 2070; exclusivamente en México, estos
autores (Guo et al., 2019), predicen cambios de +20 Mg C ha™!; sin omitir que, para el
pais, se tuvieron solo dos plots, a diferencia de este estudio, se hizo a escala mas fina,

generando los modelos con n= 48 hasta n=370 (Tabla 2).

Un estudio realizado (Zhou et al., 2022) bajo diferentes escenarios de simulacion,
incrementando/disminuyendo temperatura y precipitacion, en la provincia de Yunnan,
China, sugiere que los efectos combinados de estas variables son mas complejos de lo
esperado; se pueden tener tanto ganancias como pérdidas (como en este estudio) de
secuestro de carbono en diferentes tipos de bosques y es debido a la disminucion de
precipitacion y al aumento de la temperatura. En nuestro estudio se observa disminucién
de DCBVa y en general es debido a incremento desde 1 hasta 3 °C y disminucion de
precipitacion de alrededor de 10 %. Desde hace casi tres décadas (Villers-Ruiz y Trejo-
Vazquez, 1997), se evalu6 la vulnerabilidad de los bosques de México al cambio
climatico, encontrando que bajo las estas condiciones (+ 2 °C y -10 % precipitacion),
bosques templados himedos y secos se reducirian significativamente (a menos de la mitad

de su tamafio).

En una investigacion realizada en los bosques atlanticos brasilefios (AF) (Ferreira et al.,
2023), encontraron que, en 34.7 % de los fragmentos de bosque existentes, la AGB podria
aumentar, mientras que en el 2.6 % podria disminuir para el afio 2100; los modelos
predicen un incremento de 8.5 % de total carbdn existente, ademas, 76.9 % de AF seria
idoneo a un posible incremento de AGB al 2100 bajo un rcp de 4.5, debido meramente al
cambio climatico: Lo anterior se contrapone a lo encontrado aqui, posiblemente por el tipo
de bosques y ubicacion geografica, pero es similar a lo que encontraron (Li et al., 2022),
en subtropical de los bosques siempre verde de China, un decremento de AGB al 2050
2070, variando segun los diferentes escenarios climaticos (rcp 2.6 > rcp 4.5 > rcp 6.0 >
rcp 8.5).
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CONCLUSIONES

Las relaciones entre DCBVa y el clima son mas complejas de lo que parece. Las variables
bioclimaticas, especialmente las relacionadas con la temperatura, demostraron ser
predictores significativos de la DCBVa en los modelos desarrollados y pueden explicar
hasta 19 % de la DCBVa. Bio 5 (Temperatura méxima del mes més célido) destacé como
el predictor méas robusto. Los modelos desarrollados mostraron una buena capacidad
predictiva con datos independientes, para predecir la DCBVa en bosques de coniferas de
Meéxico. Las predicciones con los modelos biocliméticos indican que todos los estratos de
bosques de coniferas del pais, bajo cualquier escenario climatico (RCP - Afo),
experimentaran pérdidas en la DCBVa hacia el 2050 y 2070, especialmente bajo el
escenario RCP8.5. Se prevé que los bosques del estrato Il sean los mas afectados, con
reducciones significativas que podrian alcanzar hasta -20 Mg C ha-1 para el afio 2070. La
temperatura proyectada por los MCG’s al 2050 y 2070 seré significativamente mayor a la
actual, con aumentos de hasta 3.55 °C en el estrato | al 2070. La precipitacion podria
permanecer igual en el estrato I, disminuir (-10 %) en el estrato Il y variar (£10 %) en el
estrato Ill. Estas proyecciones climéticas futuras, serian las responsables de la
redistribucion de la DCBVa de los bosques de México. Las conclusiones sugieren la
necesidad urgente de estrategias de adaptacion y mitigacion frente al cambio climatico
para conservar la biodiversidad y los servicios ecosistémicos proporcionados por los
bosques de coniferas en México. La gestién forestal debe considerar no solo la
conservaciéon de la biodiversidad, sino también la capacidad de almacenamiento de

carbono en estos ecosistemas.
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ANEXOS

Variables Bioclimaticas

Variable
Bio 1
Bio 2
Bio 3
Bio 4
Bio 05
Bio 06
Bio 07
Bio 08
Bio 09
Bio 10
Bio 11
Bio 12
Bio 13
Bio 14
Bio 15
Bio 16
Bio 17
Bio 18
Bio 19

Descripcion

Temperatura Media Anual (°C)

Intervalo medio diurno (°C)

Isotermalidad (Bio2 / Bio7) (*100)

Estacionalidad de la temperatura (Desviacion estandar *100)
Temperatura maxima del mes mas célido (°C)

Temperatura minima del mes mas frio (°C)

Rango anual de temperatura (Bio5 — Bio6 °C)

Temperatura media del trimestre mas humedo (°C)
Temperatura media del trimestre méas seco (°C)
Temperatura media del trimestre mas célido (°C)
Temperatura promedio del trimestre mas frio (°C)
Precipitacion anual (mm)

Precipitacion del mes mas lluvioso (mm)

Precipitacion del mes mas calido (mm)

Estacionalidad de la precipitacion (Coeficiente de variacion, %)
Precipitacion del trimestre méas lluvioso (mm)

Precipitacion del trimestre mas seco (mm)

Precipitacion del trimestre mas céalido (mm)

Precipitacion del trimestre mas frio (mm)
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