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RESUMEN 

 
Las variaciones climáticas en temperatura y precipitación impactan significativamente la 

productividad forestal. La precipitación influye en la fisiología y crecimiento de las 

especies, mientras que la temperatura regula la fotosíntesis, respiración y transpiración. 

Este estudio desarrolló modelos bioclimáticos para evaluar cómo el cambio climático 

afectará la densidad de carbono de la biomasa aérea (DCBVa) en bosques de coníferas de 

México para 2050 y 2070. Utilizamos datos de DCBVa del Inventario Forestal Nacional 

y Suelos (INFyS) de México (2009-2012) y 19 variables bioclimáticas de WorldClim ver. 

2.0. Los mejores predictores de DBCVa se obtuvieron mediante técnicas de 'machine 

learning' con la librería 'caret' de R. El modelo se entrenó con el 80% de los datos y se 

validó con el 20% restante utilizando Modelos Lineales Generalizados (GLM). Se 

generaron mapas de predicciones actuales de DBCVa utilizando los mejores predictores. 

La DCBVa futura se calculó con el promedio de tres modelos de circulación general 

(MCG) de proyecciones climáticas futuras del Proyecto de Intercomparación de Modelos 

Acoplados Fase 5 (CMIP5), bajo cuatro Trayectorias de Concentración Representativas 

(RCP): 2.6, 4.5, 6.0 y 8.5 W/m². Los resultados indican pérdidas de DBCVa en todos los 

escenarios climáticos, alcanzando hasta 15 Mg C ha-1, y podrían ocurrir bajo el escenario 

RCP 8.5 hacia 2070 en el centro del país. Las variables relacionadas con la temperatura 

fueron más importantes que las de precipitación. La validación del modelo con datos 

independientes sugiere que las variables bioclimáticas pueden explicar hasta el 20% de la 

varianza total de DBCVa. Se espera que la temperatura en el área de estudio aumente 2.66 

°C para 2050 y 3.36 °C para 2070, mientras que la precipitación oscile en ±10% respecto 

a la actual, lo que podría redistribuir geográficamente la DBCVa de los bosques de 

coníferas del país. Estos hallazgos subrayan la necesidad de que la gestión forestal se 

enfoque no solo en la conservación de la biodiversidad, sino también en la capacidad de 

almacenamiento de carbono en estos ecosistemas. 

 

Palabras clave: Biomasa aérea, Modelos bioclimáticos, Cambio climático, Bosques de 

coníferas, Aprendizaje automático   
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ABSTRACT 

 
Climatic variations in temperature and precipitation significantly impact forest 

productivity. Precipitation influences the physiology and growth of species, while 

temperature regulates photosynthesis, respiration and transpiration. This study developed 

bioclimatic models to evaluate how climate change will affect the carbon density of 

aboveground biomass (DCBVa) in coniferous forests in México for 2050 and 2070. We 

used DCBVa data from the National Forest Inventory and Soils (INFyS) of Mexico (2009-

2012) and 19 bioclimatic variables from WorldClim ver. 2.0. The best predictors of 

DBCVa were obtained using machine learning techniques with the R library 'caret'. The 

model was trained with 80% of the data and validated with the remaining 20% using 

Generalized Linear Models (GLM). Maps of current DBCVa predictions were generated 

using the best predictors. Future DCBVa was calculated by averaging three general 

circulation models (GCMs) of future climate projections from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5), under four Representative Concentration Paths 

(RCPs): 2.6, 4.5, 6.0 and 8.5 W /m². The results indicate DBCVa losses in all climate 

scenarios, reaching up to 15 Mg C ha-1, and could occur under the RCP 8.5 scenario around 

2070 in the center of the country. The variables related to temperature were more 

important than those of precipitation. Validation of the model with independent data 

suggests that bioclimatic variables can explain up to 20% of the total variance of DBCVa. 

The temperature in the study area is expected to increase by 2.66 °C by 2050 and 3.36 °C 

by 2070, while precipitation will oscillate by ±10% compared to the current one, which 

could geographically redistribute the DBCVa of the forests of conifers of the country. 

These findings underscore the need for forest management to focus not only on 

biodiversity conservation, but also on the carbon storage capacity in these ecosystems. 

 

Keywords:  Aboveground Biomass, Bioclimatic Models, Climate Change, Coniferous 

Forests, Machine Learning.



1 
 

 
 

INTRODUCCIÓN 

 

Los bosques abarcan aproximadamente el 31 % de la superficie terrestre global, unos 4.06 

mil millones de hectáreas, desempeñan un papel crucial en la regulación climática al 

funcionar como sumideros de carbono; se estima almacenan alrededor de 662 G t de 

carbono, distribuidos en un 44 % en biomasa viva, 45 % en materia orgánica del suelo, y 

11 % en madera muerta y hojarasca (FAO, 2022). México cuenta con alrededor de 64.8 

millones de hectáreas de bosques, lo que representa aproximadamente el 33 % del 

territorio nacional (FAO, 2022), abarcan varios tipos de bosques templados, latifoliados, 

mixtos, tropicales (Arasa-Gisbert et al., 2018) y se estima que almacenan 1.69 G t C 

(Rodríguez-Veiga et al., 2016). El cambio climático influye en los bosques al alterar la 

temperatura y las precipitaciones, lo que afecta el crecimiento de los bosques del mundo, 

la biomasa y el secuestro de carbono (Guo et al., 2019; Ma et al., 2023).  

Las bases científicas para estudiar el cambio climático son incuestionables, los hallazgos 

irrefutables, la temperatura media global de la superficie terrestre ha aumentado 1.09 °C 

entre 2011-2020 en comparación con 1850-1900, se intensifica más en el hemisferio norte, 

y más sobre la tierra (1.59 °C) que en los océanos (0.88 °C); las precipitaciones aumentan 

en las latitudes altas y disminuyen en los subtrópicos, los extremos climáticos serán más 

frecuentes e intensos, y los sumideros de carbono serán menos eficientes (IPCC, 2021). 

En México, la temperatura media incrementó en 0.31°C por década, en el período de 1971 

a 2020, y es más pronunciado en la meseta del norte durante verano; bajo un escenario 

climático SSP3-7.0 se proyecta un aumento de 0.82 °C para los años 2020-2039 y 1.63 °C 

para los años 2040-2059; se experimentan disminuciones significativas de precipitación 

en algunos estados del norte (Climate Risk Profile: México 2023). 

Es bien conocido que la precipitación y temperatura influye directamente en la 

productividad de biomasa de los bosques, por ejemplo, la precipitación es crucial en la 

fisiología de las especies, influye directamente en la transpiración, la absorción de 

nutrientes, conductancia estomatal, disponibilidad de nutrientes (Bennett et al., 2020; 

Cysneiros et al., 2021) y en las estrategias de crecimiento; su disponibilidad y variabilidad 

afecta la eficiencia del uso del agua (Gao et al., 2017; Yuan et al., 2022), esto conlleva a 
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que la productividad de biomasa este en una relación directa con la precipitación (Arasa-

Gisbert et al., 2018).  

Similarmente la temperatura influye en el crecimiento de las plantas afectando la 

fotosíntesis, la respiración y la transpiración (Guo et al., 2019; Xin et al., 2022). La 

temperatura, regula las reacciones químicas y las tasas de asimilación de CO2 (Eamus, 

2003). El aumento de la temperatura promueve el crecimiento de la biomasa en los 

bosques boreales y lo inhibe en los bosques tropicales (Liu et al., 2013), pero también 

muy altas temperaturas reducen el crecimiento, alteran la pigmentación foliar, afectan el 

sistema radicular y provocan estrés hídrico alterando los patrones de crecimiento (Sim-

Hee Han et al., 2012). Las plantas de climas templados muestran cierta tolerancia al frío; 

pero temperaturas muy bajas afectan negativamente varios procesos, como la división 

celular, fotosíntesis, metabolismo en la respiración, disminución de su productividad 

(Devi et al., 2023).  

Por las variaciones climáticas, los bosques se están volviendo cada vez más dinámicos 

(Pan et al., 2013), con ello, se modifica la composición de especies de los árboles en el 

ecosistema (Yuan et al., 2022). Las alteraciones simultaneas en temperatura y 

precipitación conducen a una reducción/aumento en la biomasa de los ecosistemas, lo que 

influye en la configuración de la distribución de los bosques del mundo (Keith et al., 

2009). 

