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RESUMEN

El estrés hidrico puede tener efectos adversos en el rendimiento de los cultivos y alterar
sus respuestas morfofisiologias. Por lo tanto, la deteccion del estrés hidrico es crucial para
mejorar la productividad y la calidad de los cultivos. Este estudio evalua la eficacia de la
teledeteccion utilizando sistemas aéreos no tripulados (UAS) equipados con sensores
multiespectrales y sensores de humedad del suelo para monitorear el estrés hidrico en la
variedad de frijol “Flor de Mayo AN-05". Los factores considerados fueron, posicion del
cinta de riego (superficial y enterrada) y tres niveles de tension de humedad del suelo 20,
30 y 50 kPa. Se evaluaron los indices de vegetacion, NDRE (indice borde rojo de
diferencia normalizada), TGI (indice de verdor triangular) y NDWI (indice de agua de
diferencia normalizada), ademas la reflectancia de las bandas Red Edge y Red. Los
hallazgos indican que la posicion de la cinta de riego como la tensién de humedad del
suelo tienen una relacién significativa con los indices de vegetacion evaluados. Ademas,
se observo que la tension de humedad del suelo de 20 kPa es mas favorable para el NDWI,
mientras que la tension de 30 kPa aumentaba la reflectancia en las bandas Red Edge y
Red. Estos resultados subrayan la importancia de la posicion de cinta de riego y la tensién
de humedad del suelo como elementos fundamentales para mejorar la eficiencia del riego
y mejorar el rendimiento del frijol mediante la utilizacion de tecnologias de teledeteccion
y sensores de humedad del suelo.

Palabras clave: Estrés hidrico, Deteccion del estrés hidrico, Teledeteccion, Sistemas

aéreos no tripulados (UAS), indices de vegetacion.
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SUMMARY

Water stress can have adverse effects on crop yields and alter their morphophysiological
responses. Therefore, detecting water stress is crucial to improving crop productivity and
quality. This study evaluates the effectiveness of remote sensing using unmanned aerial
systems (UAS) equipped with multispectral sensors and soil moisture sensors to monitor
water stress in the "Flor de Mayo AN-05" bean variety. The factors considered were the
position of the irrigation belt (surface and buried) and three levels of soil moisture tension
20, 30 and 50 kPa. The vegetation indices, NDRE (red border index of normalized
difference), TGI (triangular greenness index) and NDWI (normalized difference water
index) were evaluated, in addition to the reflectance of the Red Edge and Red bands. The
findings indicate that the position of the irrigation belt and the soil moisture tension have
a significant relationship with the vegetation indices evaluated. In addition, it was
observed that the soil moisture stress of 20 kPa is more favorable for NDWI, while the 30
kPa voltage increased reflectance in the Red Edge and Red bands. These results
underscore the importance of irrigation belt position and soil moisture tension as critical
elements to improve irrigation efficiency and improve bean yield through the utilization
of remote sensing technologies and soil moisture sensors.

Keywords: Water Stress, Water Stress Sensing, Remote Sensing, Unmanned Aerial
Systems (UAS), Vegetation Indices.
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INTRODUCCION
El sector agricola en México, que es una pieza fundamental en la economia y la
subsistencia del pais, se encuentra en un punto critico de su desarrollo. Este sector enfrenta
desafios significativos que amenazan su sostenibilidad y productividad, principalmente en
lo que respecta a la gestion del agua y la eficiencia del riego. Seguin la Organizacion de
las Naciones Unidas para la Alimentacion y la Agricultura (FAO), aproximadamente el
70% del agua dulce extraida a nivel mundial se destina a la agricultura (FAO, 2019).
El cambio climatico podria reducir significativamente los rendimientos agricolas en
regiones vulnerables (Dalin et al., 2017). Por otra parte, cambio climéatico afecta
significativamente a la agricultura al provocar un aumento de las temperaturas, cambios
en los patrones de lluvia, fendmenos meteorol6gicos extremos y una disminucion del
rendimiento de los cultivos, la produccién ganadera y la viticultura (Kumari & Bains,
2023).
La integracion de tecnologias avanzadas y politicas de manejo hidrico adecuadas puede
mejorar la resiliencia de los sistemas agricolas frente a las fluctuaciones en la
disponibilidad de agua (Chouhan et al., 2023; Karri & Nalluri, 2024). Estudios recientes
han demostrado la efectividad de estos sensores en la gestion del riego y la optimizacion
del uso del agua en cultivos diversos (Liang et al., 2020). Ademas, el uso de camaras
térmicas para monitorear la temperatura de las hojas ha permitido detectar el estrés hidrico
antes de que se manifiesten los sintomas visuales, mejorando asi la capacidad de respuesta
de los agricultores (Tavan et al., 2021). Investigaciones han resaltado la importancia de
entrenar a los agricultores en la identificacion de signos tempranos de estrés hidrico, lo
que puede llevar a una intervencion oportuna y a la prevencion de dafios severos en los
cultivos (Kamienski et al., 2019).
Las variables climaticas, como la humedad media de la superficie del suelo, la
precipitacion efectiva acumulada y la temperatura del aire, desempefian un papel
importante a la hora de determinar el rendimiento de los cultivos (Llanes Cardenas et al.,
2024).



El contenido de humedad del suelo es un parametro crucial para diversas actividades
agricolas, como el riego, la siembra y la deteccién de la compactacion, e influye en
procesos como la evapotranspiracion y la recarga de los acuiferos (Aldaba et al., 2018).
Los métodos tradicionales para medir la humedad de las hojas de las plantas consumen
mucho tiempo y mano de obra, lo que dificulta la adquisicién oportuna de los datos de
monitoreo sobre el terreno (Yang et al., 2024). EI monitoreo de la humedad del suelo a
escala regional es crucial para varios estudios, como el ciclo del agua superficial, las
sequias agricolas, la evaluacion de las inundaciones y la estimacion del rendimiento de
los cultivos(R. Lin et al., 2024).

Lipovac et al., (2022) evaluaron la viabilidad de las imagenes multiespectrales capturadas
con vehiculos aéreos no tripulados para el monitoreo estrés hidrico y la prediccion del
rendimiento en cultivos de frijol comin en diferentes periodos de siembra y tratamientos
de riego. Las tecnologias agricolas inteligentes, en particular la integracion de dispositivos
de Internet de las cosas (1oT), como los drones, ofrecen soluciones prometedoras para
mejorar la seguridad alimentaria (E. Singh et al., 2024). La integracion de métodos de
teledeteccion y teledeteccién puede mejorar la precision de la evaluacion del estado
hidrico de las plantas al combinar escalas temporales y espaciales y mejorar las préacticas
de gestion del agua para los cultivos de arboles frutales (Carella et al., 2024). Bajo la
hipétesis de que, con la relacion de los indices de reflectancia obtenidos con imagenes
multiespectrales capturadas con drones y la tension del humedad del suelo medida con
tensiometros se puede determinar el grado de estrés hidrico de un cultivo de frijol, el
objetivo de este estudio fue evaluar cinco indices de reflectancia para determinar el grado
de estrés de un cultivo de frijol, bajo tres niveles de tension de la humedad del suelo para

la aplicacién del riego.



HIPOTESIS
Mediante el uso de imagenes multiespectrales y sensores de humedad es
posible monitorear el estrés hidrico en cultivo de frijol.
OBJETIVO GENERAL
Evaluar los indices de vegetacion y la reflectancia de las bandas para
determinar el grado de estrés en un cultivo de frijol, bajo tres niveles de tension de la
humedad del suelo.
OBJETIVOS ESPECIFICOS
e Definir la relacion entre tension de humedad del suelo y los indices de

vegetacion y reflectancia para determinar el estrés hidrico del cultivo de frijol.

o Analizar la reflectancia y los indices foliares en funcién de la posicion de la cinta
(enterrada y superficial), con el fin de determinar su impacto en las caracteristicas
vegetativas de las plantas.

e Evaluar cdmo la tension de humedad del suelo (20,30 y 50 kPa), afecta la calidad
y el desarrollo de la planta.



REVISION DE LITERATURA

Importancia del Agua en México

Segun los datos de 2020, México recibe anualmente aproximadamente 1.5 millones de
metros cubicos de agua en forma de precipitacion; de esta cantidad, el 71.4% se
evapotranspira y regresa a la atmosfera, el 22.2% escurre por rios o arroyos y el 6.4%
restante se infiltra al subsuelo y recarga los acuiferos (CONAGUA, 2022). En México, el
61% del agua proviene de fuentes superficiales y el 39% de fuentes subterraneas, el sector
agricola utiliza cerca del 76% de las extracciones, México tiene 22 millones de hectareas
dedicadas a la agricultura, de las cuales 6.1 millones tienen sistema de riego, se espera que
para 2050, con un aumento del 25% en la poblacion, las extracciones de agua aumenten
un 55% para satisfacer una demanda de alimentos que sera alrededor de un 70% mayor
que la actual (CONAGUA,2020). Por otra parte, (Mejia et al., 2002) destacan que el
manejo del agua para uso agricola en México es deficiente debido a las pérdidas en las
redes de distribucién, la falta de capacitacion del personal y la ausencia de sistemas de

medicion adecuados, lo que resulta en una baja eficiencia en el uso del agua.

Cuadro 1. Distribucion de volimenes de agua concesionados para usos

consuntivos en México, 2017.

Uso Porcentaje
Agricola 76%
Abastecimiento publico 14%
Industria autoabastecida 5%
Energia eléctrica (excluyendo hidroelectricidad) 5%

Fuente: CONAGUA. 2018. Sistema Nacional de Informacion del Agua.

Sistemas de Riego y su Evolucion

El riego es crucial para la produccion agricola y la generacion de materias primas en
México, especialmente ante el crecimiento poblacional, el pais tiene 7.32 millones de
hectareas irrigadas, con 3.3 millones en Distritos de riego y 4.02 millones en Unidades de

Riego, abastecidas principalmente por fuentes subterraneas (CONAGUA, 2017).



