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Este trabajo trata sobre ideas fundamentales en la Teoria del Muestreo y tiene tres ob-
jetivos bésicos: (i) Estudiar la idea de disenio de muestreo probabilistico, (ii) Formular
la nocién de estimadores de expansién como los tnicos estimadores lineales insesgados
del total poblacional, y (iii) Estimar la varianza de los estimadores de expansién. Las
conclusiones obtenidas del analisis de estos problemas se ilustran por medio de varios
ejemplos analizados detalladamente. La organizacion de este trabajo es como sigue: En el
Capitulo 1 se presenta una perspectiva general del material subsecuente, mientras que en
el Capitulo 2 se introducen los conceptos de poblacién, muestra y parametro, y ademas
se formula el problema bésico de estimacion en la teoria del muestreo. A continuacion,
se discuten estrategias (esquemas) generales para seleccionar una muestra, ilustrando las
ideas por medio de dos esquemas, a saber, el simple y el de Bernoulli. En el Capitulo 3
se definen los estimadores de expansion, también conocidos como estimadores de Horvitz-
Thompson, y se estudia la estimacién de su varianza. Finalmente, el Capitulo 4 trata

sobre el muestreo con reemplazo y el diseno de Bernoulli. Se muestra que bajo el diseno



de Bernoulli la varianza muestral es un estimador asintéticamente insesgado de la var-
ianza poblacional, y se estudian los estimadres de Hurtwitz-Hensen, los cuales son los

estimadores de expansién en la teoria de muestreo con reemplazo.
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This work is about basic ideas in Sampling Theory and has three main objectives: (i)
To study the concept of probability sampling design, (ii) To introduce the expansion es-
timators as the unique linear unbiased estimators of the population total, and (iii) To
estimate the variance of expansion estimators. The conclusions obtained from the anal-
ysis of these problems are illustrated using carefully analyzed examples. The subsequent
material is organized as follows: Chapter 1 presents a general perspective of this work,
whereas in Chapter 2 the notions of population, sample and parameter are introduced,
and the basic problem in the theory of sampling is formally stated. Next, general strate-
gies (or schemes) to select a sample are briefly described, and they are illustrated using
two important schemes, namely, the simple and Bernoulli strategies. In Chapter 3 the
Horvitz-Thompson (expansion) estimators of the population total are introduced, and the
estimation of their variances is studied. Finally, Chapter 4 is concerned with the Bernoulli
design and sample with replacement. It is shown that, under the Bernoulli design, the bias
of the sample variance as estimator of the population variance is asymptotically negligible,

and the Hurwitz-Hansen estimators are studied.
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Chapter 1

This Work in Perspective

1.1. Introduction

This work concerns with sampling theory, a branch of Classical Statistics which has to do with
the following problem: To establish inferences about a finite population based on the knowledge of
just a part of it, which is referred to as the sample. Usually, the inference takes the form of point
estimation, and in this case it must be accompanied with a measure of the error of the estimate.
In this chapter the main objectives of this work are stated and the organization of the subsequent

material is briefly described.

With the objective of establishing conclusions about a whole population, nowadays results of sam-
pling surveys on diverse topics are frequently reported in newspapers and magazines, as well as on
Radio and TV shows. For instance, the winner of the 2020 edition of La Academia singer contest
was Dalt, who obtained 24.29% of the phone votes, whereas Angie got 24.05% and was awarded
the second position. Also, El Financiero reports every day the result of the #ZAMLOTrackingPoll,
which is described by Roy Campos as a ‘digital measure of the performance of public administra-
tion’; on March 25, 2020, it was reported that 50.2% of Mexican citizens approve president’s work.
On the other hand, on a quarterly basis, INEGI publishes the result of surveys on employment,
particularly, the percentage of unemployed people in the country; on February 2020, the reported
unemployment rate was 3.5% of the economically active population. What all of these figures say?
They all are intend to reflect the ‘behavior’ of a whole population, but the reported quantities were
obtained studying just a part (and, usually, a ‘very small’ part) of the population. So, the following

is a most important question:



e How is it possible the establish conclusions about a whole population by studying just a (small)

sample?

This question will be addressed later, after the discussion in the following section

1.2. Estimation Problem

To introduce the fundamental estimation problem of sampling theory, consider the following situa-
tion. In a small town with 1000 workers (the population), an analyst will use a subset of 10 workers
(the sample) to estimate the total monthly income of all the workers in town, which is denoted by
t (this is the unknown parameter). Let y1,y2,...,y10 be the monthly income of the ten workers in
the sample, so that the total income for the sample is (y1 +y2+ - - - +y10); since the population has
100 times the workers in the sample, it is natural to estimate the total population monthly income
t by
£ =100(y1 + y2 + - - + y10) = 1000 F1o,

where 10 = (y1 + y2 + -+ + y10)/10 is the average income of the ten workers in the sample.
Now suppose that the 7190 = 4000 has been observed, so that ¢ = 4000000 is the estimate of
the population total t. What is the meaning of such a value of t? A first answer is that £
‘approximates’ the unknown value t. Next, suppose that a different sample of 10 workers is chosen
and that 70 = 3000 was observed, and in this case ¢ = 300000 is the estimate of ¢; this figure is
also an ‘approximation’ for ¢ but, how far are these two numbers form ¢? At this point it seems
clear that declaring that ‘¢ is an approximation for ¢’ is not a very useful statement, unless a bound
B for the error |t — | is provided, so that |t — #| < B. Therefore, after analyzing the sample of 10

workers, a useful conclusion would be like the following one:
> t approximates ¢ and |t —t| < B < (1.2.1)

where, possibly, B depends on the sample data y;, 2 = 1,2,...,10. The main point in this discussion
is that declaring that ¢ approximates the unknown value t is not useful if no bound about the
difference |f — t| is provided. Suppose now that the analyst has devised a procedure to associate,
with each sample data y = (y1,¥2,...,%10), a bound B(y) such that |t —t| < B(y) or, more
explicitly,

i(y) - Bly) <t < i(y) + B(y): (1.2.2)
recall that t = f(y) depends on the sample data vector y. Now have a glance at this relation, and

note that the extreme terms depend only on the 10 monthly incomes 1, ..., y19 of the 10 workers

in the sample, whereas the middle quantity ¢, the total monthly income of all the workers in the



population, is given by t = Y7 + Y5 + - - - + Y1900, where Y; is the monthly income of the i-th worker

in town. Thus, the above display can be explicitly written as

t(y1. Y2, - y10) — By, y2, -, y10) < Y1 + Yo+ ... + Yigoo

. (1.2.3)
S t(y17y27 sy le) + B(yhyQa e 7910)7
where the sample vector y is given by
(yla"'ay\lO) = (Yi17}/;27"'7}/;10)7
and the the sample consists of workers 41, 4s,...,410. Hence, (1.2.3) is equivalent to
f(Y;leizv"'inw) - B(Ytiiz?""Yim)
<Y1 +Ys+...4+Yi00 (1.2.4)
S i\(}/i17}/ti27"'71/:£10) +B(}/7;175/iz7"')}/7;10)7