Se ha demostrado que la biomasa aérea de los bosques está influenciada tanto positiva 

como negativamente por la temperatura (Guo et al., 2019; He et al., 2022; Chen et al., 

2023). Por otro lado, se ha encontrado que la precipitación se correlaciona positivamente 

con la biomasa aérea (Dai et al., 2019; Xin et al., 2022). Estos estudios se han realizado 

en bosques templados, tropicales y boreales (Liu et al., 2013), e incluso a nivel de especie 

(Bennett et al., 2020; Girón-Gutiérrez et al., 2024) demostraron que, en 10 especies de 

coníferas, la precipitación se correlaciona positivamente (0 ≤ ρ ≤ 0.20) con la densidad de 

biomasa aérea, mientras que la temperatura muestra una correlación negativa (− 0.20 ≤ ρ 

≤ 0). No obstante, la literatura revela que la magnitud de la correlación de la biomasa aérea 

en los ecosistemas forestales depende de la escala (Reich et al., 2014), del tipo de bosque 

(Guo et al., 2019) y de la especie (Khan et al., 2019; Xin et al., 2022) entre otros.  
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Con base en lo expuesto anteriormente, el objetivo de este estudio fue desarrollar modelos 

bioclimáticos para evaluar cómo el cambio climático afecta la distribución geoespacial de 

la densidad de carbono de la biomasa viva aérea en los bosques de coníferas de México, 

se consideran cuatro escenarios climáticos posibles según las trayectorias de 

concentración representativas (RCP) 2.6, 4.5, 6.0 y 8.5 W/m², proyectados para los años 

2050 y 2070. Se hipotetiza que las proyecciones climáticas futuras afectaran 

significativamente la densidad de carbono de la biomasa aérea de los bosques de coníferas 

de México. 
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REVISIÓN DE LITERATURA 

 

Bosques de coníferas en México 

 

Los bosques de coníferas en México son frecuentes en zonas de clima templado y semi 

frio, presentando una amplia diversidad ecológica, los pinos en México se distribuyen de 

una manera restringida en el país, existen 35 especies del género Pinus representando el 

37 % del total en el mundo, ocupando el 15 % de la superficie del territorio mexicano 

(Rzedowski, 2006). 

Los bosques de pino abarcan alrededor de 5,238,681 ha caracterizándose con el 80 % del 

género Pinus spp los cuales se distribuyen en regiones montañosas del territorio mexicano, 

con temperaturas de 6° y 28° C y altitudes entre 1500 y 3000 msnm, de las especies 

presentes en el país algunas tienen un valor económico por su aprovechamiento maderable 

(Granados-Sánchez et al., 2007). 

De las seis familias de coníferas reconocidas a nivel mundial, cuatro están presentes en 

México, existen 94 especies de coníferas, 43 de las cuales son endémicas del país 

representando un 46 % del total, algunas de ellas se encuentran en peligro de extinción; 

entre estas, el género Pinus destaca con 22 especies endémicas, seguido de Juniperus con 

10, Abies con 5, Callitropsis y Picea con tres cada una, Además, 18 especies endémicas 

tienen áreas de distribución restringidas a tres o menos estados (Gernandt y Pérez-De La 

Rosa 2014). 

Por su riqueza estructural los bosques en México contribuyen en el almacenamiento y 

reserva de carbono, esto puede variar según el tipo de bosque, y aspectos como el clima, 

diversidad, topografía, suelo, pendiente y factores de perturbación (Arasa-Gisbert et al., 

2018). 

Las reservas de carbono en México abarcan un rango del 20 t C/ha-1 para parcelas del 

Inventario Nacional Forestal y Suelos y por debajo de 50 t C/ha-1 de la densidad de 

carbono aérea en terrenos planos (Cartus et al., 2014). 
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Variables bioclimáticas 

 

Las variables bioclimáticas demuestran ser una herramienta flexible para mapear la 

distribución de cualquier entidad, tienen la capacidad de predecir alteraciones ante el 

cambio climático, se obtuvieron 16 parámetros climáticos de estimaciones mensuales en 

función a temperatura y precipitación, con registros de valores medios estacionales y 

extremos que constituyen un perfil climático en Australia (Busby, 1991). 

 

Las variables bioclimáticas son componentes cruciales en la investigación climática ya 

que abarcan factores como precipitación, temperatura y altitud. Estas variables 

desempeñan un papel importante en la predicción del clima y en la compresión de 

procesos ambientales según Fick y Hijmans (2017). 

 

Fang et al. (2024) mencionan que variables como temperatura y precipitación determinan 

el crecimiento, adaptación y distribución de las plantas, incluyendo aquellas tolerantes a 

la sequía como la Acacia senegal (L.) Britton, ante escenarios climáticos SSP1-2.6, SSP2-

4.5, SSP3-7.0 y SSP5-8.5 las variables Bio 3 (Isotermalidad ), Bio 4 (Estacionalidad de la 

temperatura), Bio 11 (temperatura media del trimestre más  frío) y Bio 12 (precipitación 

anual), destacan con la mayor importancia en la precisión  en los modelos ecológicos. 

 

Las variables climáticas desempeñan un papel fundamental al influir en la distribución de 

las plantas, y características de los ecosistemas, algunos estudios han identificado que 

variables climáticas como la temperatura media del trimestre más cálido, temperatura 

mínima del mes más frio, precipitación anual y precipitación de los trimestres más cálidos 

y fríos afectan en la vegetación (Wang-Jun 2016). 

 

Xin et al. (2022) elaboraron modelos de biomasa para tres especies de coníferas (Pinus 

koraiensis Siebold & Zucc.) (Larix olgensisi A. Henry) (Pinus sylvestris var. mongolica 

Litv.), determinaron variables como el área basal y altura dominante, mediante estadísticas 

avanzadas evaluaron la eficacia del ajuste realizando la técnica de validación cruzada en 

los modelos, identificando las variables climáticas que contribuyen de manera 
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significativa a la biomasa de las especies de coníferas, obtuvieron como resultados que 

los modelos de biomasa que incluyeron variables climáticas tuvieron el mejor ajuste,  

además los autores encontraron que el efecto de las variables climáticas en los diferentes 

componentes de la biomasa de las coníferas era consistente en los coeficientes de 

regresión estimados por los modelos. 

 

Selección de variables predictoras 

 

La selección de variables predictoras puede afectar significativamente el rendimiento de 

un modelo, por ello para seleccionar variables predictoras mediante el aprendizaje 

automático es fundamental considerar varios factores, como el impacto en el rendimiento 

del modelo y la transferibilidad (Solberg et al., 2024). Se han utilizado métodos 

automatizados para la selección de variables climáticas que influyen en la distribución de 

las plantas, específicamente la temperatura media y la precipitación como factores 

influyentes (Wang-Jun 2016). 

 

Los algoritmos de aprendizaje automático desempeñan un papel crucial en las 

predicciones espaciales, los que aprenden por conjuntos, como Random Forest (RF) y 

Machine learning suelen utilizarse para cartografiar atributos de los bosques debido a su 

capacidad de integrar varios modelos y mejorar la precisión en comparación con 

algoritmos individuales (López-Serrano et al., 2020). Se han utilizado algoritmos de 

aprendizaje automático como Random Forest en estudios para predecir reservas de 

carbono en función de variables climáticas y del suelo, comprobando que pueden ser 

robustos y eficaces en el manejo de datos complejos, superando análisis de regresión 

simple y otras técnicas de aprendizaje automático para la estimación de biomasa forestal 

(Bennett et al., 2020). 

 

Luo et al. (2021) compararon tres algoritmos de aprendizaje automático: RFR, XGBoost 

y CatBoost, en la optimización de un modelo utilizaron un método de selección, evaluaron 

indicadores de precisión como R2, RMSE, RMSE % y Bias, los resultados mostraron que 
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el algoritmo CatBoost fue el más preciso, con un RMSE de 26.81 Mg/ ha-1 en la estimación 

de biomasa forestal aérea en bosques de coníferas en China. 

 

 

Generación de modelos predictivos  

 

La generación de modelos predictivos implica la utilización de algoritmos avanzados 

como Random Forest, reconocidos por su robustez y eficiencia, variables como los rangos 

de temperatura y precipitación desempeñan un papel crucial en la estabilidad del modelo, 

garantizan una amplia variación en las variables independientes al mejorar su capacidad 

predictiva (Usoltsev et al., 2020). 

 

Arasa-Gisbert et al. (2018). mencionan que los modelos lineales generalizados (GLM) 

son una herramienta estadística utilizadas en varios campos de la investigación, ya que 

estos ofrecen un marco flexible para analizar datos, los cuales no cumplen con los 

supuestos de los modelos lineales tradicionales, los GLM son útiles cuando se abordan 

aspectos relacionados con variables de medición que se desvían de los requisitos de los 

modelos lineales.  

 

Cartus et al., (2014) prevén que la densidad total de carbono aéreo en los bosques de 

México sea de 2.21 Pg. C, un 30 % más que en el informe de la FAO 2010 con 1.69 Pg C. 

 

Validación de modelos  

 

La validación cruzada por omisión (LOOCV) es una técnica que se utiliza para evaluar la 

precisión de los modelos predictivos al omitir sistemáticamente un conjunto de datos para 

su validación utilizando los datos restantes para el entrenamiento (Peng et al., 2019). 

 

La validación cruzada repetida es una técnica importante en la evaluación de los modelos 

ya que utiliza métricas como R2, RMSE, RRMSE para evaluar el rendimiento del modelo, 

determinaron los hiperparámetros óptimos para el desarrollo del modelo, al combinar 
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estos enfoques los investigadores pueden mejorar la precisión y generalizar los modelos 

probándolos y refinándolos en diferentes conjuntos de datos conduciéndolos hacia 

predicciones más sólidas y confiables (He et al., 2022). 