(Holzapfel et al., 2009); Olvera-Salgado et al., 2014) destacan que el disefio, la gestion y
la operacién de los sistemas de riego son factores clave para un uso eficiente del agua y
una mayor produccion, logrados a través de la automatizacion de los sistemas de riego y
la incorporacion de sensores y equipos que monitorean el proceso de irrigacion. Sin
embargo, la adopcién de sistemas de riego tecnificados estd influenciada por factores
como el precio de la energia eléctrica y el valor del agua, un aumento del 10% en estos
factores aumenta la probabilidad de usar un sistema tecnificado de 24.5% a entre 25.42%
y 26.17%, una disminucion del 10% en las precipitaciones aumenta la probabilidad de
24.51% a 25.41%, y un aumento de temperatura del 5% eleva la probabilidad de 24.51%
a 29.40% (Garcia-Salazar et al., 2023).

Huella Hidrica en la Agricultura

El concepto de huella hidrica cuantifica el volumen total de agua utilizada directa e
indirectamente en la produccién de bienes o servicios, incluida la agricultura (Mehla et al.,
2023; Singh et al., 2023). Esta abarca todas las etapas de la produccién, desde las fases
iniciales, pasando por las distintas etapas de la cadena de produccion, hasta el producto
final(Delanhese et al., 2023). La evaluacion de la huella hidrica ayuda a comprender los
impactos y las limitaciones de los sistemas de produccion actuales, lo que permite
identificar las vulnerabilidades en diferentes regiones y épocas (Mehla, 2022).

Debido a que este indice permite realizar una cuantificacion de cuanta agua es utilizada
exactamente la huella hidrica es un importante instrumento para la evaluacion de la
sostenibilidad de los recursos hidraulicos para poder realizar un uso 6ptimo de los recursos
hidricos (Becerra et al., 2013). A medida que la escasez de agua se convierte en un
problema urgente, las estrategias innovadoras, como los sistemas de gestion precisa del
agua, son cruciales para las practicas agricolas sostenibles, con el objetivo de reducir la

huella hidrica y mejorar la gestion de los recursos hidricos (Preite et al., 2023).



Cuadro 1. Huella hidrica de diferentes cultivos.

Litros de agua / Litros de agua / Litros de agua/ gramo
Producto kilo de producto kilocaloria de proteina
Azucar 197 0,69 0

Verduras 322 1,34 26
Frutas 962 2,09 180
Leche 1020 1,82 31
Huevos 3265 2,29 29
Pollo 4325 3,00 34
Carne de res 15.415 10,19 112

Fuente: IICA 2013b.

Cultivo de Frijol

El frijol comdn (Phaseolus vulgaris L). es reconocido globalmente como la leguminosa
mas importante debido a su alto contenido de proteinas, carbohidratos, vitaminas y
minerales, de las 1,300 especies existentes, 20 son consumidas especialmente en
Centroamérica y Sudamérica(Vasquez et al., 2023). Las semillas contienen nutrientes
esenciales como proteinas, fibra y almidén, y la cubierta de la semilla es rica en
metabolitos secundarios que promueven la salud (Alfaro-Diaz et al., 2023; Blair et al.,
2023). Los diferentes genotipos del frijol comun muestran variabilidad en las
caracteristicas de las semillas: los frijoles pintos destacan por sus caracteristicas
morfolégicas, los frijoles rojos por su contenido de proteinas y zinc y los frijoles blancos

por sus niveles de hierro, calcio y magnesio (Kachiguma et al., 2024).



Taxonomia
Su taxonomia es la siguiente:
Reino: Plantae
Division: Agiosperma
Clase: Dicotiledoneaes
Subclase: Archychamydeae
Orden: Rosales
Familia: Leguminosae
Subfamilia: Papilionaideae
Tribu: Phaseoleae
Subtribu: Phaseolinae
Género: Phaseolus

Especie: Phaseolus vulgaris L.

Morfologia

La morfologia estudia las caracteristicas visibles de los 6rganos de las plantas a escalas
macroscopicas y microscépicas, agrupandolas en caracteres constantes que identifican la
especie y caracteristicas variables influenciadas por las condiciones ambientales que
afectan el fenotipo (Debouck & Hidalgo, 1985). Los estudios han destacado la amplia
variacion en los rasgos morfologicos, como el peso, el tamarfio, la formay el color de las
semillas, asi como en los hébitos de crecimiento de las plantas, las caracteristicas de las
hojas y la morfologia de las vainas(Aziziaram et al., 2021; Jan et al., 2021). Los estudios
de asociacién de todo el genoma han identificado regiones genéticas asociadas con
caracteristicas morfoldgicas de las semillas, como el peso, el tamafio y la forma, y que los
frijoles del grupo genético andino generalmente producen semillas méas grandes (Giordani
etal., 2022).



Requerimientos Agronoémicos
Los tiempos de siembra varian segun las condiciones edafoclimaticas, identificandose tres
periodos principales: de agosto a octubre, de enero a abril y de mayo en adelante (Silva et
al., 2020). Las practicas agronémicas como la fertilizacion, el riego, la aplicacion de
rizobios, la densidad de siembra y el cultivo intercalado desempefian un papel crucial en
la mejora del rendimiento y la calidad del frijol (Karavidas et al., 2022).
Ademas, se ha demostrado que el uso de bioestimulantes sintéticos aumenta la
productividad y los beneficios econdémicos de los agricultores, lo que pone de relieve la
importancia de las tecnologias agricolas sostenibles en el cultivo del frijol (Szparaga et
al., 2019). Abordar la acidez del suelo mediante el encalado también es esencial para la
produccién de frijol comdn en tipos de suelo especificos, lo que hace hincapié en la
necesidad de adoptar enfoques personalizados para el manejo del suelo (P. et al., 2020).
Las condiciones ideales del suelo para el cultivo de frijoles incluyen una exposicion total
al sol, un suelo fértil y bien drenado y un riego regular para mantener la humedad del suelo
cerca de la capacidad del campo (Domingues et al., 2018).
Los frijoles se benefician de suelos con una textura mixta limosa y franca arenosa, con un
pH neutro o ligeramente acido, ricos en materia organica y bajos niveles de carbonatos, lo
que proporciona una alta capacidad de absorcion de agua (Vance et al., 2021). Los
atributos fisicos del suelo, como la densidad aparente, la porosidad total, la
macroporosidad y la microporosidad, desempefian un papel crucial en el desarrollo de los
cultivos de frijol, ya que estan influenciados por los niveles de humedad del suelo y los
factores del cultivar (Mayo-Prieto et al., 2021).

Necesidades Hidricas
Los requerimientos de agua del frijol comun estan influenciados por varios factores, como
el tipo de cultivo, los niveles de riego y las respuestas genéticas al déficit de agua (Coelho
etal., 2022; Leitdo et al., 2021; E. F. dos Santos et al., 2020). Los diferentes cultivares de
frijol comun muestran respuestas variables a la disponibilidad de agua, lo que afecta el
rendimiento agronémico, la productividad del agua y el rendimiento general (Tapia et al.,
2022). Las investigaciones indican que, para maximizar la eficiencia fisica y economica

del uso del agua en la produccion de frijol, se necesitan volumenes de entre 2.244,37



m3-ha-1y 2.438,06 m3-ha-1 (Tornés Olivera et al., 2016).

En el caso de los sistemas de cultivos secundarios que utilizan frijol, los niveles de agua
al 100% vy al 125% de la evapotranspiracion de referencia muestran la mayor eficiencia
en el uso del agua y los rendimientos mas altos, ya que se requieren aproximadamente
447,12 mm de agua para la variedad de frijol (Schwerz et al., 2017). El impacto del déficit
hidrico en los cultivos de haba, el agua de riego oscilo6 entre 476,83 m3/alimento y 696,41
m3/alimentado, y las precipitaciones contribuyeron entre el 36,8% y el 46% del agua total
aplicada (El-Hadidi et al., 2014).

Regiones con Mayor Produccién de Frijol en México

En 2021, se produjeron 1.2 millones de toneladas de frijol, siendo Zacatecas fue el mayor
productor con el 35% de la produccidn total, es decir, mas de 451 mil toneladas. Le siguen
Sinaloa con el 12% y Durango con el 10% de la produccion total (SADER, 2022). Del
mismo modo, los estados de Chihuahua, Durango y Zacatecas se consideran cruciales para
la produccidn de frijol en condiciones de secano en las tierras altas semiaridas del norte
de México, ya que representan una parte importante de la superficie cultivada con frijol
de secano del pais (Ennis et al., 2023).