A glance at this relation reveals that it can not be satisfied for every sample. In fact, the extreme
terms in the above display depend only on the ten values Y;,,...,Y;,, and if j # i1,... 1410,
then replacement of Y; by Y; + h adds h to the middle term but leaves the extremes values
invariable; hence, selecting h appropriately, the inequalities in (1.2.4) fail. Since (1.2.1)—(1.2.4) are
all equivalent statements, it follows that it is not possible to design a procedure such that the goal
(1.2.1) is always satisfied. The key point in this last sentence is the word always, and instead of
looking for a method generating a correct assertion every time that a sample is analyzed, the main

goal of the estimation problem in sampling theory is slightly less ambitious:

e To devise a method producing an estimate ¢ for the

parameter t, in such a way that

|t —t| < B (1.2.5)

is true at least in a proportion «y of all the times in which

the method is used.
In this last display £ is a statistic, that is, a function of the data obtained after analyzing the
sample, |£ — t| is the error and B is the bound on the error, and v € (0,1) is the confidence level.
Both « and B are prescribed by the analyst, and the estimation problem consists in devising a

procedure such that the inequality (1.2.5) holds at least in a fraction v of all the times that the

procedure is used.
1.3. Random Samples and Main Objectives

The key clue to achieve the goal (1.2.5) is to use randomization to select the subset of the population

to be analyzed. Suppose that the sample s = {uy,us,...,u,} is selected via a random procedure
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and that, after analyzing each unit u;, the corresponding relevant information y; is determined,
i=1,2,...,n. Next, using the data vector y = (y1,%2,...,¥yn) the estimate £ = (y) is computed.
Since y depends on s and # depends on y, after all # is a function of s and then, it is a random
variable. Therefore, given v € (0,1), there exists a constant C, (depending on the the distribution
of £), such that

Plli—t[ <Gy >

Thus, if after computing # it is declared that |f — t| < C.,, then this assertion will be correct in at

least a fraction «y of all possible cases, satisfying (1.2.5) if
C, < B. (1.3.1)

Selecting appropriately the procedure to choose the sample (including the number of selected
elements), it is possible to satisfy the above inequality and achieve the goal (1.2.5). Frequently,
C,, has the form ¢, /+/n, for a certain constant ¢, and then the above relation will be satisfied if

¢y/B < /n, that is,

‘r:
QW

3 SN

Sy

For details see Lohr (2000). Thus, the answer to the question posed at the end of Section 1 is:

Using a randomization procedure to choose the sample.

The importance of randomization in sampling theory provided the motivation for the present work,

and the main objectives can be stated as follows:

(i) To analyze two fundamental methods to choose a random sample, namely, the draw sequential
and listing selection procedures, and to illustrate their application using the simple and Bernoulli

schemes;

(ii) To study the construction of the Horvitz-Thompson (expansion) estimators for the popula-
tion total, and the conditions under which the corresponding variance of such estimators can be

ubiasedly estimated.

(iii) To provide carefully analyzed examples on the topics under consideration, including the for-

mulation of the Hansen Hurwitz estimators for the case of sampling with replacement.

1.4. The Origin of This Work

This work is a byproduct of the seminar entitled Mathematical Statistics: Elements of Theory
and FExamples, relaunched on July 2016 by the Graduate Program in Statistics at the Universidad

Auténoma Agraria Antonio Narro. The basic aims of the project are:



(i) To be a framework were statistical problems can be freely and fruitfully discussed;

(ii) To promote the understanding of basic statistical and analytical tools through the analysis and

detailed solution of exercises.

(iii) To develop the writing skills of the participants, generating an organized set of neatly solved
examples, which can used by other members of the program, as well as by the statistical communities

in other institutions and countries.

(iv) To develop the communication skills of the students and faculty through the regular par-
ticipation in seminars, were the results of their activities are discussed with the members of the

program.

The activities of the seminar are concerned with fundamental statistical theory at an intermediate
(non-measure theoretical) level, as in the book Mathematical Statistics by Dudewicz and Mishra
(1998). When necessary, other more advanced references that have been useful are Lehmann and
Casella (1998), Borobkov (1999) and Shao (2002), whereas deeper probabilistic aspects have been
studied in the classical text by Loeve (1984). On the other hand, statistical analysis requires
algebraic and analytical tools, and the basic references on these disciplines are Apostol (1980),
Fulks (1980), Khuri (2002) and Royden (2003), which concern mathematical analysis, whereas the
algebraic aspects are covered in Graybill (2000, 2001) and Harville (2008). Initially, the project
was concerned with the theory of Point Estimation and Hypothesis Testing. During the last two
years the seminar has been focused on Sampling Theory at the level of Lohr (2000), Tucker (1992),
Hansen et al. (2002), and Sarndal et al. (1992); the examples presented in the following chapters

were selected from the unsolved exercises in this last reference.

1.5. The Organization

The remainder of this work has been organized as follows: In Chapter 2 the notions of population,
sample and parameter are introduced, and the basic problem in the theory of sampling is formally
stated. Next, two general strategies (or schemes) to select a sample are briefly described, and they
are illustrated by means of two important schemes, namely, the simple and Bernoulli strategies.
Then, the concept of sampling (probability) design is formulated and an alternative implementation
of the simple design is studied. The chapter concludes studying the ideas of inclusion probabilities

and membership indicators.

Next, Chapter 3 introduces that the expansion estimator for the population total, it is shown that

it is unbiased and the estimator for the corresponding variance is formulated. Also, an alternative
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(and ‘appealing’) expression for the variance and its estimators is provided for the case of a constant

sample size.

Finally, in Chapter 4 the simple and Bernoulli sampling schemes are studied. It is shown that,
conditionally on the observed sample size, the sample obtained from a Bernoulli scheme is a simple
random sample. Also, it is proved that under the Bernoulli scheme the sample variance is a biased
estimator of the population variance, although the relative bias converges to zero as the population
size grows. Next, the Hurwitz-Hansen estimators are introduced as expansion estimators in the
case of sampling with replacement. Finally, the exposition concludes with the derivation of basic

properties of the multivariate hypergeometric distribution and the Bernoulli sampling design.