 

Bennett et al. (2020) utilizaron la validación cruzada de K-fold con el 90 % de los datos 

para entrenamiento y el 10 % de prueba del modelo, evaluaron el rendimiento del modelo 

y el poder explicativo mediante el R2 como indicador de la influencia de la variable 

predictora de la AGB, dando los valores más altos de la R2 en los modelos con variables 

climáticas. 

 

Predicciones actuales y futuras 

 

 Guo et al. (2019) estimaron las densidades de carbono actuales y futuras (2050 y 2070) 

en escenarios climáticos RCP 2.6, RCP 4.5 y RCP 8.5, en cinco tipos de bosques a nivel 

mundial en respuesta a factores climáticos y del suelo, encontraron que los bosques 

tropicales tienen mayor densidad de carbono en comparación con los bosques boreales 

que presentan las más bajas en ambos escenarios, mientras que los bosques templados 

presentarían impactos positivos tanto en el 2050 y 2070, la temperatura media anual 

(MAT) tuvo diferentes efectos sobre la densidad total de carbono en diferentes bosques en 

el 2070. 

 

En el período de 1971 a 2020, la temperatura media en México incrementó en 0.31 °C por 

década, con el cambio más pronunciado observado en la meseta del norte durante los 

meses de verano, bajo un escenario climático SSP3-7.0 se proyecta un aumento de 

temperatura media anual de 0.82 °C para los años 2020-2039 y 1.63 °C para los años 

2040-2059 anticipándose que para este periodo el país presentara un mayor riesgo de calor 

extremo, las temperaturas más altas y la disminución de la precipitación reducirán la 

biomasa total neta en gran parte del país hacia finales del siglo, afectando la producción 

de cultivos, en consecuencia, la seguridad alimentaria (Climate Risk Profile; México 

2023). 
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Heiderman y Kimsey (2023) desarrollaron modelos lineales mixtos generalizados para 

evaluar los impactos de las variables ambientales en el crecimiento y supervivencia de 

Pseudotsuga menziesii Mirb. y Tsuga heterophylla Raf.con bajo escenarios climáticos 

futuros RCP 4.5 y RCP 8.5 para los años 2050 y 2080, presentaron disminuciones del 5.4 

y 11.4 % respectivamente en los bosques de Pseudotsuga menziesii Mirb Franco, mientras 

que en los bosques de Tsuga heterophylla Raf sería de un 6.6 y 8.9 % en el RCP 4.5 para 

el 2050 y RCP 8.5 para el 2080. 

 

Estudios afines 

 

Reich et al. (2014)  mencionan que la distribución global de la biomasa forestal varía en 

función de la temperatura y las precipitaciones, los bosques de Gimnospermas tienen una 

mayor biomasa de raíces en comparación con los bosques de Angiospermas, la relación 

de biomasa total con MAT fue positiva en 7 de 8 géneros boreales y templados fríos (-1°C 

< MAT < 9 °C) y una relación negativa en templados cálidos o subtropicales (13 °C < 

MAT < 21 °C), además la temperatura media del trimestre más cálido del año y la 

precipitación total de este mismo trimestre se relaciona linealmente con MAT y MAP. 

 

Rodríguez-Veiga et al., (2016) estimaron la biomasa aérea (AGB) en los bosques 

mexicanos utilizando datos del Inventario Nacional Forestal y Suelos (INFyS) e imágenes 

de teledetección MODIS de vegetación, estratificando la base de datos en siete tipos de 

bosques, (perennifolio, caducifolio, mixto perennifolio y bosque tropical caducifolio) 

realizaron modelaciones en MaxEnt obtuvieron predicciones de 180 t ha-1, los valores más 

altos de AGB por ha para México ocurren en altitudes, pendientes y precipitaciones más 

altas. 

 

Chen et al., (2023) crearon un modelo con el método bayesiano para predecir la biomasa 

aérea en bosques a nivel global en función de la edad, la predicción media anual (MAP) 

y la temperatura media anual (MAT), donde el bosque siempre verde de hoja ancha que 

presentó un aumento de AGB promedio más alto 50,83 ± 76,02 Mg ha −1 mientras que 

para los bosques siempre verde de hoja acicular fue 42,9 ± 46,76 Mg ha −1, los efectos 
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MAT cuantifican los cambios en la tasa de acumulación de AGB por un cambio de 1 °C 

en MAT y acumulación inicial y saturada de AGB por un cambio de 1 mm en MAP.  

 

Barreras et al. (2009) realizaron un mapeo y monitoreo de bosques en México utilizaron 

datos satelitales y técnicas de aprendizaje automático en predicciones generados por un 

modelo, los autores consideraron atributos de los bosques como altura y densidad de los 

árboles, los autores mencionan que este tipo de mapeos produce predicciones precisas con 

un r 2 = 0.35 al predecir la altura de los árboles, para la densidad fue un r 2 = 0.23 en 

bosques latifoliados y coníferos-latifoliados. 

 

Pan et al., (2013) mencionan que las herramientas digitales a escala global se volverán 

cada vez más poderosas para analizar cuestiones ecológicas importantes para el futuro, 

aunque actualmente la disponibilidad de imágenes tridimensionales a gran escala permite 

mapear la estructura forestal no existe ningún sistema satelital que proporcione 

información suficiente para este tipo de tareas, así como la capacidad para utilizar 

plenamente la información enfocada a la necesidad que exista para mapear la estructura 

forestal y comprender la distribución de los bosques y su impacto con el cambio climático.  

 

Liu et al. (2014) utilizaron el mapa de las zonas ecológicas globales por la FAO (2001) 

para su clasificación, que se compone de bosques boreales, templados, subtropicales y 

tropicales en 897 sitios forestales, los autores realizaron una regresión obteniendo como 

resultados que a nivel global  la densidad de carbono de la biomasa aérea (DCBVa) más 

alto se encuentran en los bosques maduros con temperaturas medias anuales de 8 a 10 °C 

y precipitaciones media anual de entre 1000 y 2500 mm en bosques con edades de 80 y 

450. 

 

Stegen et al. (2011) desarrollaron un modelo analítico para la variación de la biomasa en 

los bosques globales, encontrando que la correlación entre la biomasa forestal y la 

precipitación del trimestre más seco no fueron significativas, sin embargo, aumento con 

la precipitación del trimestre más seco en los bosques templados (R2 = 0.2, P = 0.009) y 

tropicales secos (R2 = 0.33, P = 0.001), los resultados mostraron que existe una fuerte 
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correlación positiva entre la biomasa del bosque, temperatura y precipitación anual, los 

autores encontraron que los bosques tropicales albergan más de la mitad de la biomasa 

mundial almacenada en la vegetación terrestre sin embargo los bosques boreales y 

templados también son importantes reservas de biomasa. 

 

Ma et al., (2023) evaluaron la relación entre características estructurales de los rodales y 

la biomasa aérea en bosques (AGB) en 25 países y el impacto del clima en estas relaciones, 

para ello realizaron una transformación logarítmica de cada variable ajustándola a una 

distribución normal, mediante una regresión lineal múltiple (MLR), los autores analizaron 

el MAT y MAP y las características estructurales de los rodales utilizando el factor de 

inflación de varianza (VIF > 10), encontraron una correlación positiva (P < 0.05)  entre 

las estructuras del rodal y factores climáticos indican la influencia entre el área basal (BA) 

y AGB en relación al clima como MAT (r = 0.262, p < 0.01) y MAP (r = 0.231, p < 0.05), 

en el bosque templado estacional. 

 

Luo et al., (2021) emplearon algoritmos de aprendizaje automático y técnicas de selección 

de variables para mejorar la precisión de la estimación de la biomasa aérea (AGB) 

utilizando datos de teledetección, los autores compararon varios modelos seleccionados 

por diferentes métodos de selección de variables, este estudio demuestra que se pueden 

usar algoritmos de aprendizaje automático y técnicas de selección de las mejores variables 

para mejorar la precisión de la estimación de la biomasa aérea (AGB) utilizando datos de 

teledetección, además muestra que el algoritmo CatBoost es ligeramente superior al 

XGBoost. 

 

Las altas temperaturas reducen las tasas de crecimiento en el desarrollo de las plantas, 

alterando la pigmentación en las hojas, aumentando la actividad de las enzimas 

antioxidantes, afectan el crecimiento de las raíces lo que provoca restricciones en la 

absorción de nutrientes provocando estrés en el desarrollo de los árboles, afectan también 

procesos como la fotosíntesis, transpiración y conductancia en los estomas, el aumento de 

la temperatura provoca el estrés hídrico, alteran los patrones de crecimiento y asignación 

de los recursos disponibles en el suelo  (Sim-Hee Han, 2012). 
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Las plantas tropicales y subtropicales son sensibles a las bajas temperaturas, mientras que 

las plantas de climas templados muestran grados variables de tolerancia al frío, las bajas 

temperaturas afectan negativamente varios procesos en las plantas, como en la división 

celular, fotosíntesis, metabolismo en la respiración, reducen su productividad en las 

plantas, las raíces pueden restringir la absorción del agua como mecanismo de tolerancia 

al estrés por las bajas temperatura similar al de la sequía (Devi et al., 2023). 