Ademas, la zona agricola de Sonora se ha ido adaptando a las oscilaciones de temperatura
que afectan a la produccion de frijol comercial, lo que sugiere desafios ambientales y
estrategias de adaptacion en el cultivo del frijol (Chun et al., 2023). En resumen, los
estados de Chiapas, Veracruz, Chihuahua, Durango, Zacatecas, Puebla, Sinaloa y Sonora
emergen como contribuyentes importantes al panorama de produccion de frijol de México,
cada uno de los cuales enfrenta desafios Unicos y emplea estrategias distintas para mejorar

la produccion y gestionar los riesgos agricolas (Vazque Chun et al., 2023).
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ESTRES HIDRICO

El estrés hidrico se presenta cuando la perdida de agua de las plantas por medio de
transpiracion excede a la cantidad de agua que es absorbida por las raices, el estrés hidrico
es considerado la principal causa de muerte de las plantas (Luna Flores et al., 2018).
Ihuoma & Madramootoo (2017) mencionan que la forma de realizar la programacion de
riego estd basada en la medicidon de humedad de suelo, datos climéaticos y mediciones de
las respuestas fisioldgicas de las plantas para calcular el estrés hidrico. Los modelos de
interpolacion pueden ser utilizados para generar mapas de estrés hidrico mediante el
analisis de la relacion entre el contenido de agua en la zona radicular y su disminucion en
ausencia de lluvia. (Villodre, 2019). Mediante datos colectados de un sistema
automatizado para el monitoreo continuo de la salud de la planta asistido por computadora
se pudieron recabar informacion de temperatura de la hoja de la planta, temperatura del
aire, humedad relativa, velocidad del viento, intensidad luminica e imégenes de la planta,
donde se encontrd una diferencia en la temperatura del aire de 1-3° C mas altas al de la
temperatura de la hoja en plantas estresadas (Kacira et al., 2002)

Estrés Hidrico en Frijol

El estrés hidrico en los frijoles afecta significativamente sus respuestas morfofisiologicas
y sus atributos de rendimiento (Fogaca et al., 2023). Ademas, reduce el potencial hidrico,
la presion de turgencia y el crecimiento de las células, lo que repercute en el desarrollo de
las raices, los tallos, las hojas y los frutos (Vilakazi et al., 2023). El estrés hidrico altera la
composicion quimica de las semillas, lo que afecta a la acumulacion de azUcares solubles
no reductores y al rendimiento germinativo de los garbanzos (Hemati et al., 2022). El
estrés por sequia influye en el metabolismo, la morfologia y la composicion bioquimica
de las plantas, lo que afecta a la pérdida de agua por transpiracion y a la eficiencia en el

uso del agua (Bijalwan et al., 2022).
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En el frijol comun, el estrés hidrico reduce significativamente el rendimiento del grano, el
contenido de clorofila y el contenido relativo de agua, y altera los rasgos
morfofisioldgicos, destacando el impacto del déficit hidrico durante el desarrollo
reproductivo (Mataa et al., 2021). Las diferentes estrategias de riego, como el riego
deficitario, pueden afectar las etapas de crecimiento del frijol de manera diferente: algunos
genotipos muestran aclimatacion cuando hay déficit de agua, mientras que otros

experimentan respuestas plasticas y de estrés (Alomari-Mheidat et al., 2023).

Pérdidas Econdmicas

Los estudios muestran que el estrés hidrico puede reducir la produccion de frijol comdn
hasta en un 58% (Raderschall et al., 2021). Ademas, el indice de estrés hidrico de los
cultivos (CWSI) derivado de la temperatura de la copa puede predecir las pérdidas de
rendimiento, con una reduccion del 42% observada en condiciones de estrés hidrico
severo (Quiloango-Chimarro et al., 2021). Ademaés, los efectos combinados del estrés
hidrico y la herbivora de los insectos pueden influir de forma interactiva en el rendimiento
del frijol, con una reduccién de hasta un 84% cuando ambos factores de estrés estan
presentes (Kazai et al., 2019). El estrés por sequia también afecta el crecimiento y el
desarrollo de la haba, lo que reduce la productividad. Algunos genotipos muestran una
mayor tolerancia y mantienen los niveles de biomasa y clorofila en condiciones de

deficiencia de agua (Papathanasiou et al., 2022).

Tecnologias Implementadas en Frijol para Monitoreo del Estrés Hidrico

Para resolver los problemas de evaluacion de estrés hidricos de cultivos en areas amplias
la termografia area se ha vuelto una herramienta prometedora que parte del principio de
las temperaturas del dosel, que se derivan de la ecuacion de balance de energia que parte
del supuesto del comportamiento del dosel como una sola hoja homogénea que cubre la
superficie (Meron et al., 2013). Por otra parte, es posible que con el uso de indices de
reflectancia adecuados es probable realizar la deteccidn en tiempo real del estrés hidrico
en invernadero, pero los factores de propiedades espectrales de las hojas no solo son
influenciados por el contenido de agua de las hojas, sino que también por edad de la hoja,
anatomia, gruesor, propiedades superficiales, el efecto del fondo de suelo, la estructura
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del dosel y el area de la hoja (Katsoulas et al., 2016). Con base a estudios realizados por
Yang et al., (2009) desarrollaron un método para la automatizacion en un sistema de riego
y el procesamiento de la informacion del monitoreo del contenido de agua en la plata
mediante estimacion de la temperatura del dosel que fueron obtenidas con técnicas de
identificacion de por color, mediciones obtenidas con termografia IR y extraccion de

distribucion de mezcla gaussiana.
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AGRICULTURA DE PRECISION

La agricultura de precision integra tecnologias de vanguardia como sensores, drones y
analisis de datos para optimizar las practicas agricolas (Fu et al., 2023; Vermaet al., 2023).
Esta integracion permite a los agricultores mejorar el monitoreo de los cultivos, la
deteccion de enfermedades y la gestion de los recursos en tiempo real, lo que conduce a
una mayor eficiencia y sostenibilidad (Simanca et al., 2023). Al utilizar herramientas
como el indice diferencial normalizado de vegetacion (NDVI), la agricultura de precisién
ayuda a optimizar el uso de herbicidas y el manejo de malezas en los cultivos extensivos,
lo que se traduce en un aumento de los rendimientos y una reduccion de los costes
(Kanatas et al., 2023). Ademas, la experimentacion de precision en las explotaciones
agricolas, combinada con datos de cddigo abierto y enfoques analiticos modernos, permite
tomar decisiones agronomicas especificas para cada sitio, lo que permite superar los
sesgos de los métodos de investigacion tradicionales y acelerar el aprendizaje a escala de
subcampos (Hegedus et al., 2023).

Los modelos de aprendizaje profundo para la deteccion y clasificacion automatizadas de
las enfermedades de las plantas ejemplifican ain mas los avances tecnol6gicos de la
agricultura de precision, ya que ofrecen un diagndstico preciso y precoz de las
enfermedades de las plantas para mitigar las pérdidas de rendimiento (Pavithra et al.,
2023). Por altimo, el estudio sobre el impacto de la variabilidad de las precipitaciones en
el rendimiento de la soja en Brasil subraya la importancia de comprender los factores
ambientales en la agricultura de precision, destacando la necesidad de simulaciones
multimodal para predecir y mitigar las pérdidas de produccién debidas a la deficiencia de
agua (Pilau et al., 2023).
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Figura 1. Proceso de la agricultura de precision con drones. Fuente: TYC GIS.

Usos de Drones en Agricultura
Los drones en la agricultura tienen varios propositos, incluida la teledeteccion para la
evaluacion de cultivos, la distribucién precisa de productos quimicos agricolas, el
monitoreo de la salud del ganado y el muestreo remoto (Malveaux et al., 2014; van der
Merwe et al., 2020). Proporcionan datos de alta resolucion en tiempo real para la toma de
decisiones fundamentadas en materia de riego, fertilizacion y control de plagas, lo que
permite optimizar la utilizacion de los recursos (Nunes, 2023). Los drones ayudan a
fumigar con precision, reducen el trabajo manual, ofrecen accesibilidad a areas
inaccesibles y mejoran el manejo de los cultivos mediante la cartografia y la topografia de
los campos agricolas (VANGU et al., 2023).
Los drones equipados con cadmaras de alta resolucion y otros sensores pueden inspeccionar
rapidamente grandes areas, proporcionando iméagenes y datos de sensores valiosos para la
gestién y la planificacion de los cultivos sin el riesgo de dafarlos (Pilar Barreiro, 2013).
Ademas del monitoreo de los cultivos, los drones se utilizan para monitorear la salud del

ganado, lo que demuestra su versatilidad en aplicaciones agricolas. También desempefian
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un papel crucial en la cartografia y la topografia de los campos agricolas, ayudando en la
planificacion de los cultivos y la asignacion de recursos (Spalevi¢ et al., 2018). La
tecnologia se ha ampliado aun mas para predecir los brotes de plagas y enfermedades,
ofreciendo un enfoque proactivo para gestionar la salud agricola (loja et al., 2022). Sin
embargo, los beneficios que ofrecen, incluidos el ahorro de costos y tiempo, la mejora de
la recopilacion y el andlisis de datos, la mejora del manejo de los cultivos y la
sostenibilidad ambiental, subrayan su potencial para revolucionar las practicas agricolas
(Christopher, 2017).

Tipos de Drones

La clasificacion principal divide los drones en helicopteros VTOL hibridos de ala fija,
multirrotor y monorotor, y VTOL hibridos de ala fija, cada uno con caracteristicas y usos
distintos (S6nmez et al., 2022). Los drones de ala fija, que destacan por su eficiencia en
vuelos de larga distancia, contrastan con las variantes multirrotor, que son famosas por
sus capacidades de despegue y aterrizaje verticales, lo que los hace ideales para tareas de
fotografia aérea, vigilancia e inspeccion (Garg, 2022). Los helicpteros de un solo rotor
se parecen a los helicopteros tradicionales y ofrecen una mayor estabilidad de vuelo y
capacidad de carga util, mientras que los VTOL hibridos de ala fija combinan las ventajas
de los disefios de ala fija con las capacidades de despegue y aterrizaje vertical de los
rotores (Rominiyi et al.,, 2023). Este espectro de autonomia es esencial para las
aplicaciones que requieren distintos niveles de control e independencia, desde la
agricultura de precision hasta la vigilancia autdbnoma (Thomassey, 2019). Los drones
también se diferencian por su tamafio, peso y fuente de alimentacion, lo que influye
directamente en su alcance de crucero, la duracién maxima del vuelo y la capacidad de
carga (Mohsan et al., 2022). Estas especificaciones son cruciales para tareas como la
entrega de mercancias, donde la capacidad de carga util y la resistencia de vuelo son
fundamentales (Valaboju et al., 2023).
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Figura 2. (a) ala fija, (b) hibrido de ala fija, (c) de un solo rotor y (d) UAV multirotor.
(Mohsan et al., 2022).