Chapter 2

Probability Samples

2.1. Introduction

The basic problem studied in the Theory of Sampling consists in formulating inferences about a
whole population U using knowledge of just one part (a subset) of /. In principle, the population
is finite, the subset of the population which is analyzed to state the inferences is called the sample
and, generally, it is required to accompany the stated conclusions about the population with an
assessment of their precision or reliability. Such a requirement can be fulfilled if the analyzed
sample is chosen via a random procedure, and this chapter introduces the basic ideas of ‘probability
sampling schemes’. The subsequent material has been organized as follows: In Section 2 the
notions of population, sample and parameter are introduced, and the basic problem in the theory of
sampling is formally stated. Next, in Section 3 two general strategies (or schemes) to select a sample
are briefly described, and they are illustrated by means of two important schemes, namely, the
simple and Bernoulli strategies. Then, the concept of sampling (probability) design is formulated in
Section 4, and an alternative implementation of the simple design is presented in Section 5. Finally,
the chapter concludes in Section 6, which concerns with two notions that will pay important roles
in the study of estimation problems, namely, the ideas of inclusion probabilities and membership

indicators.
2.2. Population and Random Samples

The environment of a sampling problem has an essential component, namely, the population, which

is an abstract representation of a collection of objects (entities) that contain relevant information.



In these note the population is represented by a set
u:{Ul,UQ,Ug,,...,UN} (221)

and the information conveyed by the units U; is given by a function ) defined on U and taking

values in IR or IR”; the function Y is frequently referred to as the study variable. The notation
Y(Ui) =Y, i=123,...,N (2.2.2)

will be used for the value associated to U; by the function ). For instance, if the units U; are
persons, Y; might be the weight of the i-th person. It is assumed that N, the number of elements
of the population, is known, but the function Y is unknown. Thus, the value Y; associated to U;
can be determined only after analyzing the unit U;. A parameter 0 is a value that depends on the

whole set of values Y7,Y5, ..., Yy, that is,
0=f(Y1,Y2,Y5,...,YN) (2.2.3)
for a certain function f. Common examples of parameters are the population total
t=Y1+Yo+Ys5+ - +Yy =Y (2.2.4)

and the population average
Vi+Yo+ Y+ -+ Yy
N

t= Y. (2.2.5).

The main problem in sampling theory can be now stated as follows:

To estimate a population parameter based on the knowledge
(2.2.6)
of Y; = Y(U;) for U; in a subset S of the population U

The importance of this problem stems from the fact that, frequently, it is impossible, impractical
or expensive to examine all of the units in the population to determine the whole set of values
Y1,Ys, ..., Yy and then compute exactly the value of the parameter. However, it is possible that

the available resources (time, budget) allow to examine some units U;,,U,,,...,U;, so that the

in

corresponding Y-values Y;,,Y; .,Y;, can be determined, and the problem is to obtain ‘a reason-

PERE

able approximation’ of the parameter value using only the information obtained from the analyzed

units.

A subset of the population is called a sample and the problem stated above can be rephrased as

follows:
To estimate a population parameter based on the knowledge
(2.2.7)
of the values Y; corresponding to units U; in a sample S.
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Since the parameter 6 is unknown, every time that a ‘reasonable approximation’ 6 for 0 is proposed,
it is important to provide a measure of the ‘estimation error’ |9 — 0. In general such an assessment
is possible if the sample used in the analysis was selected via a random mechanism. All of the

samples considered below will be obtained from U using a procedure that involves randomness.

2.3. Sample Selection Schemes

Two general methods can be used used to select a sample via a random mechanism:

o A Draw-Sequential Scheme consists of a series of random experiments which lead to the selection
of population elements, whose number depends on the result of the experiments. Each experiments
that leads to select one of the (possible) units is called a draw, and draws are performed as many
times as necessary until a certain stopping condition is fulfilled, for instance, when the desired

number of elements has been selected.

o A List-Sequential Scheme consists in traveling down the list of units, performing random experi-
ments each time that a new element is visited. As a result, the set of elements previously selected is
modified, for instance, adding the current element to the selection, or removing some units already
included. The process ends according to a sopping rule, so that it is possible that the process

concludes before the N-th unit is reached.

Example 2.3.1. [A Draw-Sequential Scheme]. The simple random sampling scheme (without re-

placement), which is used to obtain a sample of size n < N, is as follows:

1. Select a member of the population using a random mechanism assigning probability 1/N to each

one of the NV elements of U

2. Remove from the population the unit selected in the previous draw and, with equal probability

1/(N — 1), select from the remaining N — 1 elements a new member of the population;

n. Remove from the population the units selected in the n — 1 draws already performed and, with

equal probability 1/(N —n + 1), select a new element from the remaining N — n + 1 units.

After these steps, a (random) sequence

S = (Ui, Us,,...,Us) (2.3.1)

is obtained, where U;, is the unit selected in the k-th draw. This is a vector of distinct units taking

values in the space

Sp:={5= (uy,ug,...,up)|u1,us,..., u, are different elements of I/}. (2.3.2)
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The elements of S, are the ordered samples without replacement of size n and are also referred to

as the permutations of size n of the population /. From the above description it follows that

- 1 1 . &
PS=8 =, " v~ —nen S5

that is, all of the ordered samples (permutations) of size n have the same probability of selection.
Finally, a set S is immediately determined form S forgetting the order in which the units were
selected:

S ={Ui,,Ui,,...,U;, }.

This set is a member of the family
S, = {s| s is a subset of size n of U}.

which consists of all subsets (samples) of size n of U. Since the elements of a set of size n can be

arranged into a sequence in n! forms, it follows that

P[S=s]= =—, SES, (2.3.3)

(N ()
so that all of the samples of size n have the same probability of selection. O
Example 2.3.2. [A List-Sequential Scheme]. Let e1,es,...,ex be independent random variables

with ¢(0,1) distribution, i.e., the uniform distribution in (0,1). Given a number 7 € [0, 1], the

Bernoulli (sequential) sampling scheme is as follows:

For each ¢ = 1,2,..., N, include the unit
(2.3.4)
U; in the sample if and only if ¢; < .

Denote by S the family of all subsets of & and let S be the random sample (subset) obtained by
using the above Bernoulli scheme, so that
PlU; € S] = Ple; < 7]
=7
=1—-Plg;,>n=1-PlU; ¢S], Se8§, i=123,...,N,
so that for ¢ # j the events [U; € S| and [U; € S] are independent with probability m. Hence,

the corresponding indicator functions I[U; € S] and I[U; € S] are independent with common

distribution Bernoulli (7). It follows that
P[S=s]=7m"(1—-m)N"" s€8, (2.3.5)

where ng is the number of elements of the (sample) subset s. O
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2.4. Sampling Designs

As already noted, in this work all the sample under consideration will be obtained via a random

procedure, which determines a probability distribution on the space of possible samples.