 

La precipitación desempeña un papel crucial en aspectos fisiológicos del desarrollo de los 

árboles afectan la transpiración, adquisición de nutrientes y estrategias de crecimiento, la 

variabilidad en las precipitaciones afecta la eficiencia del uso del agua por parte de los 

árboles durante las altas tasas de transpiración durante periodos secos (Gao et al., 2017). 

La mayoría de las plantas requieren un rango de temperatura óptimo para su crecimiento 

y desarrollo, al aproximarse a los límites de este rango, el crecimiento puede detenerse, 

disminuir o incluso llevar a la muerte de la planta, el aumento de la temperatura puede 

favorecer el crecimiento arbóreo al extender su período de crecimiento y aumentar la 

mineralización del nitrógeno, aunque estos efectos varían significativamente según la 

región y la especie del árbol (Sim-Hee Han, 2012). 
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MATERIALES Y MÉTODOS 

 

Descripción del área de estudio  

 

Las coníferas en México se encuentran desde el nivel del mar hasta por encima de los 

4,000 m de altitud, concentrándose la mayor diversidad en la Sierra Madre Occidental 

(SMOc) y la Sierra Madre Oriental (SMO), así como en otros sistemas montañosos como 

la Península de Baja California y las Sierras del Norte de México; México alberga 49 

especies de pino, lo que representa el 40 % de las aproximadamente 120 especies de pino 

en el mundo (Gernandt y Pérez-De La Rosa, 2014). Abarcan aproximadamente desde los 

32°N de latitud norte hasta los 19°N, y desde los 105°W de longitud oeste hasta los 98°W, 

sobre suelos derivados de rocas ígneas y metamórficas (Rzedowski y Huerta, 2006). Estos 

ecosistemas se caracterizan por tener un clima templado a semi frío, con precipitaciones 

anuales de 350 a 1200 mm y temperaturas medias que oscilan entre los 6 y 28° C 

(Granados-Sánchez et al., 2007), con veranos lluviosos e inviernos secos y fríos, cuya 

vegetación está dominada por coníferas como pinos (Pinus spp.), abetos (Abies spp.), 

cedros (Cupressus spp.) y enebros (Juniperus spp.) (Challenger, 1998). 

 

Proceso de adquisición y limpieza de Datos  

 

Un total de 22 parámetros de tipo, topográfico, riqueza de especies, biomasa y carbono 

(aéreo y subterráneo), índices de sanidad, clima, geográfica y dasométricas, fueron 

obtenidas de (Arasa-Gisbert et al., 2018). De ella, utilizamos los datos de densidad de 

carbono en la biomasa viva aérea (DCBVa), coordenadas geográficas (lat, long) y ID de 

cada conglomerado, exclusivamente del parámetro type= “bosques de coníferas”. La 

densidad de carbono de la biomasa viva aérea (DCBva), es carbono total de la biomasa 

por unidad de área, de la biomasa viva contenida en los árboles vivos, incluidos tallos, 

ramas, hojas, semillas (IPCC, 2003). Los datos obtenidos corresponden a información del 

inventario Forestal Nacional y Suelos (INFyS) de México (2009-2012). Además, 

utilizamos 19 variables bioclimáticas de WorldClim versión 2.0, correspondientes al 

período de 1970 a 2000 (Apéndice B), en formato raster con una resolución de 30 
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arcseconds, publicadas en enero de 2020 (Fick y Hijmans, 2017), estas variables han sido 

utilizadas previamente en estudios similares (Liu et al., 2013; Reich et al., 2014; Bennett 

et al., 2020; Cysneiros et al., 2021; Xin et al., 2022; Li et al., 2022). 

 

Se utilizo la librería 'raster' de R (Hijmans, 2010), empleando las coordenadas geográficas 

de cada conglomerado para extraer los valores de las 19 variable bioclimáticas (Bio). Para 

identificar datos erróneos o atípicos en DCBVa, aplicamos un análisis de componentes 

principales (PCA) a la matriz centrada y escalada de DCBVa y 19 Bios, se utilizó la librería 

'FactoMineR' v.2.9 (Lê et al., 2008). Se consideran como datos atípicos aquellos que 

quedan fuera de la elipse del PCA al 95 %, mismos que fueron excluidos de la base de 

datos para asegurar la coherencia y fiabilidad de los resultados. 

 

Modelado predictivo de DCBVa 

 

Debido a la gran variabilidad climática registrada en los bosques de coníferas del país 

(Rzedowski y Huerta, 2006), y con el objetivo de mejorar las predicciones de DCBVa, se 

realizó una estratificación bioclimática de las áreas de los bosques de coníferas en México. 

Para ello utilizamos las 19 variables bioclimáticas en formato ráster, utilizando la librería 

“GeoStratR” (Bivand, 2022), creando estratos (espacio geográfico) en el mismo formato.  

Los conglomerados del INFyS ubicados en cada estrato generado, se separaron para ser 

analizados de manera independiente. 

 

Para la selección de predictores (Bios) de DCBVa, en cada estrato, se empleó la técnica 

de 'machine learning' (ML) usando validación cruzada con k folds=10, empleando la 

técnica de selección hacia atrás (backward selection). Se utilizó una cuadrícula de ajuste 

(tuneGrid) que consideró de 1 a 7 predictores (nvmax = 1:7) (Kuhn, 2008). De cada subset 

de predictores arrojados por ML, se evaluó la significancia estadística de los coeficientes 

de regresión (p<0.05) y el factor de inflación de la varianza (VIF) a fin de evitar efectos 

de multicolinealidad.  
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Con el subset de predictores que cumplió estos criterios, el modelo fue entrenado 

utilizando el método de Modelos Lineales Generalizados (glm) con la función de enlace 

"identity". Para ello se utilizó 80 % de datos (obtenidos aleatoriamente y por cuantiles) de 

la matriz limpiada anteriormente. Este enfoque (glm), es apropiado para variables de 

respuesta continuas y positivas (Arasa-Gisbert et al., 2018; Cysneiros et al., 2021), en este 

tipo de estudios. El ajuste del modelo se realizó utilizando la librería 'caret' de R (Kuhn, 

2008). Se utilizaron pruebas de Hipótesis (∝= 𝟎. 𝟎𝟓) sobre los coeficientes de regresión 

(𝑯𝟎 ∶ 𝜷𝒊 = 𝟎 𝒗𝒔 𝑯𝟏 ∶ 𝜷𝒊 ≠ 𝟎, … ,  𝜷𝒊𝒋) del modelo final. Usamos la métrica “lmg”, para 

calcular la importancia de cada variable bioclimática (como porcentaje de lo que explica 

el modelo), que proporciona una descomposición de la varianza explicada en el modelo 

en contribuciones no negativas (Grömping, 2006). 

 

Con el 20 % de los datos restantes, el modelo fue validado usando diferentes técnicas: 

Validación Cruzada por omisión (LOOCV), Validación Cruzada (CV; k=10), Validación 

Cruzada Repetida (RCV, k=10, rep=10) y Bootstrap (reps=100), calculando: raíz del error 

cuadrático medio, (RMSE), coeficiente de determinación (R2) y error cuadrático medio 

(MAE) para evaluar el rendimiento del modelo, también usando la librería de R ‘caret’ 

(Kuhn, 2008). 

 

Predicción actual, futura y tasa de cambio de DCBVa 

 

Con los modelos bioclimáticos generados, se realizaron predicciones actuales de DCBVa 

en cada estrato, empleando los predictores bioclimáticos correspondientes. Se utilizó la 

librería raster del software R (Hijmans, 2010) con el argumento type = "response", para 

generar mapas ráster de predicciones de DCBVa.  

 

Para predecir la DCBVa futura, se obtuvieron capas ráster de 3 diferentes Modelos de 

Circulación General (GCM): MIROC-6, GISS-E2 y CMCC-ESM2, eligiendo de ellos, 

únicamente los predictores bioclimáticos de la DCBVa para cada estrato. Los GCM 

provienen de proyecciones climáticas futuras del Proyecto de Intercomparación de 

modelos acoplados fase 5 (CMIP5), a una resolución de 2.5 grados. Se usaron cuatro 
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Trayectorias de Concentración Representativas (RCP) desarrolladas por el Panel 

Intergubernamental sobre el Cambio Climático (IPCC, 2013), las cuales se caracterizan 

por su Forzamiento Radiativo (FR) total proyectado para el año 2100, oscilando entre 2.6, 

4.5, 6.0 y 8.5 W/m². considerando los años 2050 y 2070. Estos escenarios RCP se utilizan 

para proyectar posibles trayectorias futuras del cambio climático, en función de diferentes 

niveles de emisiones y esfuerzos de mitigación. 

 

A través del álgebra de rasters, se promediaron las 3 capas ráster de cada GCM, RCP y 

año. Con el promedio, se realizó la predicción futura de la DCBVa para cada estrato. 

Similarmente se utilizó la librería ráster R (Hijmans, 2010), argumento type = "response", 

para generar mapas ráster de predicciones futuras de DCBVa. Para identificar los cambios 

en la DCBVa futura con respecto al escenario actual, se utilizó la siguiente expresión: 

DCBVa (futura) – DCBVa (actual). Los resultados resultan: 0, si los valores de los píxeles 

son iguales en ambos escenarios; positivos, si la DCBVa es mayor en el futuro; y negativa, 

si la DCBVa es mayor en el escenario actual.  