Multi Rotor
Los drones multirrotor, caracterizados por multiples hélices que proporcionan empuje, se
utilizan ampliamente para obtener imagenes aéreas, vigilancia y monitorizacion
(Derkachev et al., 2023; Hert et al., 2023). Se clasifican segun la disposicion de los brazos
y el peso, y hay tipos como tricopteros, cuadricopteros, hexacOpteros y octopteros, cada
uno de los cuales ofrece ventajas unicas en cuanto a estabilidad, potencia, maniobrabilidad
y capacidad de carga (Bertrand & Shin, 2023). Estos drones desempefian un papel crucial
en varios sectores, como la fotogrametria, la fotografia, el modelado 3D y la recopilacion
rapida de datos desde lugares desafiantes(Zheng et al., 2023). Su versatilidad los hace
ideales para capturar imagenes y videos aéreos, asi como para ejecutar tareas de vigilancia

y monitoreo de manera eficaz a distancias cortas y medias (Mohsan et al., 2023).
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Figura 3. Ejemplos de multirrotores con diferentes tipos de configuracion de brazos.
Fuente: (Guevara-Bonilla et al., 2020)
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Ala Fija
Los drones de ala fija ofrecen ventajas en cuanto a la eficiencia aerodindmica para
misiones de larga distancia (Bello et al., 2022). Sin embargo, desafios como la limitada
precision de la navegacion dificultan todo su potencial (Kapoulas et al., 2023). Para
abordar este problema, un estudio propone un sistema de visién por GNSS para una
navegacion precisa, reduciendo significativamente los errores (Wuest et al., 2022).
Ademas, la integracion de las capacidades de VTOL con los vehiculos aéreos no
tripulados de ala fija mejora su versatilidad sin comprometer la eficiencia (Sonkar et al.,
2023). Los estudios de radar se centran mas en los drones multirrotor, lo que deja un vacio
en la comprension de las caracteristicas de los radares UAV de ala fija (Baldi et al., 2022).
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Figura 4. Drones de ala Fija. Fuente: (Fabian Reuter & Amilcar Pedenov, 2019)
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TELEDETECCION

La teledeteccion es la ciencia y el arte de adquirir informacidn sobre objetos, areas o
fendmenos sin contacto fisico, utilizando datos recopilados por varios sensores (Dewi et
al.,, 2003). Los ordenadores procesan estos datos para producir imagenes, extraer
conjuntos de datos y ayudar a la toma de decisiones (Mather, 2000). La teledeteccion
consiste en registrar la radiacion electromagnética reflejada o emitida desde la superficie
terrestre, utilizando sensores en plataformas como aviones o satélites (Coops & Tooke,
2017; Lindgren, 1985).

Esta tecnologia utiliza ondas electromagnéticas para observar y medir diferentes
caracteristicas de la Tierra, lo que proporciona datos criticos para el monitoreo ambiental,
agricola, gestion de desastres, entre otros (Scudiero et al., 2017). Mediante el uso de
modelos de teledeteccion, los investigadores han cartografiado con éxito la salinidad del
suelo en las zonas radiculares del oeste del valle de San Joaquin, lo que demuestra el
potencial de la tecnologia para identificar las areas afectadas y ayudar a desarrollar
estrategias de mitigacion (Postolache, 2017). Ademas, la fusion de datos abiertos de
diversas fuentes, incluidos satélites y drones, a través de la tecnologia blockchain, destaca
el potencial para mejorar la confiabilidad y confiabilidad de los datos de teledeteccion,
abriendo nuevas vias para la agricultura de precision y otras aplicaciones (Mbinya Manetu
et al.,, 2023). A medida que las tecnologias de teledeteccién siguen avanzando, su
integracion con los sistemas de geoinformacion y el uso de diversas técnicas de deteccion,
incluidas la teledeteccidn hiperespectral y el LIDAR, subrayan el papel fundamental de la
tecnologia a la hora de proporcionar observaciones completas y detalladas de la superficie
terrestre, lo que respalda una amplia gama de aplicaciones cientificas, ambientales y

comerciales.
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Figura 5. Componentes de un sistema de teledeteccion espacial: (A) Fuente de energia.
(B) Atmosfera. (C) Suelo. (D) Sensor. (E) Transmision, y procesamiento. (F) Analisis.
(G) Aplicacion. Fuente: (Bustos, 2014).

Espectro Electromagnético de la Radiacién Solar

El espectro electromagnético de la radiacidn solar abarca una amplia gama de longitudes
de onda, desde la ultravioleta (UV) pasando por el espectro de luz visible hasta la radiacion
infrarroja (IR), cada una de las cuales transporta distintas cantidades de energia cruciales
para varios procesos en la Tierra (Hissou et al., 2023). La irradiacion solar (Rs) es la
energia emitida por el Sol, que desempefia un papel vital en el sustento de la vida al
proporcionar luz, calor y energia e impulsar los sistemas climéaticos y meteoroldgicos de
la Tierra (Zhenming Ding et al., 2023). La medicion del espectro solar en la region visible
del infrarrojo cercano se puede realizar de manera eficiente utilizando chips de lentes
espectrales de guia de ondas (WSL) integrados, lo que demuestra la viabilidad de
desarrollar equipos espectrometros compactos y portatiles (Wald, 2019).

La interaccion de las ondas electromagnéticas con la materia, incluida la radiacion solar,
es un aspecto fundamental de la investigacion cientifica, ya que proporciona informacién
sobre las estructuras moleculares y los enlaces quimicos (Gq, 2021). Los datos obtenidos
por satélite han demostrado su fiabilidad para la evaluacion local y regional de la radiacion
solar, lo que facilita las aplicaciones agricolas y ambientales (Sayago et al., 2016). Por
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ultimo, la variabilidad temporal del espectro de radiacién solar y su impacto en los
sistemas ecologicos y de recoleccion de energia renovable subrayan la importancia de

entender su dependencia de la ley de potencia espectral (Bel & Bandi, 2019).

Espectro visible por el hombre (Luz)
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Figura 6. Espectro electromagnético en toda su amplitud. Fuente: (Sierra Figueredo &
Baca, 2014)

Uso de Dron para Obtencion de Imagenes
Los drones han demostrado ser herramientas valiosas para diversas aplicaciones, incluidos
los estudios de hidrodinamica costera (Macedo et al., 2023), el inventario forestal en
bosques nativos privados (Drozdowicz & Samczynski, 2022)y la investigacion de
mamiferos marinos, como el monitoreo de ballenas comunes (Degollada et al.,
2023). Ademas, se han desarrollado métodos de optimizacion para mejorar la calidad de
las imagenes y la determinacién de la trayectoria para aplicaciones especificas, como la
obtencion de imagenes por radar de apertura sintética (Francis et al., 2022). El uso de
drones para obtener imagenes en la agricultura ofrece una solucion de vanguardia para la
deteccion y el monitoreo eficientes de las enfermedades de las plantas (Abbas et al., 2023;
Shah et al., 2023). Los drones equipados con céamaras de alta resolucién capturan
imagenes de los campos agricolas, lo que permite identificar rapidamente las

enfermedades de las plantas en sus etapas temprana (Nasi et al., 2023).
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IMAGENES DIGITALES
Una imagen digital es una representacion de un objeto que utiliza elementos de imagen,
conocidos como pixeles, en un formato digital que puede procesarse mediante algoritmos
informaticos (Khoza, 2022; Nethaji & Shanmugasundaram, 2020; Pratt, 2013). Estas
imagenes se almacenan como matrices de valores de intensidad de pixeles, lo que permite
utilizar diversas técnicas de procesamiento digital de iméagenes, como el reconocimiento

de patrones, la teledeteccidn y las imagenes médicas (Lupton et al., 2022).

Figura 7. Conformacién de pixeles en una imagen digital. Fuente: (Miranda, Miguel,
2009)

Procesamiento de Iméagenes
El procesamiento digital de imagenes implica manipular imagenes digitales mediante
varios algoritmos para mejorarlas, restaurarlas o clasificarlas (Dong et al., 2023; K
Ganapathi Babu et al., 2023; Lakshmi Kumari, 2023). Esta tecnologia se usa ampliamente
en diferentes campos, como la teledeteccion, las imagenes médicas y la industria textil,
para mejorar la eficienciay la precision (Abduganiev & Gafurov, 2023). El procesamiento
digital de imagenes desempefia un papel crucial en la agricultura al ayudar a detectar y
clasificar las enfermedades de las plantas, lo cual es esencial para mantener la calidad de

los cultivos y aumentar el rendimiento (Ramachandran & kannan, 2021). Al utilizar
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técnicas como las caracteristicas del color, los detalles de los bordes y la extraccion de
caracteristicas, el procesamiento de imagenes puede detectar eficazmente enfermedades
en plantas como los platanos, los tomates y la coliflor (Junior et al., 2021). Ademas, en el
contexto del diagndstico de las enfermedades de las plantas, se han propuesto
metodologias como el anélisis mejorado de la textura fractal por fusién (EFFTA) para
mejorar la eficiencia y la precision de la deteccion de enfermedades mediante la vision
artificial (Gangadharan et al., 2020).

En cuanto a los softwares de procesamiento de imagenes Pix4Dmapper es utilizado para
procesar fotografias aéreas, particularmente en proyectos ambientales que involucran
vehiculos aéreos no tripulados (UAV)(Walton et al., 2007). Ofrece tiempos de
procesamiento eficientes en comparacion con otros programas similares como Agisoft
PhotoScan (Walton et al., 2003). Pix4Dmapper se destaca por proporcionar lineas de
contorno suaves y uniformes, lo que mejora la calidad de los ortomosaicos

generados (Costales Acurio, 2018).