Definition 2.4.1. Let S be the space of all samples (subsets) of the population U. A sampling design
is a probability function p: S — [0, 1] such that

p(s) = probability of selecting the sample s, s € S;

a sampling design is also referred to as a sampling plan.

Note that a sampling design p(-) satisfies two conditions: p(s) > 0 for every s € S,and ) s p(s) =
1.

Example 2.4.1. (i) Let n be a positive integer less than N. The simple random sampling design

without replacement is
p(s) = m, s€S,, p(s)=0, seS\S,, (2.4.1)

where S, is the class of all samples with n elements, and S is the family of all subsets of the
population U. This design will be denoted by SI where the sample size n is understood from
the context. Note that under (2.4.1) all of the samples outisde S,, have probability zero of being

observed.
(ii) The Bernoulli design corresponding to a number 7 € [0, 1] is defined by
p(s) = 7" (1 — m)N—ne (2.4.2)

where n, is the number of elements of s. Note that every sample has positive probability of being
selected under (2.4.2), which will be denoted by BE, where the value of 7 will be clear from the

context. 0

Remark 2.4.1. In principle, any sampling design can be implemented as follows:

1. Determine the class S* = {s € S|p(s) > 0}, and label its elements as s1, s2,. .., Sy, where M

= number of elements of S*.

2. Generate a random variable £ with distribution (0, 1) and define the random sample S by

S =g, if Zp(s,.) <e< Zp(&») = ZP(&-) + p(sk)-

r<k r<k r<k
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It follows that P[S = si| = p(s) for every k =1,2,..., M, that is,

when s € §*, and then for every s € S, since both sides of the above display are null if s € S\ S*.
Although the above procedure looks simple and direct it has a serious drawback, namely, usually
the number M of samples with positive probability is really huge, even for ‘moderate’population
sizes, and then it is impossible to store the set S* in a computer’s memory. For instance, consider
the design BE in Example 2.4.1(ii). In that case all of the samples of S have positive probability,
and then M = 2V, If N = 2000 then M = 22900 ~ 214 x 10%02; this figure is too large to
implement the above procedure in a computer. Now consider the SI design and suppose that the
population has N = 5000 elements, and that a sample of size n = 250 is going to be selected.
In this case the number M of samples with positive probability is M = () ~ 10%2°, again

an astronomical number. These comments highlight the importance of a good sampling scheme,

allowing to implement a given design in practice. 0O
2.5. Implementing the SI Scheme

Usually, the schemes in Examples 2.3.1 and 2.3.2 are employed to implement the SI and BE designs,

respectively. An alternative implementation of the SI design is discussed in the example below.

Example 2.5.1. The following draw sequential scheme implements the SI design:

Successively select with equal probability 1/N a unit from of the population ¢ and do not remove
the element chosen. Perform independent repetitions of the draw until n different units have been

selected. O

As it is shown in the following proposition, this scheme implements the SI design.

Proposition 2.5.1. If S is the set consisting of the n different elements obtained from the scheme

described in Example 2.5.1, then

P[S =s] = —, sis asubset of i with n elements.

Proof. Let 5 = (Uy,,Us,,...,Us,) € S, be an arbitrary ordered sample with n elements and, for

n

nonnegative integers r1,79,...,r,_1, consider the event

A(Ukurla Uk27r27 ceey Ukn—mrn—la Ukn)
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determined by the following conditions, whose probability is indicated in parenthesis:
1 (a). Unit Uy, is selected in the first draw; (1/N):
1 (b). In the next r; draws unit Uy, is chosen. ((1/N)™)

2 (a). The next draw (number 1 + 2) yields unit Uy,; (1/N)

2 (b). In the next ro draws either units Uy, or Uy, are chosen. (2/N)"2

3 (a). Unit Uy, is selected in the next draw (number r + 72 +3); (1/N)

3 (b). In the next r3 draws either units Uy,, Uy, or U, are chosen. (3/N)"s

(n —1)(a). Draw number r; +ro + -+ r,_o + n — 1 yields unit Uy, _,; (1/N)

(n —1)(b). In each one of the the next r,_; draws one of Uy,, Uk,,... Uk, , is chosen.  ( ((n —

L/N)™=2).
n(a). Draw number ry +ro 4+ -+ 4+ 1,1 + n yields unit Uy, ;  (1/N)

Since successive draws are independent, it follows that
P[A(UklyTl,Ukyr%n-,Uk,,L,Urn—l,Uk 1/N H k‘/N (2.5.1)

Now, let S be the random ordered sample of size n whose components are the different units that

are selected using the above scheme and preserving the order of selection, so that
(S =3 = U AUk, 71, Usys 2, U131, U, ).

Since the different events in this union are disjoint, combining these two last displays it follows that

PE=s = S L/

r1,72,. 120 k=1

Next, observe 35 - o(k/N)™ =32 _(k/N)™ =1/(1 —k/N) = N/(N — k), and then

T‘k—o
n—1

DR | (S | DL H
k=1r=0

1,72, Tn—120 k=1

a relation that combined with the above formula for P[S = 3] leads to

- 1
1;[ )

2 \

P[S =35 = (1/N)" 1:[
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Finally, since the n! posssible orderings of § generate the same (unordered) sample s = {Uy,, Uk,, . .., Uk, },

it follows that P[S = s] = nl/(N), = 1/(%). O

After a sample s has been chosen, the problem is to use the data obtained from s to establish

inferences about a certain parameter #, and an estimator 0 is required at this step.

Definition 2.5.1. The sampling strategy is the pair that consists of the sampling design and the

estimator(s) used to estimate the parameter(s) of interest.

Example 2.5.2. Consider the problem of estimating the population mean Y in (2.2.5). An example
of a sampling strategy is (SI, é))7 where the design SI is based on a sample of size n, and
L1 <
0= " Z Yi
=1
is the sample mean of the values y; = Y(Uy,) corresponding to the units Uy, in the sample,

i=1,2,...,n. Other example of a sampling strategy is (SI, é), where

é: max{ylay27"'ayn}+min{y17y27"'>yn} 0
D) .