 

Para visualizar las áreas de bosques de coníferas de México vulnerables a los cambios en 

DCBVa, debido al cambio climático, se generó un buffer de 40 km de radio alrededor de 

cada sitio del Inventario Nacional Forestal y de Suelos (INFyS). Esto permitió delimitar 

las áreas boscosas que podrían verse potencialmente afectadas. Posteriormente, se 

cuantificó el número de píxeles de cada categoría o tasa de cambio de la DCBVa dentro 

de estos polígonos buffer. El resultado de esta ecuación (tasa de cambio) fue presentada 

en forma de mapa, para cada RCP y año. 

 

En adición, la incertidumbre en las predicciones futuras de la DCBVa se cuantificó 

utilizando el error estándar: (EE(θ) = √[Var(θ)). Para ello se utilizó como repetición las 

predicciones de DCBVa de: MIROC-6 + GISS-E2 + CMCC-ESM2, en cada RCP y año, 

las cuales fueron promediadas utilizando la librería “raster” (Hijmans, 2010) y calculando 

y generando un mapa ráster de EE(θ). 
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Predictores Bioclimáticos: Análisis Actual y Proyecciones Futuras 

 

Con el objetivo de determinar la influencia de los predictores bioclimáticos futuros en los 

cambios de DCBVa de los bosques de México, se empleó la prueba no paramétrica de 

Wilcoxon, o prueba de rangos con signo. Esta prueba se utilizó para evaluar si existen 

diferencias significativas entre las medianas de dos muestras: el predictor bioclimático 

actual y el predictor bioclimático futuro (e. g., Bio 1 actual vs. Bio 1 2050, RCP 4.0). Se 

utilizó un nivel de significancia del 95 %. Para ello, se extrajeron los valores actuales y 

futuros (promedio de 3 MCG, RCP y año) de los predictores de cada estrato (Bios), 

utilizando las coordenadas geográficas de cada conglomerado y empleando la librería 

raster (Hijmans, 2010). Estos análisis fueron representados en gráficas de violín, 

mostrando en color naranja las Bios derivadas de temperatura y en azul las Bios derivadas 

de precipitación, con la significancia estadística indicada con el símbolo * en la parte 

superior. 
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RESULTADOS Y DISCUSIÓN 

 

Distribución de la densidad de carbono de la biomasa viva aérea 

 

El proceso de estratificación de los bosques de coníferas de México generó tres estratos: 

estrato I noroeste del país (Fig. 1a; n = 60), estrato II centro-sur del país (Fig. 1b; n = 450) 

y estrato III, ubicado en la Sierra Madre Occidental, SMO (Fig. 1c; n = 463). 

 

Figura  1. Distribución de los sitios del Inventario Nacional Forestal y de Suelos (2009 - 

2012), estrato I (a), estrato II (b) y estrato III (c). Tamaño de los círculos y color de la 

rampa, indican los valores de la densidad de carbono de la biomasa viva área (Mg C ha-

1). 

 

Modelos para la predicción de la densidad de carbono de biomasa viva aérea  

 

Las variables bioclimáticas seleccionadas por los algoritmos resultaron estadísticamente 

significativas (p < 0.05) para predecir la DCBVa. Los predictores (Bios) de DCBVa fueron 

representativos tanto de variables de precipitación (3 de 6) como de temperatura (3 de 6); 

aunque a nivel de estrato, las variables de temperatura son más importantes (Imp., Tabla 

1) que las variables de precipitación. Bio 5 (Temperatura máxima del mes más cálido) fue 

el mejor predictor de DCBVa en 2 estratos (I y II) Ningún modelo presentó 

multicolinealidad (VIF<1.16), lo que hace que no se sobreestimen las predicciones de 

DCBVa. 

 

 

 

a) b) 

 

c) 
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Tabla 1. Coeficientes de regresión para la predicción de la densidad de carbono de la 

biomasa viva aérea por estrato, en los bosques de coníferas de México. 

Estrato Coeficiente Estimador 2.5 97.5 
Std. T Pr Residual VIF Imp. 

(%) Err value (>|t|) deviance  

I β0 (intercepta) 64.8332 22.7606 97.3943 23.2221 2.79 0.00772 ** 

13.246 
  

n=48 β1 (Bio 5) -0.1897 -0.2932 -0.0544 0.0737 -2.57 0.01355 * 1.02 10.33 

 β2 (Bio 18) 0.0586 0.0337 0.0829 0.0123 4.77 2.02e-05 *** 1.02 8.74 

II β0 (intercepta) 87.6362 66.3661 108.9076 10.4558 8.38 1.22e-15 *** 

172.17 
 

 

n=360 β1 (Bio 5) -0.2572 -0.3296 -0.1841 0.0376 -6.84 3.37e-11 *** 1.03 8.04 

 β2 (Bio 12) 0.0190 0.0106 0.0272 0.0037 5.12 4.91e-07 *** 1.03 3.35 

III β0 (intercepta) 26.6379 12.3682 40.4383 8.4994 3.13 0.00186 ** 

132.39 
 

 

n=370 β1 (Bio 10) -0.0959 -0.1571 -0.0293 0.0391 -2.45 0.01461 * 1.16 3.28 

  β2 (Bio 13) 0.0933 0.0708 0.1160 0.0135 6.93 1.8e-11 *** 1.16 14.95 

Donde: β0, β1 y β2 = son los coeficientes de regresión; 2.5 y 97.5: intervalos de confianza 

de los coeficientes de regresión al 95 %; Std. Err: error estándar de los coeficientes de 

regresión; VIF: factor de la inflación de la varianza; Imp = valor de importancia de las 

variables. Bio 05: temperatura máxima del mes más cálido (°C); Bio 10: Temperatura 

media del trimestre más cálido (°C); Bio 12: precipitación media anual (mm); Bio 13: 

Precipitación del mes más lluvioso (mm); Bio 18: precipitación del trimestre más cálido 

(mm). Significancia estadística: "* p < 0.05": Significativo; "** p < 0.01": Altamente 

significativo; "*** p < 0.001": Muy altamente significativo. 

 

Bio 1: temperatura media anual (°C); Bio 2: rango medio diurno (temp max-  temp min) 

(°C); Bio 3: isotermalidad (Bio02/Bio07) (×100) (%); Bio 4: estacionalidad de la 

temperatura (desviación estándar × 100) (%); Bio 5: temperatura máxima del mes más 

cálido (°C); Bio 6: temperatura mínima del mes más frio (°C); Bio 07: rango anual de la 

temperatura (Bio5–Bio6) (°C); Bio 8: temperatura media del trimestre más húmedo (°C); 

Bio 9: temperatura media del trimestre más seco (°C); Bio 10: temperatura media del 

trimestre más cálido (°C); Bio 11: temperatura media del trimestre más frio (°C); Bio 12: 

Precipitación anual (mm); Bio 13: Precipitación del mes más lluvioso (mm); Bio 14: 

Precipitación del mes más seco (mm); Bio 15: Estacionalidad de la precipitación  

(Coeficiente de variación) (%); Bio 16: precipitación del trimestre más húmedo (mm); Bio 
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17: precipitación del trimestre más seco (mm); Bio 18: precipitación del trimestre más 

cálido (mm); Bio 19: precipitación del trimestre más frío (mm). 

 

Las ecuaciones para la estimación de la DCBVa en cada estrato quedaron de la siguiente 

manera: 

 

Estrato I: DCBVa (Mg C ha-1) = 64.8332 + -0.1897*Bio 5 (°C x10) + 0.0586*Bio 18 (mm)

 Ec.  1 

 

Estrato II: DCBVa (Mg C ha-1) = 87.6362 + -0.2572*Bio 5 (°C x10) + 0.0190*Bio 12 

(mm) Ec.  2 

 

Estrato III: DCBVa (Mg C ha-1) = 26.6379 + -0.0959*Bio 10 (°C x10) + 0.0933*Bio 13 

(mm) Ec.  3 

 

La media de la DCBVa no sigue un patrón entre estratos; es decir, no es menor en estrato 

I y mayor en estrato III. La media de DCBVa en el estrato II representa en promedio hasta 

1.6 veces más que en el estrato I y III; y varía desde 23.14 Mg C ha-1 (estrato I) hasta 

42.57 Mg C ha-1 (estrato II), con máximos de hasta casi 180 Mg C ha-1 (Tabla 2) pero 

también es la que posee la mayor variabilidad (CV >60 %). Ninguna de las variables 

mostró normalidad (p < 0.0001) acorde a las pruebas de Shapiro-Wilk y Anderson-Darling 

(Tabla 2). 
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Tabla 2. Estadísticas descriptivas de la densidad de carbono de la biomasa viva aérea 

observada y de sus predictores (periodo de 1950-2000), en los bosques de coníferas de 

México.  