Tipos de Resoluciones

La resolucion en imégenes digitales se refiere al nivel de detalle o claridad presente en
una imagen (Wilson, 2023). Se puede clasificar en varios tipos, como la resolucion en
pixeles, la resolucion espacial, la resolucién temporal y la resolucion radiométrica
(Nugroho et al., 2022). La resolucion espacial se refiere especificamente a la densidad de
pixeles de una imagen, donde una resolucion mas alta indica mas detalles (Brunett et al.,
2000). La calidad de una imagen digital depende en gran medida de su resolucién, ya que
las imagenes de alta resolucion contienen mas informacion en comparacion con las de
baja resolucion (Zerené Harcha & Cardoso Pereira, 2014). Ademas, las pruebas de
resolucion en imagenes digitales se pueden automatizar mediante algoritmos de
aprendizaje automatico entrenados con funciones extraidas de bases de datos de imagenes
(Galdon et al., 2023).
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Resolucion Espacial
La resolucién espacial es el nivel de detalle observable en una imagen o conjunto de datos,
desempefia un papel crucial en campos como la geologia, la teledeteccion y la
generalizacion de mapas(Michael Abrams, 1982). En geologia, la resolucion espacial
afecta a la deteccidn de caracteristicas espaciales y firmas espectrales (Tinghua & Yaolin,
2003). En el caso de la teledeteccion, una resolucion espacial mas alta permite extraer,
identificar y cartografiar con mayor precision las caracteristicas de la superficie, como los
deslizamientos de tierra (Wu et al., 2017). Ademas, en la generalizacién de mapas, la
transformacion de las relaciones espaciales es esencial, ya que implica componentes como

la topologia, la distancia y la orientacién (Mora et al., 2014).
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Figura 8. Comparacién del tamafio de pixel de una imagen. Fuente: (Chucos Baquerizo

& Vega Ventocilla, 2022).
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Resolucién Espectral
La resolucion espectral se refiere a la capacidad de un espectrometro para distinguir entre
longitudes de onda poco espaciadas en un espectro (P. He et al., 2021; Vasilyev, 2020).
Se emplean varios métodos y dispositivos para mejorar la resolucion espectral, como la
utilizacion de una clase especial de operadores en espacios discretos (Chen et al., 2021),
o la implementacion de nuevas técnicas de aprendizaje automatico como Sparse
Representations para mejorar la resolucion espectral de los sistemas de imagenes
(Fotiadou et al., 2016). El objetivo de técnicas como la superresolucion espectral es
sintetizar datos de alta resolucion espectral procedentes de bandas espectrales limitadas,

lo que permite describir mejor las escenas de interés (J. He et al., 2022).
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Figura 9. comparacion entre RGB, multiespectral e hiperespectral. Fuente: (F. Y. Belen,
2022).
Resolucion Radiométrica

La resolucion radiométrica se refiere a la capacidad del sensor para detectar el menor
cambio en la radiacion espectral, algo crucial para un analisis preciso de las imagenes
(Anikeeva, 2020). Una resolucion radiométrica mas alta permite diferenciar mas
detalladamente los niveles de brillo de las imégenes, lo que mejora la precision en la
clasificacion de las imagenes y la extraccion de informacion (Chilveri et al., 2023; Yalcin
et al., 2021). El error de cuantificacion en la resolucion radiométrica puede inducir sesgos
de calibracion entre diferentes sensores, lo que afecta a la precision de la calibracién
cruzada (Bhatt et al., 2018). Ademas, se pueden observar mejoras en la resolucién
espacial, como en las zonas urbanas, con una resolucion radiométrica mas alta, aunque
pueden surgir problemas como los patrones de ruido cromatico y borroso (Verde et al.,
2018). Si se tienen en cuenta estos factores y se emplean métodos de correccion, se puede
mejorar la resolucion radiométrica de los sensores, aumentando la calidad y la fiabilidad

de los datos de las imagenes de satelite para diversas aplicaciones (Bahcivan et al., 2022).
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Figura 10. Comparacion en los niveles de grises o niveles digital (ND) de una imagen
(UNESCO RAPCA).

Resolucién Temporal

La resolucion temporal desempefia un papel crucial en la deteccion de cambios en las
imagenes multiespectrales, una resolucion temporal mas alta permite obtener imagenes
con mayor frecuencia a lo largo del tiempo, lo que permite detectar cambios sutiles y
rapidos en la superficie de la Tierra (Lu et al., 2022). Ademas, la resolucién temporal
influye en la capacidad de rastrear los cambios con precision a lo largo del tiempo,
especialmente cuando se analizan iméagenes de teledeteccion multitemporal (Vidya et al.,
2023). Los métodos que tienen en cuenta las variaciones de la resolucién temporal, como
los enfoques basados en la fusion y la factorizaciébn matricial multitemporal con
actualizaciéon automatica, mejoran la deteccion de cambios al abordar los desafios que
plantean las diferentes resoluciones espaciales y espectrales en las imagenes
multitemporales (Benkouider et al., 2022; Guo et al., 2021).
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Figura 11. Ejemplos de iméagenes satelitales. A) Imagen Landsat8: composicion 5-6-4.
Fuente: https://app.climateengine.org/climateEngine. B) Imagen Sentinel2: composicion
8-11-4. Fuente: Composito Afio 2019-2020 https://app.climateengine.org/climateEngine.
C) Imagen ASTER: composicion 3-2-1. Fuente: Afio: 2017
https://gbank.gsj.jp/madas/map/index.html. D) Imagen "basemap": color natural RGB 1-
2-3. Fuente: SASPlanet. Afio 2019-2020
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TIPOS DE SENSORES

Se han desarrollado varios tipos para capturar imagenes que enfrentan a desafios como el
alto consumo de energia y la latencia (Jang et al., 2022). Los sensores de imagen
complementarios con semiconductores de Oxido metalico (CMOS) se utilizan
ampliamente, ya que permiten interactuar con el mundo visual y separan la captura de
imagenes del procesamiento (Mennel et al., 2022). Estos sensores estan evolucionando
hacia la computacion integrada en los sensores, en la que el procesamiento de las imagenes
se realiza dentro de las matrices de fotodiodos, lo que reduce los costos de energia
asociados con la transferencia de datos (RadhaKrishna et al., 2021). Ademas, los sensores
de imagen suelen distinguirse por pardmetros como el tamafio de la matriz de pixeles
(megapixeles) y el tipo de tecnologia de imagen utilizada, como el CMOS o el CCD
(Aguirre, 2022).

RGB
Un sensor RGB es un dispositivo capaz de detectar y medir componentes de color rojo,
verde y azul en diversas aplicaciones son alternativas rentables a los espectrofotdmetros
tradicionales, ya que ofrecen portabilidad y versatilidad (Pazzi et al., 2022). Se pueden
utilizar en diversos campos, como los analisis quimicos y bioldgicos, el fenotipado de alto
rendimiento en la agricultura e incluso en la roboética para la deteccion del color y la
medicion del brillo (Koch, 2023; Roales et al., 2023). Se han explorado los sensores RGB
para detectar la ocupacién en espacios iluminados, ya que proporcionan un seguimiento
preciso de los ocupantes al monitorear los cambios de color causados por los movimientos
y compensar las propiedades de absorcién espectral de las superficies(Woodstock &
Karlicek, 2020).

Térmicos
Los sensores térmicos detectar las radiaciones de calor emitidas por los objetos, que luego
se transforman en energia eléctrica y se convierten en una imagen térmica o
termograma (Unnikrishnan & Ramanand, 2020). Estos sensores se han desarrollado para
una amplia gama de aplicaciones, desde la supervision de procesos industriales hasta el

control ambiental, debido a su capacidad de proporcionar una alta sensibilidad y
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rendimiento en la deteccidn de propiedades térmicas (Al-doski et al., n.d.; Virtue et al.,
2021). Esta tecnologia no es invasiva, no produce contacto y no es destructiva, lo que la
hace particularmente Util para determinar las caracteristicas térmicas de cualquier objeto
de interés (Dinh et al., 2022; Ishimwe et al., 2014). El uso de imagenes térmicas en la
agricultura estd aumentando, especialmente en la deteccion de plagas, debido a la
reduccion de los costos de equipo y a la simplicidad de los procedimientos operativos
(Collatz et al., 2018; Jones, 2018; Tang & Li, 2014). La versatilidad de los sensores
térmicos se demuestra aun mas en su aplicacion para la monitorizacion de sequias, donde
pueden ayudar a evaluar la gravedad de las sequias en funcion de la duracion, la intensidad
y la extensidn espacial, lo cual es crucial para la planificaciéon y la gestion del agua a fin

de mitigar los impactos en la produccion de cultivos (Labbé et al., 2012).

Multiespectrales

Un sensor multiespectral puede capturar iméagenes en diferentes longitudes de onda méas
alld del espectro visible, lo que proporciona informacion sobre los efectos fisicos,
quimicos y biologicos en los materiales y los tejidos biolégicos (Poma, 2019). Pueden
capturar datos de iméagenes en rangos de longitud de onda especificos en todo el espectro
electromagnético, extrayendo informacion adicional méas alla de la vision humana (X. He,
Liu, Ganesan, et al., 2020; Shaik et al., 2023). Estos sensores son cruciales en varios
campos, como la agricultura de precision, la silvicultura, la medicina y la identificacién
de objetos (X. He, Liu, Beckett, et al., 2020).