2.6. Inclusion Probabilities and Membership Indicators

Suppose that a sampling plan p(-) is used to select a sample S from the population U/{. In this case

S is a random object whose distribution is given by

Definition 2.6.1. (i) For each k =1,2,3,..., N, the membership indicator I of the unit Uy € U is
defined by
IkEIk(S)Zl if Uy € 5, IkEIk(S)ZO 1ka¢S,

whereas

T = P[Ik(S) = 1] = P[k? S S]
is the (first order) inclusion probability of the unit Uy.

(ii) For U;, Uy, € U the corresponding second order inclusion probability is

mjx = PlU; € S, Uy € S] = P[I(S) =1, ;(S) =1].



15

Note that Ij is a random variable with Bernoulli distribution of parameter 7y, so that
E[I;] =7, and Var[ly] = mp(1 — 7). (2.6.1)
The second order inclusion probability 7 is
iy = P[I; = 1,1 = 1] = E[I;Ii] (2.6.2)
and with this notation
Cov (I, Ir) = mjp — mjmE =: Aj; (2.6.3).

note that mp, = mp = E[Ix] and Ay = Var [I] for every k. The sample size ng is defined by

u u
where ), is used as an abbreviated form of ), _,,. Observe that

Eng] =Y E[L] =Y m
u

u

Var[ng] =Y Var[L]+ Y. Cov(l;,I}) (2.6.5)
u J,keU, j#k -

=> A+ Y. Ap
u

JkeU, j#k

Example 2.6.1. (i) Consider the SI sampling design in Example 2.4.1(i). In this case

1
7 = Psr[Ug € S| = Z p(s) = Z —
s€S,:Ug€s seS,:Ur€s (n)

. N-1
and then, since there are (

n—l) samples of size n that contain Uy, it follows that

Next, observe that

1
ij:PSI[UjGS,UkGS]: Z p(s): Z N
SGSTLIU]’GS, Ur€s SGSntUjGS, Ui€s (n)

and using that there are (N -2

n—2) samples of size n that include U; and Uy, it follows that

(02 an-1)
Tjk = (N) :N(N—l)’ j#ka

n

and then

Ajk—ﬁjk—ﬂﬂk—m—(n>2——n(1—n)1 j#k.
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Of course, in the present context the sample size ng is the constant n, so that E[ng] = n and

Var [ng] = 0. To verify these equalities have a glance at (2.6.1) and note that
Bins) = = 3 =
N
u u
where the fact that ¢/ has N elements was used to set the last equality. On the other hand,

Var [ng] = Var

S

u

= ZVar [Ix] + Z Cov (I, I1)
u

J.kEU: j#k
:Z’frk(l—ﬁk)-i- Z Ajk
k J.keU : j#k
n n n n 1
RO E BBt
ZN( N , Z N N/ N-—-1
u JkeU : j#k

Since U has N elements, and there are N(N — 1) pairs (j, k) with different components in U it

follows that
1 _
N-1

Var[ng]:Nﬁ (1—2) —N(N—l)ﬁ (1_3)

N N N N 0

(ii) For the BE sampling design in Example 2.4.1 the membership indicators are independent with

common Bernoulli (7) distribution. Thus,
= Epp[ly]| =7, Ajr=Covpgll;,I;] =0, j#k,

and ng has the Binomial (N, ) distribution, a property that leads to F[ng] = N7 and Var [ng] =
N7n(1l—m). O

Proposition 2.6.1. Assume that the sample size ng is constant and equal to n under certain sampling

design. In that context, the following relation hold;

(a) Doy ™ = m;

(b) For each fixed j, >, Trj = n7j;

(€) Xoprzj mhj =n(n—1).

Proof. Recall that

nS:ZIk
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so that E[ng] = >, E[Ix] = >, Tk, and part (a) follows since ng is equal to n with probability 1.
Now, multiply both sides of the above display by I; and, recalling that ng is constant and equal

to n, take expectation in both sides of the resulting equality to obtain

nmy; = E[’nsfj] = ZE[IkIJ] = Zﬁkj

ke keUu

establishing part (b). Using this conclusion it follows that

E wkang 7T'j:’l7/27

J.keu jeu

where part (a) was used to set the second equality. Next, recalling that 7y = 7, observe now
that Zj weu Thj = Zj keu, j4k Tk + heu Tk = Zj keu, j4k Thi TN These relations and the above

display together lead to n? = Zj keu, j£k Tkj T 1, and part (c) follows. a

To conclude this section note that the whole vector of membership functions and the sample S

determine each other. In fact, given s € S, define define
i*(s) = (i1(s),i5(s),i3(5), - - -, in (8)),
where i5(s) = 1if Uy € s and i}(s) = 0 if Uy, ¢ s. In this case,

(I.(9), In(S), ... In(S)) = i*(s) < S =s. (2.6.6)
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Chapter 3

Horvitz-Thompson Estimators

3.1. Introduction

This chapter analyzes the problem of estimating a population parameter on the basis of a sample
obtained via a probability selection scheme. The main objective is to introduce the expansion
estimator for the population total, to show that it is unbiased, and to introduce the estimator
for the corresponding variance. The presentation has been organized as follows: In Section 2 the
expansion estimator is defined, and it is shown that it is unique and unbiased in the class of linear
estimators. Next, in Section 3, the ‘measurability condition’ is introduced, and it is shown that
its is sufficient to estimate the variance of the expansion estimator via an unbiased statistic. Also,
an alternative formula for the estimation of the variance is established for the case of designs
with constant sample size. In Section 4 the previous ideas are illustrated via a detailed example
with constant sample size, whereas Section 5 studies a Bernoulli design, which has a non-constant
sample size. Finally, the exposition concludes in Section 6, using a population with three elements

to provide a global illustration of the main ideas introduced in the chapter.
3.2. The Expansion Estimators
Before going any further, its is convenient to introduce some notation: A random sample obtained

via a given sampling design is denoted by s = {Uk,, Uk,, .., Uk, } and y; = Y(Uy,) stands for the

value of the study variable at unit Uy, in the sample. The lower case y; indicates that the value was
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obtained from a unit in the random sample s under consideration. On the other hand, ) y; is the
summation of the values y; over all indices k; such that Uy, € s. Thus, if s = {Uk,,Uk,,--., Uk, },

then Y- vi=y1 +y2+ - +yn =Ye, + Y, +... + Y%, . Note that, by Definition 2.6.1(i),
dovi= IV
s u

Consider the problem of estimating the population total

t=> Vi=Yi+Yy+Vi+ -+ V.
u
When a sample s = {Uy,, Uy, ..., U, } is available only the values Yy, Yx,, ..., Y%, are known and

t can not be calculated exactly. In that case, estimations of ¢ must be constructed. The following

linear estimators will be studied:
Lt = Z Ck IkYk,
u

where the ¢;’s are constants. Note that E[t] = >, cx E[I]Yy = >y, cxmi Yk, and then E[f] = ¢ if
and only if ¢, = 1/ for every k, that is, there is only one choice of the coefficients ¢ so that # is
an unbiased estimator of t.