Estrato Variable n Min P25 Media Mediana P75 Max SD CV 
Shapiro  Anderson  

p-value p-value 

I 

DCBVa 

48 

4.23 11.54 23.14 16.23 33.35 62.05 15.04 65 0.0001 0.0001 

Bio 5 27.7 28.7 29.97 29.6 30.75 36 1.76 5.89 0.0001 0.0001 

Bio 18 62 223 256.89 290 330.5 397 101.66 39.57 0.0001 0.0001 

II 

DCBVa 

360 

4.46 19.87 42.57 34.35 54.75 179.69 33.01 77.54 0.0001 0.0001 

Bio 5 17.5 22.78 25.72 25.3 28.7 34.6 3.93 15.28 0.0001 0.0001 

Bio 12 426 895.25 1109.42 1092 1314.25 2216 367.25 33.1 0.0001 0.0001 

III 

DCBVa 

370 

3.15 12.76 26.26 23.24 35.98 92.92 16.56 63.05 0.0001 0.0001 

Bio 10 14.7 17.4 18.55 18.3 19.4 26.3 1.74 9.39 0.0001 0.0001 

bio13 53 154 184.03 181 219 357 52.54 28.55 0.0001 0.0001 

Donde: DCBVA: Densidad de Carbono de Biomasa Viva Aérea observada (Mg C ha-1); 

Bio 5: temperatura máxima del mes más cálido (°C); Bio 18: precipitación del trimestre 

más cálido (mm); Bio 12: precipitación anual (mm); Bio 10: temperatura media del 

trimestre más cálido (°C); Bio 13: precipitación del mes más lluvioso (mm); n = número 

de sitios en el estrato; Min: valor mínimo; P25 y P75: percentil 25 y 75; Max: valor 

máximo; SD: desviación estándar; CV: coeficiente de variación (%). 

 

Validación de modelos predictivos de la densidad de carbono de biomasa viva área  

Acorde a la pseudo R2, derivada del procedimiento de validación, las variables 

bioclimáticas explican en promedio 19% de la DCBVa (Tabla 3). El método LOOCV es 

el que calcula una R2 más baja (0.10), mientras que el resto de los métodos arrojan un 

promedio de R2 de 0.22 acorde a la validación, al usar los modelos para predecir DCBVa 

con datos independientes a los de entrenamiento, los errores de estimación (RMSE) 

podrían ser desde 13.18 Mg C ha-1 (estrato III) hasta 42.42 Mg C ha-1 (estrato I), 

observando las mejores estimaciones en el estrato III. 
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Tabla 3. Validación de los modelos de regresión para la predicción de la densidad de la 

biomasa viva aérea en los bosques de coníferas en México. 

Estrato Método Set       n Pseudo R2 RMSE MAE 

   Entrenamiento 48       

I 

LOOCV Validación  12 0.031 38.319 30.806 

CV Validación 12 0.177 29.908 29.379 

RCV Validación 12 0.177 31.949 31.272 

II 

Bootstrap Validación 12 0.316 42.426 34.457 

  Entrenamiento 360       

LOOCV Validación 90 0.128 29.938 21.789 

CV Validación 90 0.249 28.493 21.720 

RCV Validación 90 0.246 28.620 21.685 

Bootstrap Validación 90 0.150 30.107 22.302 

III 

  Entrenamiento 370       

LOOCV Validación 92 0.153 13.887 10.699 

CV Validación 92 0.231 13.181 10.543 

RCV Validación 92 0.238 13.330 10.600 

Bootstrap Validación 92 0.192 14.175 10.986 

Donde: LOOCV: validación cruzada por omisión CV: validación cruzada, RCV: 

validación cruzada repetida; n: tamaño de muestra; R2: coeficiente de determinación; 

RMSE: raíz del error cuadrático medio; error medio absoluto.  

 

Predicción actual y futura de la densidad de carbono de biomasa viva aérea  

 

Usando los modelos generados aquí, en los sitios del INFyS, se predicen desde 7.48 hasta 

34.79 Mg C ha-1; desde 16.68 hasta 71.29 Mg C ha-1 y desde 10.98 hasta 41.91 Mg C ha-

1, para los estratos I, II y III respectivamente (Figura 2a-2c). La mayor DCBVa se 

observa/predice en estrato II (Figura 2b) en el centro del país. Las diferencias más altas 

entre DCBVa observada – estimada, son de -19 y +30; -52 y +124; -29 y +56 Mg C ha-1, 

respectivamente.  
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Figura 2. Predicción actual de la densidad de carbono de la biomasa viva aérea, en 

bosques de coníferas México, a través de modelos bioclimáticos: estrato I (a), estrato II 

(b), estrato III (c). Tamaño de los círculos y color de la rampa, indican los valores de la 

densidad de carbono de la biomasa viva área (Mg C ha-1). 

 
Acorde a las predicciones futuras al 2050 y 2070 (Figs. 3-5) con el modelo bioclimático 

de cada estrato (ecuaciones 1-3), ante cualquier escenario climático (RCP), solo se esperan 

pérdidas de DCBVa. Los bosques ubicados en estrato II (Fig. 4a - 4h, centro y sur del 

país), serían los más afectados, con disminuciones de entre -5 y -10 Mg C ha-1, incluso de 

hasta -20 Mg C ha-1 al 2070, mientras que los menos afectados serían los del estrato III 

(Figs. 5a – 5h. SMO) con pérdidas entre 0 y -5 Mg C ha-1. Las pérdidas de DCBVa más 

significativas ocurrirían en el RCP8.5 y se espera sean más en 2070. 

 

a) b) c) 
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Figura  3. Cambios en la densidad carbono de biomasa viva aérea en bosques de coníferas de México, bajo los escenarios RCP 2.6 al 

8.5 (de izquierda a derecha), para los años 2050 (arriba) y 2070 (abajo), en el estrato I. Áreas coloreadas representan buffers de 40 km 

de radio alrededor de cada sitio del INFyS; áreas sin relleno de color, corresponden a zonas no boscosas. 

 

 

a) b) c) d) 

e) f) g) h) 

a) b) c) d) 
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Figura  4. Lo mismo que figura 3, pero para el estrato II. 

 

 

Figura  5. Lo mismo que figura 3, pero para el estrato III. 

 

 

e) f) g) 
h) 

a) b) c) d) 

e) f) g) h) 
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Tabla 4. Número de pixeles contenidos en el buffer de 40 km de radio alrededor de cada sitio de muestreo 

del INFyS para diferenciar cambios en la densidad de la biomasa viva aérea en los bosques de coníferas de 

México, ante escenarios climáticos futuros. Cada píxel mide 0.98 x 0.98 km de cada lado. 

Estrato 
Cambios en 

 DCBVa  

RCP26 RCP45 RCP60 RCP85 

2050 2070 2050 2070 2050 2070 2050 2070 

I 

(-20 – -15 |  ) 0 0 0 0 0 0 0 0 

(-15 – -10 |  ) 0 0 0 0 0 35 0 107 

(-10 – -5 |  ) 0 240 2361 2280 906 2885 3011 3180 

(-5 – 0 |  ) 3287 3047 926 1007 2381 367 276 0 

(0 – 5 |  ) 0 0 0 0 0 0 0 0 

II 

(-20 – -15 |  ) 0 0 0 0 0 0 0 1148 

(-15 – -10 |  ) 0 30 6 1526 0 3928 4796 22466 

(-10 – -5 |  ) 17750 19473 23821 22317 23571 19912 19047 229 

(-5 – 0 |  ) 6093 4340 16 0 272 3 0 0 

(0 – 5 |  ) 0 0 0 0 0 0 0 0 

III 

(-20 – -15 |  ) 0 0 0 0 0 0 0 0 

(-15 – -10 |  ) 0 0 0 0 0 0 0 0 

(-10 – -5 |  ) 0 6 0 0 0 0 1290 3281 

(-5 – 0 |  ) 9680 9819 9825 9825 9825 9822 8535 6544 

(0 – 5 |  ) 145 0 0 0 0 3 0 0 

Donde: Densidad de Carbono de Biomasa Viva Aérea observada (Mg C ha-1); RCP = rutas 

representativas de concentración. Color del cuadro en columna dos, corresponde al color 

del píxel de las figuras 3-5.  

 

Evaluación de proyecciones climáticas en variables que predicen DCBVa en 

bosques de coníferas de México 

 

La prueba de Wilcoxon mostró evidencias suficientes (p<0.0001) para rechazar la H0 de 

igual de medianas entre la Bio actual y la misma Bio ante un escenario climático futuro. 

En todos los casos, la mediana de las Bios de temperatura estimada al 2050 y 2070 por 

tres MCG, en cualquier escenario climático, RCP (izq. Fig. 6), será mayor a la actual 

(Tabla 2). De manera general, se espera que la temperatura sea 2.66 °C (2050) y 3.36 °C 
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(2070) más que la actual (Figs. 6a, 6c y 6e). Las áreas del estrato II, serían las vulnerables 

al mostrar +2.7 °C al 2050, y menos vulnerables las áreas del estrato III (+2.5 °C). Al 

2070, la temperatura incrementa así: estrato I > estrato II > estrato III, desde 3.55 hasta 

3.25 °C. 