Estos sensores se han utilizado para estudiar el estrés en las plantaciones de café,
correlacionando los indices de vegetacién con las variables bidticas y abidticas para
mapear los cambios en la reflectancia de las plantas (Marin et al., 2019). En la agricultura,
se han empleado sensores de imagenes multiespectrales transportados por drones para
evaluar el estado fitosanitario de las gramineas, con longitudes de onda especificas que
muestran correlaciones con los niveles de enfermedad (Hoyos Rojas et al., 2019). Ademas,
se ha propuesto la integracion de sensores de luz infrarroja y visible en un Unico
dispositivo para mejorar la fusién de imagenes sin necesidad de registro, lo que aumenta
la eficacia de las tecnologias de obtencion de imagenes multiespectrales (Qiao et al.,
2018).
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Hiperespectrales

Los sensores hiperespectrales ofrecen imagenes en tiempo real con una resolucion
espacial y temporal completa, lo que permite lograr resoluciones espectrales y espaciales
extraordinarias en un amplio rango de longitudes de onda de 400 a 1700 nm (Bian et al.,
2023). La utilidad de la tecnologia se extiende al desarrollo de infraestructuras, ya que los
sensores hiperespectrales proporcionan informacion detallada sobre la calidad, la cantidad
y el tipo de los elementos presentes en cualquier area, gracias a su capacidad para capturar
sefiales espectrales en un espectro electromagnético continuo (Flores et al., 2023). En la
agricultura, los sensores hiperespectrales contribuyen a la gestion precisa de las
enfermedades al proporcionar evaluaciones detalladas de las interacciones entre plantas y
patégenos(Roh et al., 2021).
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INDICES DE VEGETACION
Los indices de vegetacion desempefian un papel crucial en la agricultura de precision al
proporcionar informacion valiosa sobre la salud, el crecimiento y el contenido de
nutrientes de los cultivos (Radocaj et al., 2023; Ramirez et al., 2023). Si bien los métodos
tradicionales se basan en sensores multiespectrales instalados en satélites y vehiculos
aereos no tripulados, estudios recientes han explorado el uso de imagenes RGB y técnicas

de aprendizaje profundo para estimar los indices de vegetacion (Devyatkin, 2023).

NDVI (indice de Vegetacion de Diferencia Normalizada)

El indice diferencial normalizado de vegetacién (NDVI) es una medida de teledeteccion
ampliamente utilizada que evalla la salud y la densidad de la vegetacién comparando la
diferencia entre el infrarrojo cercano (que la vegetacion refleja fuertemente) y la luz roja
(que la vegetacién absorbe) (Pangestu et al., 2023). En la agricultura, el NDVI ayuda a
monitorizar las fases de crecimiento y la productividad del arroz, como han demostrado
los estudios realizados con imagenes del Sentinel-2 para analizar los arrozales de
Indonesia(Conley et al., 2023; Nafarin & Novitasari, 2023) . Los datos del NDVI de
diferentes fuentes satelitales, como MODIS y FY-3D MERSI-II, se han validado para
garantizar su coherencia, lo que garantiza un monitoreo confiable del estado de la
vegetacion a varias escalas(Nafarin & Novitasari, 2023). La integracién del NDVI con
tecnologias avanzadas, como los modelos de fenotipado vegetal y aprendizaje automatico
de alto rendimiento, mejora ain mas sus capacidades predictivas y su ambito de aplicacion
en la investigacion ambiental y agricola (Xiao et al., 2023).

La formula del NDV1 se expresa como:

NDVT — (NIR — Red)
(NIR + Red)

Donde:

NIR es la luz reflejada en el espectro del infrarrojo cercano.

Red es la luz reflejada en el rango rojo del espectro.

Rango de valores: Oscilan entre -1 a +1, donde los valores mas altos indican una

vegetacion mas densa y saludable (Safitri et al., 2023).
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BNDVI (indice de Vegetacion de Diferencia Normalizada Azul)

El BNDVI, o indice azul de diferencia de vegetacion normalizada, es un indice de
vegetacion que evalla la presencia de vegetacion verde viva, lo que indica la biomasa y
la salud, mediante el uso de luz azul para una mejor deteccidn en areas con una alta
reflectancia del fondo del suelo (Wéjcik-Gront et al., 2022). Se calcula como la diferencia
normalizada entre las bandas espectrales azules y del infrarrojo cercano (NIR). Los
estudios han demostrado que el BNDVI, junto con otros indices como el NDVI, el GNDVI
y el VARI, muestran una fuerte correlacion positiva con el contenido de clorofila, lo que
indica su eficacia para controlar la salud y el estado fisiol6gico de las plantas (Zou et al.,
2018). Ademaés, el BNDVI se ha destacado por su sensibilidad a los cambios en la
heterogeneidad espacial dentro de los campos, lo que lo convierte en una herramienta
valiosa para evaluar con precision la salud de la vegetacion y las variaciones de la

pigmentacion (Boonupara et al., 2024).

(NIR — Blue)

BNDV] = ————=
(NIR + Blue)
(WANG etal., 2007)

Donde:

NIR es la luz reflejada en el espectro del infrarrojo cercano.
Blue es la luz reflejada en la banda azul del espectro.

Rango de valores: -1 a1, -1: Sin vegetacion, 1: Vegetacion densa.
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GNDVI (Indice de Vegetacion de Diferencia Normalizada Verde)

El indice de vegetacion de diferencia normalizada verde (GNDVI) es un indice de
vegetacion que utiliza la banda verde en lugar de la roja, lo que demuestra su utilidad para
estimar el rendimiento de los cultivos, como arrozales inundados con diferentes niveles
de fertilizacion (Revelo et al., 2021). Los estudios han comparado el GNDVI con otros
indices como el NDV1y el NDRE, destacando su menor sensibilidad a las variaciones en
el vigor de la vegetacion dentro de una regién, lo que lo hace menos adecuado para
caracterizar los estados de la vegetacion en comparacion con el NDRE (Pacheco Gallardo
& Luis Lautaro, 2018). Ademas, las investigaciones han demostrado que el GNDVI, junto
con otros indices como el Clg, mostraron correlaciones mas bajas con variables como el
verdor de la biomasa en comparacién con el NDV1y el RVI, lo que enfatiza la importancia
de elegir el indice apropiado para las evaluaciones especificas de la vegetacion (De La
Casa & Ovando, 2007).

La formula para calcular el GNDVI es la siguiente:

(NIR — Green)
(NIR + Green)

GNDVI =

Donde:
(A. A. Gitelson et al., 1996)

NIR es la luz reflejada en el espectro del infrarrojo cercano.
Green es la luz reflejada en la banda verde del espectro

Rango de valores: - 0 a 1, 0: Baja cantidad de clorofila, 1: Alta cantidad de clorofila.
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NDRE (Diferencia Normalizada Borde Rojo)

A diferencia del ampliamente utilizado indice Diferencial de Vegetacion Normalizado
(NDVI), que mide principalmente el verdor y es propenso a la saturacion en la vegetacion
densa, el NDRE aprovecha la banda roja del borde, lo que lo hace mas sensible a las
variaciones en los niveles de clorofila y menos afectado por la densidad del dosel (Huang
et al.,, 2021; Suéarez et al., 2021). Esta sensibilidad permite que el NDRE detecte las
deficiencias de nitrégeno y otros factores de estrés en los cultivos de manera mas eficaz
que el NDVI, como se demostrd en un estudio a escala de campo realizado en una granja
experimental en Japon, donde el NDRE identifico areas con bajo contenido de clorofila,
lo que indica una limitacion de nitrégeno (Boiarskii, 2019). La aplicacion del NDRE se
extiende mas alla de la agricultura; se ha utilizado en estudios ecoldgicos para monitorear
la dindmica de la vegetacion y evaluar los impactos de los cambios ambientales en la
biodiversidad y los servicios de los ecosistemas (Pettorelli et al., 2011; Radocaj et al.,
2023). A pesar de sus ventajas, el NDRE se adopta con menos frecuencia en los estudios
cientificos en comparacién con el NDVI, en parte debido al mayor costo y complejidad
de los sensores multiespectrales necesarios para su calculo (J. de B. G. dos Santos et al.,
2023; Mayorga Avrias et al., 2019).

La formula para calcular el NDRE es la siguiente:

(NIR — RedEdge)

NDRE =
(NIR + RedEdge)

(A. Gitelson & Merzlyak, 1994)

Rango de valores: -1 a 1, -1: Baja cantidad de clorofila, 1: Alta cantidad de clorofila
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SIPI2 (indice de Pigmentos Intensivos de Estructura 2)

El SIPI, al igual que otros indices de vegetacion, como el indice diferencial normalizado
de vegetacion (NDVI), aprovecha las propiedades de reflectancia espectral de las plantas
para detectar el estrés y las enfermedades en forma temprana, a menudo antes de que
aparezcan los sintomas visuales (Meena et al., 2020). La integracion de maltiples indices,
incluidos el SIPI, el NDVI1 y otros, puede proporcionar una vision integral de la sanidad
vegetal al combinar diferentes aspectos de los datos espectrales, lo que ayuda a reducir los
errores de juicio causados por las distorsiones espectrales (Wisayataksin et al., 2022). En
general, el SIPI y los indices similares son herramientas invaluables en la agricultura
moderna, ya que permiten la deteccion temprana y la gestion precisa de la sanidad de las
plantas, lo que en Gltima instancia conduce a un mejor rendimiento de los cultivos y a una
reduccion de las pérdidas econdmicas debidas a las enfermedades de las plantas (Khan et
al., 2018).