Definition 3.2.1. (i) A sampling design p(-) is a probability design if

>0, k=1,2.., N.

(ii) For a probability design, the m-expanded estimator of ¢ is

=Y fk =S5 => 1LY (3.2.1)
s g u

S

where
i Y, .
gi=2 =k 19 . .n (3.2.2)
T, T,

is the expanded ¢-th sample value, and
- Y
Y, = =&
Tk

is the k-th expanded population value.

The statistic £ in (3.2.1) is also known as the Horvitz-Thompson estimator.

3.3. Mean and Variance

By construction, the expansion estimator in Definition 3.2.1 is unbiased, so that E[f] = ¢. In the

following proposition this result is stated for future reference, and the variance of £ is computed.



Proposition 3.3.1. (i) The estimator  in (3.2.1) satisfies

Efj=t and Var[t] = Z (TTANTR T
jkeu

see (2.6.3).
(ii) Assume that the following ‘measurability condition’ holds:
T £0, jk=1,2... N.

In this case an unbiased estimator of Var [ﬂ is

N o . AL
V(t) = Z Ui ATk, where Ajp:= L
j,kes Tkj

(iii) If the sample size is constant, then

N 1
Var [f] = =2 0 A — )’
J.keU

and, under the measurabilty condition (3.3.1), an unbiased estimator of Var [{] is given by

. 1 o
V(t) = —3 A (55 — k)

Proof. (i) Observe that

E[f]=E

szgk] N I
u u u
where (3.2.2) was used to set the last equality. To conclude note that

Var [ﬂ = Var

J.keu j,keu

(ii) To begin with, observe that

V(i) = Z Ui Ajriie = Z LTkl A i,
J,keS J.keu

and then

E [V(f)} =B | Y LiLgiBjin| = D ElLI58 w0k = > w5kl A,

j,keU j.keU j,keu

and via (3.3.2) it follows that E[V ()] = > i keu Uidjredr = Var (]

Z&?Jk] = > 4Cov (L, Ie) Uk = Y 98k
u

20

(3.3.1)

(3.3.2)

(3.3.3)
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(iii) Suppose that ng is constant, say n, so that >, ., Ix = n. It follows that

0 = Cov (n,I;) = Cov (Z Ik,Ij> = ZA’W'

ke kel

Then, multiplying by gj]z, the above equality yields that }°, ., Akng)? =0, and then

> Ay =0.

jokeU

Similarly,
> Apyii =0.
J.keU

Therefore,

Var [2?] = Z ngjkyk

jkeu
= > Gk — Z Ajrdi — Z Ajid;
jikeu 2 eu 2 eu
1 N S

=3 Z Aji [=2059k + Uk + U5

jkeu
= -3 Z A]k: - yk

j,kEZ/l

To conclude, note that

JkeS J.keu
and then
E[V(#)] = jkze:u (L1 A k(5 — k) = ;j%uﬂjkAjk(gj — )%
via (3.3.2), it follows that E[V({)] = —= Z A (Y, = Var [{]. O
g keu

3.4. An Example with Constant Sample Size

This section illustrates the idea of inclusion probability as well as the results in Proposition 2.6.1
concerning designs with constant sample size. Also, the problem of determining the sample inclusion

probability in an SI design is studied.

Example 3.4.1. In planning an office network study, the following draw sequential sampling

scheme was proposed for selecting a random sample of two nonadjacent office hours intervals

[9,10),[10,11),...,[15,16),[16,17) (labeled 1-8).
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1. Draw the first interval with equal probability from the eight intervals.

2. Draw, without replacement, the second interval from the intervals that are nonadjacent to the

first one selected.

(a) Determine the first and second order inclusion probabilities;
(b) Is the sampling design induced by the proposed selection scheme measurable?
(c¢) Determine the covariance of the sample membership indicators

(d) Verity that the fixed sample relations are satisfied in this case. O

Solution. The application of the sampling scheme produces an ordered sample § = (@, 42), and
s ={x|x =1ay or x = Gy} is the corresponding (unordered) sample that is finally obtained. Note
that the intervals 4; = 1 and 43 = 8 (i.e., [9, 10) and [16, 17)) have just one adjacent interval
([10,11) for @; = 1 and [15, 16) for 41 = 8), whereas if 4; = x € {2,3,4,5,6,7} then z has five
nonadjacent intervals. Since the second unit is selected without replacement from intervals which

are nonadjacent to uq, it follows that

Pliy =aliy =1] = 1/6, x€{3,4,5,6,7,8}
Pliy =zliy =2] = 1/5, =z €{4,5,6,7,8}
Pliy = x|ty =3] = 1/5, x¢€{1,56,7,8}
Pliy =zliy =4 = 1/5, x€{1,2,6,7,8}
Pliy =zliy =5 = 1/5, =x€{1,2,3,7,8}
Plig = zliy =6] = 1/5, z€{1,2,3,4,8}
Pliy =zliy =7] = 1/5, =x€{1,2,3,4,5}
Pliy =]ty =8] = 1/6, x¢€{1,2,3,4,5,6}

Note that after each equality the set of units that are nonadjacent to @y is explicitly indicated.

Recalling that Plu; = y] = 1/8 for every y € {1,2,...,8} it follows from the multiplication rule

that
Pl(ay,a2) = (1,z)] = 1/48, z €{3,4,5,6,7,8}
Pl(ay,a0) = (2,2)] = 1/40, x€{4,5,6,7,8}
Pl(u1,u2) = (3,z)] = 1/40, =z €{1,5,6,7,8}
Pl(ty,02) = (4,2)] = 1/40, =z€{1,2,6,7,8}
P[(a1,a2) = (5,z)] = 1/40, =x€{1,2,3,7,8}
Pl(u1,u2) = (6,2)] = 1/40, =x€{1,2,3,4,8}
Pl(uy,u2) = (7,2)] = 1/40, =x€{1,2,3,4,5}
Pl(a1,a0) = (8,x2)] = 1/48, xz€{1,2,3,4,5,6}

The same information is presented in the following matrix where the i, j entry gives the probability

Pliy =i, iy = j]:

PS = (i,J)]



0
0
1/40
1/40
1/40
1/40
1/40
1/48

0 1/48 1/48 1/48
0 0 1/40 1/40
0 0 0 1/40

1/40 0 0
1/40 1/40 0
1/40 1/40 1/40

0
0
0

1/40 1/40 1/40 1/40
1/48 1/48 1/48 1/48 1/48

1/48
1/40
1/40
1/40
0
0
0

1/48
1/40
1/40
1/40
1/40
0
0
0

1/48
1/40
1/40
1/40
1/40
1/40
0
0
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This table can be used to determine the probability of selecting any unordered sample s as follows:

If

§ = {Zaj}a

p(s) = P[S = s] = P[S = (i,4)] + P[S = (4,7)].