 

La prueba demostró que, en los bosques de México, de forma general la precipitación al 

2050 y 2070 podría ser igual en el estrato I (Fig. 6b), disminuir (p < 0.0001) entre 5.3 % 

(2050) y 6.4 % (2070) en el estrato II (Fig. 6d), y aumentar/disminuir en el estrato III (Fig. 

6f). De forma individual (Actual vs Bio-RCP-Año), existen también diferencias 

únicamente en el caso de variables de precipitación (der. Fig. 6), no así de temperatura 

(izq. Fig 6).  
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Figura  6. Prueba Wilcoxon para la comparación de las medianas de la variable actual con 

cada escenario climático, en el estrato I (a-b), II (b-c) y III (e-f). Bio 05: temperatura 

máxima del mes más cálido (°C); Bio 10: temperatura media del trimestre más cálido (°C); 

Bio 12: precipitación anual (mm); Bio 13: precipitación del mes más lluvioso (mm); Bio 

18: precipitación del trimestre más cálido(mm). Significancia estadística: "* p < 0.05": 

Significativo; "** p < 0.01": Altamente significativo; "*** p < 0.001": Muy altamente 

significativo. Significancia estadística: "ns": No significativo; "* p < 0.05": Significativo; 

"** p < 0.01": Altamente significativo; "*** p < 0.001": Muy altamente significativo; 

"**** p < 0.0001": Extremadamente altamente significativo.  

a) b) 

c) d) 

e) f) 
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La incertidumbre (representada por el error estándar) estimada para DCBVa mostrada aquí 

(Figura 7), para el escenario más crítico (RCP85 | 2070), muestra que el error estándar 

oscila desde 2.5 Mg C ha-1 (estrato III) hasta 8 Mg C ha-1 (estrato II), muy por debajo del 

RMSE (Tabla 3) estimado con datos independientes. Esta incertidumbre, es similar en 

escenarios climáticos menos críticos (RCP26 | 2050; Figuras no mostradas). 

 

 

Figura  7. Incertidumbre (error estándar) estimada de la densidad de carbono de biomasa 

viva aérea, en bosques de coníferas de México, para los estratos I (a), II (b) y III (c) para 

el RCP85 y para el año 2070.  

 
La selección de predictores de la AGB mediante algoritmos automatizados (stepwise, 

Machine Learning, redes neuronales etc.) en general es eficiente, estos han sido probados 

en bosques naturales (Luo et al., 2021; Björk et al., 2021) selvas (Ortiz-Reyes et al., 2021) 

inclusive en plantaciones (He et al., 2022). Aunque las variables seleccionadas por estos 

algoritmos son estadísticamente significativas, p<0.05 (Li et al., 2022), los modelos 

generados aquí, presentaron efectos de multicolinealidad (VIF > 10), por lo que tuvieron 

que ser evaluados para evitar este efecto y mejorar las predicciones. 

 

Algunos autores (Zhang et al., 2022), han utilizado procedimientos lineales (lm) para la 

predicción de PPN (Producción Primaria Neta) en pastizales, con resultados favorables. 

Nosotros probamos esta técnica; sin embargo, quedó demostrado que, en este tipo de 

estudios, es difícil satisfacer todos los supuestos de un modelo de regresión (𝜺𝒊 ~𝑵(𝟎, 𝝈𝟐), 

por lo que finalmente se empleó el procedimiento ‘glm´, como se ha hecho en este tipo de 

estudios (Arasa-Gisbert et al., 2018; Cysneiros et al., 2021). Además de estos 

procedimientos, también se ha utilizado Random Forest (Cartus et al., 2014; Bennett et 

a) b) c) 
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al., 2020; Yan et al., 2023) y modelos bayesianos (Chen et al., 2023) para la predicción 

de AGB a partir de variables de temperatura y precipitación. 

 

Variables predictoras de biomasa aérea 

 

En este estudio los algoritmos utilizados eligieron tanto variables de temperatura (Bio 5 y 

Bio 10) como de precipitación (Bio 12, Bio 13 y Bio 18) como mejores predictores de 

DCBVa. Las variables de temperatura fueron las de mayor importancia en el modelo (de 

8 a 10% de la pseudo R2), en el estrato I y II (Tabla 1, Fig. 1a y 1b) no así para el estrato 

III. Según algunos autores (Dai et al., 2016; Zhang et al., 2022), a escala global, las 

variables de precipitación y temperatura son las que mejor explican la predicción de AGB. 

En particular, la temperatura media anual (Bio 1) y temperatura del trimestre más cálido 

(Bio 10) son variables climáticas que se asocian a la distribución de la biomasa a escalas 

amplias, las métricas demuestran que temperaturas parecen ser más importantes que 

variables de precipitación (Reich et al., 2014).  

 

Se ha demostrado que variables bioclimáticas de temperatura (Bio 1 y Bio 5) y de 

precipitación (Bio 12) están asociadas con la acumulación del AGB de los bosques (Chen 

et al., 2023), en ecosistemas boreales (He et al., 2022), estacionales templados (Keith et 

al., 2009), selvas tropicales (Chen et al., 2018), y estacionales tropicales (Guo et al., 2019; 

Ma et al., 2023). Como puede notarse, Bio 5 y Bio 12 (Appendix B), son buenos 

predictores de AGB en diferentes tipos de ecosistemas. Por ejemplo, un estudio realizado 

en la SMO (estrato II de este mismo estudio) menciona que la temperatura promedio (Bio 

1) es la más importante para predecir AGB en bosques templados (López-Serrano et al., 

2020). 

 

En bosques de Australia, abarcando 15 tipos de bosques dominados especialmente con 

eucaliptos (Bennett et al.,2020), demuestran que las variables climáticas, son mejores 

predictores de AGB, que variables del suelo, siendo Bio 9 (Temperatura media del 

trimestre más seco) la variable más importante. Independientemente de las métricas, al 
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igual que en nuestro estudio, las variables de temperatura parecen ser las más importantes 

para predecir AGB (Tabla 1). 

 

No obstante, la relación de las variables bioclimáticas con AGB, es completamente 

dependiente del tipo de ecosistema, de la especie, pero también de la región del mundo, 

por esta razón otros autores enfatizan que la precipitación media anual (MAP), posee una 

importancia relativa mayor (0.19 %) que MAT (0.05 %) para la predicción de AGB en 

plantaciones de Larix del norte y noreste de China, incluso, su importancia también es 

dependiente de la estructura del modelo (He et al., 2022). 

 

Continuando con la narrativa anterior, la relación entre precipitación y AGB puede ser 

compleja, ya que se pueden observar diferentes respuestas según el tipo de bosque y 

condiciones climáticas. Esta variable influye significativamente en la acumulación de los 

diferentes componentes de biomasa aérea (ramas, tallos, raíces y acículas) en plantaciones 

de coníferas, por ello es importante considerarla en modelos de predicción y en la 

evaluación de la relación clima-bosques (Xin et al., 2022), pero en conjunto, variables 

climáticas de temperatura y precipitación pueden mejoran las estimaciones de AGB (Dai 

et al., 2019). Por ejemplo, en bosques tropicales (Adhikari et al., 2017), utilizaron 13 

variables predictoras de AGB, incluyendo: geográficas, topográficas, hidrológicas, de 

suelo, incluso de la especie (cobertura), etc., encontrando que la influencia relativa de 

MAP sobre AGB es de 37.6 % siendo la más importante, mientras que MAT, posee una 

influencia relativa menor al 1 %. 

 

Correlación entre variables bioclimáticas y densidad de carbono 

 

La correlación de DCBVa con variables de temperatura (Bio 5 y Bio 10) en bosques 

templados de México es negativa, pero positiva con las variables de precipitación (Tabla 

1). Algo similar encontraron (Khan et al., 2019), una correlación negativa (-0.46 > r < -

0.63; -0.43 > r < -0.60) entre biomasa de fuste de Larix gmelinii y Betula platyphylla con 

MAT. De la misma forma, en otros estudios se demuestra que MAT se correlaciona 
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negativamente con AGB, ya sea a nivel especie (Xin et al., 2022) o a nivel rodal (Li et al., 

2022). 

 

Similar a este estudio, en bosques templados y bosques secos, se observa una correlación 

positiva entre DCBVa y MAP (Stegen et al., 2011) y esta misma relación se observa en 

otros estudios por ejemplo (Khan et al., 2019) encontraron que MAP se correlaciona 

positivamente con biomasa de fuste de Larix gmelinii (0.84 > r < 0.92) y Betula 

platyphylla (0.76 > r < 0.88), mientras que (Xin et al., 2022) observaron que MAP se 

correlaciona positivamente y significativamente (p < 0.05) con AGB de Pinus koraiensis 

Siebold & Zucc., Larix olgensisi A. Henry y Pinus sylvestris var. mongolica Litv.  