La formula para calcular el SIPI2 es la siguiente:

(NIR — Green)
(NIR — Red)

SIPIZ2 =

(Cardim & Lima, 2019)

Rango de valores: -1 a 1, con 1 indicando bosques en zonas templadas y tropicales, 0
correspondiendo a &reas sin vegetacion como rocas y terrenos desnudos, valores
moderados entre 0.2 y 0.3 representando terrenos con arbustos y prados, y -1 indicando la

presencia de agua o superficies muy oscuras.
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TGI (indice de Verdor Triangular)

Los componentes clave del indice de verdor triangular (TGI) incluyen la utilizacién de
imagenes de espectro visible para la estimacion de la fraccion de vegetacion o la
evaluacion del contenido de clorofila en los cultivos (De Ocampo et al., 2019). Se ha
demostrado que el TGI es una métrica valiosa para el monitoreo de la salud de los cultivos,
ya que su rendimiento depende de la comprension de la sensibilidad a las longitudes de
onda de los sensores CMOS utilizados para capturar imagenes RGB de los cultivos
(Lemes et al., 2022). Ademas, el TGI ha demostrado su eficacia en la deteccion temprana
de las lesiones causadas por el estrés abidtico, como la fitotoxicidad de los herbicidas, lo
que lo convierte en un indice espectral practico para evaluar la salud de las plantas y los
niveles de lesiones (Xing et al., 2020). Ademas, se ha propuesto un nuevo indice
denominado indice de vegetacion triangular transformado (TTV1) para la recuperacion del
indice de area foliar (LALI), que sustituya el NIR y las bandas rojas por bandas NIR y de
borde rojo para mejorar las estimaciones del LAI y mitigar los efectos de saturacion, lo
que demuestra una alta precision en los escenarios de cobertura vegetal de baja a moderada
y moderada a alta (Moffiet et al., 2010).

La férmula del TGI se expresa como:

TGI = Green — 0.39 * Red — 0.61 * Blue

(Hunt et al., 2012)

Rango de valores: -1 a 1 valores cercanos a 1: alta densidad de biomasa, valores cercanos

a 0: menor cantidad de biomasa o estrés.
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NDWI (indice de Agua de Diferencia Normalizada)

indice diferencial normalizado del agua (NDW!I) se basa en los valores de reflectancia en
verde e infrarrojo cercano, es un indice espectral que se usa cominmente para detectar la
presencia de agua en diferentes entornos (Augusto et al., 2022). Las investigaciones han
demostrado que el NDWI, junto con otros indices hidricos, como el indice (NDWI) y el
indice de ratio hidrico (WRI), pueden monitorear eficazmente la erosiéon y la acumulacion
de las riberas de los rios, lo que ayuda a analizar los cambios en las masas de agua
superficiales (Laonamsai et al., 2023; Liu et al., 2023). La integracion del NDWI con el
indice diferencial normalizado de calor latente (NDLI) ha demostrado ser fundamental
para evaluar la salud de las plantas y detectar las condiciones de escasez de agua en los
entornos agricolas, lo que destaca su importancia en el monitoreo y el manejo de los
cultivos (Son Le et al., 2023). Por ultimo, el calculo del indice diferencial normalizado de
sequia (NDDI) mediante la combinacion del NDWI con el indice diferencial de vegetacion
normalizado (NDVI) ha permitido mapear la gravedad de la sequia en regiones como la
regencia de Bojonegoro, lo que ha ayudado a los esfuerzos de mitigacion de desastres y a

la gestidn de los recursos hidricos (Artikanur et al., 2022).

La férmula del NDWI se expresa como:

(GREEN — NIR)

NDWI =
(GREEN + NIR)

(McFeeters, 1996)

Rango de valores: entre -1y +1, donde (mas cercanos a +1) indican un alto contenido de
agua, lo que facilita la identificacion de las masas de agua abiertas, mientras que los

valores negativos (més cercanos a -1) indican areas dominadas por vegetacion o suelo.
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MATERIALES Y METODOS
Area de estudio

El estudio se realizé en el campo agricola experimental denominado Jardin Hidraulico
de la Universidad Autbnoma Agraria Antonio Narro, ubicado al sur de la ciudad de
Saltillo, Coahuila de Zaragoza. Sus coordenadas (en grados decimales) son: Latitud
25.3576127 y Longitud -101.0405497, a 1743 metros sobre el nivel del mar. La
temperatura y precipitacion media anual son 16.9 °C y 435 mm, respectivamente (Figura
12). El lote experimental fue una superficie de 420 m2, equipada con un sistema de riego
por goteo, con una separacion entre goteros de 20 cm y un gasto de 2.0 I/min. El sistema
se divide en 4 secciones, cada una con 3 valvulas que permitieron la aplicacion de los
tratamientos de manera independiente en cada seccion. Ademas, el sistema incluye un

dispositivo Venturi para la aplicacién de fertilizantes.
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Manejo Agronomico del Cultivo y Tratamientos Evaluados

El 15 de agosto de 2023, se sembrd el frijol ‘Flor de Mayo AN-05’ con una separacion de
80 cm entre surcos y 10 cm entre plantas. Se utilizo un disefio de parcelas divididas al
azar, donde el Factor A fue la posicion de la cinta de riego (superficial o enterrada) y el
Factor B fue el nivel de tension de humedad del suelo (20, 30 y 50 kPa). Se establecieron
seis tratamientos, repetidos cuatro veces (Cuadro 3). Se usé la prueba de Tukey para
comparar las medias. Cada parcela tenia 2 surcos de 8 m para la cinta enterrada y 3 surcos
de 4 m para la cinta superficial. La tension de humedad se midio con dos tensiémetros
(marca Irrometer, Irrometer, Inc., Riverside, CA, EE. UU.) de 30 cm de longitud,
enterrados a 20 cm de profundidad en el centro de la cama en tres repeticiones de cada

tension de humedad.

Cuadro 3. Factores principales de estudio y tratamientos correspondientes.

Factor A Factor B
Posicion de la cinta Tension de humedad Tratamiento
de riego del suelo (kPa)
Superficie 20 Tl
Superficie 30 T2
Superficie 50 T3
Enterrada 20 T4
Enterrada 30 T5
Enterrada 50 T6

La dosis de fertilizacion establecida para el ciclo de producciéon fue de 200-50-100,
aplicando el 25% al inicio del ciclo del cultivo, el 50% en la etapa de floracion y el 25%
en la etapa de llenado de grano. Adicionalmente, se realizaron 3 aplicaciones foliares de
macronutrientes, ‘Grofol 20-30-10° a una dosis de 1 kg/ha, y el complejo de
micronutrientes quelatados ‘Ultrasol micro Rexene BSP Mix’ a una concentracion de 2 g
por litro de agua, a los 23, 42 y 56 dias después de la siembra (DDS). Se complemento
con el enraizador ‘Magic Root” a una dosis de 2 kg por hectarea, y el coadyuvante agricola

‘Phase-1" para mejorar la eficacia de las aplicaciones, regulando el pH del agua a un valor
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de 6.0. Para el control fitosanitario, se realiz6 una aplicacion de benomilo (300 g/ha) para
el control preventivo de hongos a los 24 DDS. La segunda aplicacién a los 43 DDS con
Imidacloprid (0.3 I/ha) y cipermetrina (0.25 I/ha) fue para el control de gusano cortador
(Agrotis spp.) y chapulin (Brachystola magna). A los 59 DDS (inicio de la etapa de

floracion), se aplico el bioestimulante ‘Maxi-Grow Excel’ (0.5 I/ha).

Tension de Humedad del Suelo

Para determinar el contenido de agua en el suelo para cada valor de tension, se
realizaron mediciones simultaneas del contenido de agua en el suelo. Estas se midieron
con una sonda TDR (Time Domain Reflectometry) con varillas de 20 cm de longitud
(modelo HydroSense 11, Campbell Scientific, Inc., Logan, Utah, USA) y el promedio de
3 tensiometros de la marca Irrometer, cuya capsula porosa se enterré a una profundidad
de 20 cm. Las mediciones se realizaron desde saturacion hasta una tension de 62 kPa. La
Figura 2 muestra la relacion entre el contenido de agua en el suelo (% en volumen) y la
tension de la humedad correspondiente. También se muestra la funcion (polinomio de

segundo orden) y sus coeficientes que describen dicha relacion (Figura 2).
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Figura 13. Relacidn entre el contenido de agua en el suelo y la tension de humedad

correspondiente del suelo del sitio de estudio.
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Adquisicion de Iméagenes

La captura de imégenes inicid el 13 de octubre de 2023 a los 59 DDS, continuando con
mediciones al alcanzar las tensiones de humedad del suelo (20, 30 y 50 kPa), seguidas por
el tratamiento de riego. El ultimo levantamiento fue el 6 de diciembre de 2023. Se utilizé
una aeronave Phantom 4 Pro (DJI Technology Co., Ltd.) (Figura 3a), pilotada de manera
remota, a la cual se le acopld un sensor multiespectral RedEdge-MX™ (MicaSense,
Seattle, WA, EE. UU.) (Figura 3b).

Las imagenes se capturaron en formato TIFF de 16 bits (1280 x 960), autocalibradas con
el sensor solar DLS 2 y GPS integrado (Figura 3c). Se usoé la aplicacion DJI GS PRO
(DJI Technology Co., Ltd.) para planificar la mision, que aprovecha el GNSS (Sistema
Global de Navegacion por Satélite) de la aeronave para realizar vuelos autbnomos. Los
parametros de vuelo incluyeron una velocidad de 9.6 km/h, altura de 20 m, tiempo de
captura de 1.0 s, y solapamiento de las iméagenes del 80%. Esto resulté en un GSD
(Distancia de Muestreo del Suelo) de 1.4 cm/pixel.

& O
(a) (b) (©)

Figura 14. Equipo utilizado para el levantamiento de iméagenes: (a) Camara
multiespectral; (b) Sensor solar (DLS 2); (c) RPA utilizado para el estudio.