The following upper triangular matrix gives the distribution of S; for each pair (4,7) with 1 <i <

j<8and i <6, P[S=/{ij}] is given in the (4, j) entry.

OO O O oo
OO o oo

P[S = {s1, 82},
11/240 11/240 11/240
0 12/240 12/240
0 0 12/240
0 0 0
0 0 0
0 0 0

In decimal notation this matrix is

[eoilen i an I an B e B @n)

0 0.046 0.046 0.046
0 0 0.06  0.05
0 0 0 0.05
0 0 0 0
0 0 0 0
0 0 0 0

S1 < S2
11/240 11/24
12/240 12/24
12/240 12/24
12/240 12/24

0 12/
0 0
0.046 0.046

0.05  0.05
0.05  0.05
0.05  0.05

0 0.05
0 0

0 10/240
0 11/240
0 11/240
0 11/240
0 11/240

11/240

0.042
0.046
0.046
0.046
0.046
0.046

For instance, p({2,5}) = 12/240 = 0.05, and p({4,8}) = 11/240 = 0.046.

(3.4.1)

(3.4.2)

(a) Recall that Iy, = I[uy, € S] is the membership indicator of the k-th unit, and that the sampling

design is given in (3.4.1) or (3.4.2). Observe now that in the present case my

Plk € S] =

> ok PIS = {k, i} + 32,4, P[S = {j, k}] is the summation of the k-th row and column of the

matrix (3.4.1). For instance,

7= Y PIS = {451+ Y PIS = {5,4)]

>4

= (12/240 + 12/240 + 11/240) + (11/240 + 12/240) = 58 /240

and

j<4

7= S PIS = {733+ 3 PIS = {5,7)]

J>7

= (0) + (11/240 + 12/240 + 12/240 + 12/240 + 12/240) = 59/240

§<7
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The vector 7 of first order inclusion probabilities is given below:

™1 T T3 T4
65/240 59/240 58/240 58/240 (3.4.3)
s T6 7 T8 o

58/240 58/240 59/240 65/240

On the other hand, the matrix [m; ;] is given by
Tk = Pluj € Syup € S| = Pllj = 1,1y = 1] = P[S = {j, k}],

where 7, = Plk € S| = 7. Thus, the matrix [, x], can be immediately determined combining

(3.4.1) or (3.4.2) with (3.4.3):

ré6s5 0 11 11 11 11 11 107
0 59 0 12 12 12 12 11
11 0 58 0 12 12 12 11

1 |11 12 0 58 0 12 12 11

(] = 240 |11 12 12 0 58 0 12 11

11 12 12 12 0 58 0 11

11 12 12 12 12 0 59 0

10 11 11 11 11 11 O 651

(3.4.4)

(b) The sampling design p is measurable if
mix = PlU; € S,U, € S] >0

for each pair of different units U; and Uj. In the present case m3 4 = 0 and then the design p is not

measurable.
(¢) The covariance matrix A = [Cov (Iy, ;)] = |7 — m;7] is given by

r 0.197 -0.067 -0.02 -0.02 -0.02 -0.02 -0.021 —0.0327
-0.067 0.185 —0.059 -0.009 -0.009 -0.009 —-0.01 -0.021
—-0.02 —-0.059 0.183 —0.058 —0.008 —0.008 —0.009 —0.02

3\ — —-0.02 —-0.009 -0.058 0.183 —0.058 —0.008 —0.009 —0.02 (3.4.5)
—-0.02 —-0.009 -0.008 —-0.058 0.183 —0.058 —0.009 —0.02 o
—-0.02 -0.009 -0.008 —-0.008 —0.058 0.183 —0.059 —0.02

-0.021 -0.01 -0.009 -0.009 -0.009 -0.059 0.185 —0.067

. -0.032 -0.021 -0.02 -0.02 —-0.02 —-0.02 —-0.067 0.197 ]

(d) The fixed sample relations are:

(i) >°p ™ = n. In the present case (3.4.3) yields that

iﬁ 65+ 59 + 58 + 58 + 58 + 58 + 59 + 65 480
k= =

240 T 240

k=1

(11) Zk,jGU,jyék Tk,j = n(n — 1)
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The matrix |7} ] in (3.4.4) was computed and saved in R under the name PIMat. The summation

of interest was obtained with following R-code:

AUX <- PIMat; diag(AUX) <- 0; sum(AUX)

The result is 2; since nx (n — 1) = 2% (2 — 1) it follows that the equality (ii) holds. Note that
AUX has zeros along the main diagonal, and that the command sum(AUX) returns the sum of all

elements of the matrix AUX.

(iii) The third relation is
Z Tk,j :(n—l)ﬂ'k.
J:j€eU, j#k
Since n = 2, the right-hand side equals the k-th component of the vector diag(PIMat). The
left-hand side is the k-th component of apply (AUX, 1, sum). Thus, to verify the equality in the

present context, it is sufficient to issue the following R-command:

round( apply(AUX, 1, sum) - diag(PIMat), 5 )

and to check that a vector of zeros is produced. The output is the null vector of size 8, verifying
the third equality; note that, because of unavoidable rounding errors, the use of the round function

is necessary. 0O

Example 3.4.2. A sample s of n individuals is drawn by the SI design from a frame that contains N
individuals. The households corresponding to the selected individuals are identified. Compute the
inclusion probability of a household composed by M individuals, where M < n. Obtain approximate
expressions for the inclusion probability for M = 1,2, 3, supposing that both N and n are large
with n/N = fy — f > 0. O

Solution. A household of M inhabitants is included for analysis if and only if one of the M indi-
viduals is selected in the SI sample s. Thus, the probability of inclusion of a household of size M

is
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Observe that

(N=n)(N-n—-1)---(N-M—-n+1)
B N(N—-1)---(N—-M+1)
(I-fn)A—fv—1/N)---(1—fn —(M—1)/N)
1(1=1/N)--- (1= (M —1)/N)

Thus, if M is fixed, then as n and N go to co in such a way that n/N = fy — f it follows that

= (1= M,

and then apr — 1 — (1 — f)M. O

3.5. Inclusion Probabilities in Bernoulli Designs

This section contains two examples about the inclusion probabilities in Bernoulli sample designs,

where the underlying population is subdivided in clusters.