 

Por otro lado, el estudio realizado por Reich et al., (2014), revela que a escala global (> 

6200 bosques y 61 países), MAT se correlaciona positivamente con la biomasa del follaje, 

aunque los patrones geográficos de correlación no son consistentes. (Liu et al., 2013) 

encontraron que mientras en los bosques boreales la temperatura se correlaciona 

positivamente, en bosques tropicales ocurre lo contrario. Estudios realizados por Guo et 

al., (2019) en bosques boreales, demuestran que MAT puede explicar (R2) desde 26 hasta 

45 % de la densidad de carbono y se correlaciona de forma positiva; mientras que MAP 

puede explicar desde 28 hasta 67 % de la densidad de carbono (aérea y subterránea); sin 

embargo, la correlación es positiva entre estas dos variables cuando la precipitación es 

desde 0 a 1000 mm, y negativa cuando es mayor a 1000 mm. 

 

Contrario a este estudio, en bosques boreales y templados, se ha encontrado una relación 

positiva entre DCBVa y MAT (Keith et al., 2009) , pero negativa en regiones húmedas 

(Stegen et al., 2011). 

 

Capacidad predictiva de los modelos 

 

La validación de un modelo es crucial para evaluar la capacidad predictiva que posee un 

modelo, en base con nuevos datos. En realidad, en esta temática (relación AGB -

predictores climáticos), son pocos los estudios que realizan este proceso (Cartus et al., 
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2014; Opelele et al., 2021; He et al., 2022; Zhang et al., 2022). Como es conocido, al 

generar un modelo con el procedimiento ‘glm’, no se calculan estadísticos como: R2, 

RMSE, MAE etc.; al realizar la validación de nuestros modelos, fue posible calcular estas 

métricas y evaluar, la capacidad predictiva de cada modelo. Observamos que las variables 

bioclimáticas pueden explicar hasta 22 % de la DCBVa, en este tipo de bosques (Tabla 3), 

un valor considerable razonable cuando se trata de modelos a nivel de eco-región (Guo et 

al., 2019), no así a nivel especie (Khan et al., 2019; Xin et al., 2022) ya que, a esta escala, 

las variables pueden explicar hasta 84 % de AGB.  

 

En general la técnica de ‘validación cruzada’, ha sido la más utilizada para validar modelos 

para estimar AGB (Opelele et al., 2021; Li et al. 2022; He et al., 2022; Wang et al., 2023); 

en este estudio nosotros la utilizamos además de otras tres técnicas (Tabla 3). Resaltar 

que, cuando se trata de predictores climáticos, estos pueden explicar alrededor de 20 % 

(Tabla 3), mientras que cuando se predice AGB a partir de predictores derivados de índices 

de vegetación, e. g. índice de vegetación de diferencia normalizada, NDVI, información 

aspectral (Opelele et al., 2021), o imágenes ópticas de satélite y vehículos aéreos no 

tripulados (Wang et al., 2023), se puede explicar (R2) hasta 80 % de AGB. La inclusión 

de diferentes variables predictoras como MAP, MAT, contenido de arcilla, pH, índice de 

sequedad y edad del rodal, pueden explicar hasta 44.4 % de DCBVa en bosques templados 

(Guo et al., 2019). 

 

Sin embargo, predictores exclusivos del rodal (diámetro a la altura del pecho, edad, 

densidad del rodal), pueden explicar hasta 98 % de la varianza de ABG (He et al., 2022). 

La métrica RMSE, es completamente dependiente de las unidades y de la escala de las 

variables dependientes, por eso se observan diferencias tan distantes entre estudios.  

 

Proyección actual y futura de la densidad de carbono de biomasa viva aérea 

 

Ante cualquier escenario climático (RCP - año), nuestros modelos predicen pérdidas de 

DCBVa, desde 5 Mg C ha-1 (2050) hasta 20 Mg C ha-1 al 2070 (Figs. 3-5) en los bosques 

de coníferas de México. A escala global, en bosques templados, se predicen cambios 
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positivos en la densidad de carbono total (TCD), con un promedio de 2.23 Mg C ha−1 

(RCP26, 45 y 85; 2050) y de 1.99 Mg C ha−1 al 2070; exclusivamente en México, estos 

autores (Guo et al., 2019), predicen cambios de ±20 Mg C ha−1; sin omitir que, para el 

país, se tuvieron solo dos plots, a diferencia de este estudio, se hizo a escala más fina, 

generando los modelos con n= 48 hasta n=370 (Tabla 2). 

 

Un estudio realizado (Zhou et al., 2022) bajo diferentes escenarios de simulación, 

incrementando/disminuyendo temperatura y precipitación, en la provincia de Yunnan, 

China, sugiere que los efectos combinados de estas variables son más complejos de lo 

esperado; se pueden tener tanto ganancias como pérdidas (como en este estudio) de 

secuestro de carbono en diferentes tipos de bosques y es debido a la disminución de 

precipitación y al aumento de la temperatura. En nuestro estudio se observa disminución 

de DCBVa y en general es debido a incremento desde 1 hasta 3 °C y disminución de 

precipitación de alrededor de 10 %. Desde hace casi tres décadas (Villers-Ruiz y Trejo-

Vazquez, 1997), se evaluó la vulnerabilidad de los bosques de México al cambio 

climático, encontrando que bajo las estas condiciones (+ 2 °C y -10 % precipitación), 

bosques templados húmedos y secos se reducirían significativamente (a menos de la mitad 

de su tamaño). 

 

En una investigación realizada en los bosques atlánticos brasileños (AF) (Ferreira et al., 

2023), encontraron que, en 34.7 % de los fragmentos de bosque existentes, la AGB podría 

aumentar, mientras que en el 2.6 % podría disminuir para el año 2100; los modelos 

predicen un incremento de 8.5 % de total carbón existente, además, 76.9 % de AF seria 

idóneo a un posible incremento de AGB al 2100 bajo un rcp de 4.5, debido meramente al 

cambio climático: Lo anterior se contrapone a lo encontrado aquí, posiblemente por el tipo 

de bosques y ubicación geográfica, pero es similar a lo que encontraron (Li et al., 2022), 

en subtropical de los bosques siempre verde de China, un decremento de AGB al 2050 

2070, variando según los diferentes escenarios climáticos (rcp 2.6 > rcp 4.5 > rcp 6.0 > 

rcp 8.5). 
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CONCLUSIONES 

 

Las relaciones entre DCBVa y el clima son más complejas de lo que parece. Las variables 

bioclimáticas, especialmente las relacionadas con la temperatura, demostraron ser 

predictores significativos de la DCBVa en los modelos desarrollados y pueden explicar 

hasta 19 % de la DCBVa. Bio 5 (Temperatura máxima del mes más cálido) destacó como 

el predictor más robusto. Los modelos desarrollados mostraron una buena capacidad 

predictiva con datos independientes, para predecir la DCBVa en bosques de coníferas de 

México. Las predicciones con los modelos bioclimáticos indican que todos los estratos de 

bosques de coníferas del país, bajo cualquier escenario climático (RCP - Año), 

experimentarán pérdidas en la DCBVa hacia el 2050 y 2070, especialmente bajo el 

escenario RCP8.5. Se prevé que los bosques del estrato II sean los más afectados, con 

reducciones significativas que podrían alcanzar hasta -20 Mg C ha-1 para el año 2070. La 

temperatura proyectada por los MCG´s al 2050 y 2070 será significativamente mayor a la 

actual, con aumentos de hasta 3.55 °C en el estrato I al 2070. La precipitación podría 

permanecer igual en el estrato I, disminuir (-10 %) en el estrato II y variar (±10 %) en el 

estrato III. Estas proyecciones climáticas futuras, serían las responsables de la 

redistribución de la DCBVa de los bosques de México. Las conclusiones sugieren la 

necesidad urgente de estrategias de adaptación y mitigación frente al cambio climático 

para conservar la biodiversidad y los servicios ecosistémicos proporcionados por los 

bosques de coníferas en México. La gestión forestal debe considerar no solo la 

conservación de la biodiversidad, sino también la capacidad de almacenamiento de 

carbono en estos ecosistemas. 
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ANEXOS 

 

Variables Bioclimáticas  

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable  Descripción   

Bio 1 Temperatura Media Anual (°C) 

Bio 2 Intervalo medio diurno (°C) 

Bio 3 Isotermalidad (Bio2 / Bio7) (*100) 

Bio 4 Estacionalidad de la temperatura (Desviación estándar *100) 

Bio 05 Temperatura máxima del mes más cálido (°C) 

Bio 06 Temperatura mínima del mes más frio (°C) 

Bio 07 Rango anual de temperatura (Bio5 – Bio6 °C)  

Bio 08 Temperatura media del trimestre más húmedo (°C) 

Bio 09 Temperatura media del trimestre más seco (°C) 

Bio 10 Temperatura media del trimestre más cálido (°C) 

Bio 11 Temperatura promedio del trimestre más frio (°C) 

Bio 12 Precipitación anual (mm) 

Bio 13 Precipitación del mes más lluvioso (mm) 

Bio 14 Precipitación del mes más cálido (mm) 

Bio 15 Estacionalidad de la precipitación (Coeficiente de variación, %) 

Bio 16 Precipitación del trimestre más lluvioso (mm) 

Bio 17 Precipitación del trimestre más seco (mm) 

Bio 18 Precipitación del trimestre más cálido (mm) 

Bio 19 Precipitación del trimestre más frio (mm) 