Procesamiento de Imagenes Multiespectrales

Se usO Pix4Dmapper (v.4.6.4, Pix4D S.A., Prilly, Suiza) para procesar las imagenes y
obtener los indices de vegetacion (BNDVI, GNDVI, LCI, MCARI, NDRE, NDVI, NDWI,
SIPI2 y TGI), y el ortomosaico de reflectancia de bandas (Azul, Verde, NIR, Red Edge y
Rojo). Se calcularon promedios de indices y niveles digitales en areas de muestreo
definidas por tratamientos, usando GCP (Ground Control Point) para alinear los
resultados. La resolucién espacial GSD se ajustd a 2 cm/pixel para uniformidad, calidad

y detalle.
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Extraccion de Regiones de Interés

Para cada uno de los tratamientos y repeticiones en los bloques, se empled una mascara
de tipo Shape para realizar la extraccion del promedio de los indices y las bandas. Se
crearon zonas de muestreo rectangulares de 2 metros x 0.20 metros, con un total de 3 por
cada repeticion en el bloque del tratamiento (Figura 4). Cuando se obtuvieron las areas
de muestreo, se desarrolld un script en Python que permitié calcular la media de cada

bloque correspondiente a los tratamientos.
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Figura 15. Descripcion y distribucion de los tratamientos en el campo evaluados.

Evaluacion Estadistica

Se analizaron estadisticamente los indices de vegetacion y reflectancia de bandas,
aplicando pruebas de Shapiro-Wilk (W; p < 0.05), Bartlett (B; p < 0.05) y ANOVA para
determinar diferencias significativas entre factores Ay By la interaccion. Se usé R Studio
version (v x, R Core Team, Viena, Austria) para el analisis descriptivo y comparar la
variabilidad de los datos. Los indices y bandas con mayor variacion y significancia fueron:
NDRE (indice borde rojo de diferencia normalizada), TGI (indice de verdor triangular),

NDWI (indice de agua de diferencia normalizada), banda Roja y banda Red Edge.
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RESULTADOS Y DISCUSION

Variable de Respuesta Indice de Vegetacion NDRE

El analisis de varianza (ANOVA) realizado para los factores A y B demuestra
disparidades notables en el indice NDRE. En concreto, el impacto de estar enterrado o en
la superficie en el indice NDRE del factor A es estadisticamente significativo (p = 0,0223).
Del mismo modo, en el factor B, la tension ejerce una influencia significativa (p =
0,00482). A pesar de la falta de significancia estadistica en la interaccion entre los factores
Ay B (p =0,06442), la proximidad al umbral de 0,05 sugiere explorar mas a fondo esta
interaccion. Como se muestra en la (Figura 5, el indice NDRE muestra un valor mas alto
para la cinta enterrada en comparacion con la cinta superficial. Este resultado coincide
con las observaciones de (Griffin-LaHue et al., 2023), quienes observaron que la cinta
enterrada a una profundidad de 0,15 m producia niveles de humedad més uniformes en
comparacion con la cinta superficial. Ademas, el uso de cintas de goteo enterradas, tal
como sugieren (Adrian Card & Troy Bauder, 2019), prevén la pérdida de humedad en la
superficie y garantiza la disponibilidad de agua en las zonas radiculares, optimizando asi

la eficacia del crecimiento de las plantas.

(] o
a a a a
pik b pik ab b
k3 ] = —
11} L]
o (o] g (o]
£ o 4 £ N
w ° w °
i e ] i s 7
O o o o
Z = Z - -
(] (]
[ ] [ ]
[ R o _
o o
buried surface Ten_50kPa Ten_20kPa Ten_30kPa
Tape position Soil moisture tension

Figura 16. Efecto de la posicion de la cinta de riego (enterrada, superficial) y la tension
de humedad del suelo para riego aplicada sobre el indice NDRE de un cultivo de frijol

(cv. Flor de mayo).
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Variable de Respuesta Indice de Vegetacion TGl

Los resultados del andlisis de varianza (ANOVA) coinciden con los de las pruebas
realizadas, lo que indica una disparidad notable en el factor A (valor p = 0.464) y revela
un contraste estadisticamente significativo en el factor B (valor p = 3.33e-07), lo que
implica una influencia considerable en el indice TGI. La interaccion entre el factor Ay el
factor B tuvo un impacto significativo en el indice TGI (valor p = 0,0396), lo que ofrece
una posible explicacion de las variaciones observadas en los valores del indice de
vegetacion TGI en las diferentes tensiones de humedad del suelo (Figura 6). Estos
hallazgos concuerdan con la investigacion realizada por (Cui et al., 2022), que subraya la
capacidad de las condiciones de humedad del suelo para modificar sustancialmente los
valores del indice de vegetacion en diferentes estaciones y elevaciones. Ademas, (Zhang
et al., 2023) observaron que los indices de vegetacion, incluido el indice diferencial de
vegetacion normalizado (NDVI), muestran sensibilidad a las alteraciones de la humedad

del suelo y muestran una correlacion casi lineal entre el NDV1 y el contenido de agua del

suelo.
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Figura 17. Efecto de la posicién de la cinta de riego (enterrada, superficial) y la tension

de humedad del suelo para riego aplicada sobre el indice TGI de un cultivo de frijol (cv.
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Variable de Respuesta Indice de Vegetacion NDWI

El enfoque ideado por (McFeeters, 1996) utiliza el indice diferencial de agua normalizado
(NDWI) para detectar cuerpos de agua basandose en los datos obtenidos de imagenes de
teledeteccion. No obstante, es imprescindible reconocer que el contenido de humedad de
las hojas puede afectar a las lecturas del NDWI. A pesar de esto, estas lecturas no pueden
equipararse directamente a las adquiridas al analizar los cuerpos de agua.
Especificamente, la vegetacion, como los arboles, a menudo presenta valores negativos
de NDWI segun el método de McFeeters, que se encuentran dentro del rango de -0,55 a -
1, como lo demuestran (Pereira et al., 2018). Mediante la aplicacion de esta técnica, se
han observado variaciones notables en la cinta enterrada en comparacion con la posicion
de la superficie. Ademas, una tendencia observable indica una disminucion sustancial de
los valores del NDWI1 al aumento de la tension de humedad del suelo de 20 a 50 kPa,
como se ilustra en la (Figura 7). (Quemada et al., 2021) atribuyen este fendmeno a las

variaciones en la reflexion de la luz por parte de las hojas que dependen de su contenido

de agua.
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Figura 18. Efecto de la posicién de la cinta de riego (enterrada, superficial) y la tension
de humedad del suelo para riego aplicada sobre el NDW!I (valores absolutos) de un cultivo
de frijol (cv Flor de mayo).
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Variable de Respuesta Reflectancia Red Edge Band

Segln los hallazgos adquiridos, la interaccion observada entre los componentes
principales sugiere que la posicion de la cinta y la tension del suelo experimentado por el
cultivo de frijol influyen significativamente en los niveles de reflectancia de la banda Red
Edge. Estas interacciones muestran una variabilidad basada en las condiciones especificas
de humedad del suelo. Se puede identificar el valor madximo de reflectancia en la cinta
enterrada y a una tension de humedad del suelo de 30 kPa (consulte la Figura 8). Una
investigacion de (S. Lin et al., 2019) demostrd que la reflectancia de Red Edge responde
a los niveles de clorofila en las hojas, un parametro directamente relacionado con el
proceso de fotosintesis. Por otra parte, (Shi et al., 2023) sostienen que una mayor
concentracion de clorofila generalmente se correlaciona con una mejora en salud y el
rendimiento de los cultivos, y enfatizan su importancia como un indicador crucial para los

agricultores y los investigadores.
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Figura 19. Interaccion entre la posicion de la cinta de riego (enterrada, superficial) y la
tension de humedad del suelo para el riego aplicada sobre la reflectancia de la Banda de

Borde Rojo (miles) de un cultivo de frijol (cv Flor de mayo).
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Variable de Respuesta Reflectancia Red

En el andlisis de reflectancia para la banda del rojo, se observa que la cinta en superficie
a una tension de humedad del suelo de 30 kPa presenta los mayores valores de reflectancia
(Figura 9). Esta interaccion indica que la cinta en superficie es especialmente efectiva
para maximizar la reflectancia bajo condiciones de humedad moderada. Como indica (Xue
& Su, 2017), la banda roja es esencial para generar los indices de vegetacion, ya que evalta
la salud de las plantas a través de la absorcion de la luz roja por la clorofila; los cambios
en la reflectancia podrian sugerir que las plantas estan sufriendo estrés causado por
problemas como la disponibilidad limitada de agua, la insuficiencia de nutrientes o las

enfermedades.
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Figura 20. Interaccion de la posicion de la cinta de riego (enterrada, superficial) y la
tension de humedad del suelo para el riego aplicada sobre la reflectancia de la Banda Roja

(miles) de un cultivo de frijol (cv Flor de mayo).
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CONCLUSIONES
La influencia de la posicion de la cinta (ya sea enterrada o en la superficie) tiene un efecto
considerable en los indices NDRE y NDWI. La cinta enterrada exhibe valores més altos,
lo que significa una menor vulnerabilidad a las fluctuaciones en la humedad del suelo y
una mejor utilizacion del agua. Apoyando esta observacion, el anélisis ANOVA revela
una notable disparidad en el indice NDRE basado en la ubicacion de la cinta (p = 0.0223).
El indice NDWI demostro6 una eficacia superior en la deteccion del estrés hidrico, el indice
NDW!I disminuyen progresivamente a medida que la tension hidrica aumenta de 20 a 50
kPa. Es importante destacar que un nivel de 20 kPa resulta ser el mas propicio para obtener
un alto valor de NDWI.
La interaccidn significativa entre la posicién de la cinta y los niveles de humedad influyen
en el indice TGI, manifestando su impacto en las variaciones de reflectancia y los indices
de vegetacion. Particularmente, un nivel de tension de 30 kPa afecta de manera
prominente esta interaccion, lo que resulta en una elevada reflectancia en las bandas Red
Edge y Red cuando la cinta se coloca en la superficie.
Los resultados indican que tanto la ubicacion de la cinta como el estrés por humedad del
suelo juegan un papel fundamental en los indices de vegetacion NDRE, NDWIy TGI. La
cinta enterrada confiere una ventaja en la mejora de estos indices, potencialmente debido

a la menor exposicion a las fluctuaciones en la humedad de la superficie.
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