Example 3.5.1. Consider a population U with three subpopulations Uy, Us and U3 of sizes N7 = 600,
Ny = 300 and N3 = 100, so that U is of size N = 1000. For each k in U, the inclusion in the
sample s is determined by a Bernoulli experiment that gives the element k the probability 7 of

being selected. The experiments are independent.

(a) Let mp, = 0.1 for k € Uy, mp = 0.2 for k € Us, and 7, = 0.8 for k € Us. Find the expected value

and variance of ng under this design.

(b) Suppose that 7 is constant for every k € U. Determine this constant so that the expected
value of the sample size agrees with the expected value obtained in the previous part (a). Next,

determine the variance of the sample size and compare it with the variance in case (a). O

Solution. (a) Let ng) be the number of elements in the sample that belong to the subpopulation

U;, so that

(1) ng),n(;),ng’) are independent;

(i) n) ~ Ber(my,600) = Ber(0.1,600), n'2) ~ Ber (s, 300) = Ber(0.2,300) and n) ~ Ber (s, 100) =
Ber(0.8, 100);

(iii) ng = ng) + n(SQ) + ”(53)-
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It follows that
Elns] = Elng’] + E[n$] + EnY]
= 600(0.1) + 300(0.2) + 100(0.8) = 60 + 60 + 80 = 200

and
Var [ng] = Var {ngl)] 1 Var {ngz)] o+ Var {ng’)}

= 600(0.1)(0.9) + 300(0.2)(0.8) 4 100(0.8)(0.2) = 54 + 48 + 16 = 118.

(b) Let mp = m for every k € U. In this case, the number of elements ng in the sample S is a
random variable with distribution Ber(m, 1000) so that E[ng] = 10007, and Var [ng] = 10007 (1—).
Thus, in order to have that the expected value 10007 coincides with the one in part (a) the
equality 10007 = 200 must be satisfied, so that 7 = 0.20. In this case the variance is Var[ng] =
1000(0.2)(0.8) = 160, which is larger than the one in part (a).

Example 3.5.2. A Population of 1,600 individuals is divided into 800 clusters (households) with

the number of clusters of size a is N, for a = 1,2, 3,4 as indicated below:

a: 1 2 3 4
N, : 250 350 150 50

A sample of individuals is selected as follows: 300 clusters are drawn from the 800 by the ST design

and all individuals in the selected clusters constitute the sample. Determine F[ng] and Var [ng] O

The argument below relies on the formulas for the expectation and variance of a random vector
with multidimensional hypergeometric distribution, which are established at the end of the Chapter

4.

Solution. The sample of n = 300 households is selected form the population ¢, which is the union
of four subpopulations Uy, Us,Us, Uy of sizes N1 = 250, Ny = 350, N3 = 150, Ny = 50, respectively.
If X; is the number of units in the sample that belong to U;, it follows that

X = (X1, X2, X3, X4) ~ H4(300, 800; 250, 350, 150, 50)

and then
E[X]=np and Var[X] = n(1 - f)[diag(p) — p'p]
where
p = (N1/N,N3/N,N5/N,Ny/N) = (0.3125, 0.4375, 0.1875, 0.0625)
and

jon-1l_ 29
TN—-1 799
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Consequently
E[X] = np = (93.75,131.25,56.25, 18.75).

and
40.3336  —25.6668 —11.0001 —3.6667

—25.6668  46.2003 —15.4001 —5.1334
—11.0001 —15.4001  28.6002 —2.2
—-3.6667 —5.1334 —2.2 11.0001

Var [X] =

The number of individuals in the selected clusters is

ns = X1 +2Xo +3X5 +4X4 = (1,2,3,4) - X

and then
Ens] =(1,2,3,4) - E[X] = (1,2,3,4) - (93.75,131.25,56.25, 18.75) = 600,
and
1
Var [ng] = (1,2,3,4)V g = 140.801
4
completing the argument. O

3.6. An Example with Variable Sample Size

In this section two simple examples are used to illustrate the main ideas introduced in this chapter.

Example 3.6.1. Consider a population of size N = 3, say U = {1,2,3} and let the sampling design

p(+) be determined as follows:

s: {1,2} {1,3} {2.3} {1,2,3}
p(s): 04 03 02 0.1

(a) Compute the vector m = (m;,) and the matrix [m; ].
(b) Find E[ng] by direct calculation using the table above;

(¢) Find E[ng] by using the formula in terms of the inclusion probabilities . O

Solution. Recall the m, = P[k € S] is the probability of inclusion of the unit & in the selected
sample S, whereas m;, = P[j € S,k € S] is the probability of having that both units j and k
belong to S.
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(a) The inclusion probabilities are given by

k: 1 2 3
m=PkeS]: 08 07 0.6

that is,
(my,ma,m3) = (0.8,0.7,0.6)

For instance
T = P[2 S S]
=P[S={1,2}]+ P[S={2,3}]+ P[S={1,2,3}] =04+ 0.2+ 0.1 =0.7.

On the other hand,
0.8 0.5 04
el =105 0.7 03
04 0.3 0.6

As an example, m 3 = P[1 € 5,3€ S]=P[S={1,3}]+ P[S={1,2,3}] =03+ 0.1 =0.4.

(b) From the definition of the sampling design, ng attains two values, namely 2 and 3. Note that
Plng = 2] = P[S = {1,2}] + P[S = {1,3}] + P[S = {2,3}] = 0.9, and P[ng = 3] = P[S =
{1,2,3,}] = 0.1. Consequently,

Elns] = 2P[ng = 2]+ 3P[ng =3] =2-0.9+3-0.1 = 2.1.

(¢) Note that E[ng| =m + 72 + 73 =0.84 0.7+ 0.6 = 2.1. O

Example 3.6.2. In the context of Exercise 3.6.1, let the values of the the study variables be
y1 =16, y2 =21, y3 =18,
so that the total is
t = 55.
(a) Compute the expectation and variance of the m-estimator .
(b) Compute the variance of ¢, using the general formula in terms of the covariances Ajg.
(¢) Compute the coefficient of variation of the 7 estimator.
(d) Compute the estimator of the variance V (£;) using the 7 expansion formula.

(e) Find the expectation of V(f,) using the definition of expected value. ]

Solution. The expanded values of y;, namely, §; = y;/m; are given by

y/ = (ylag27y3) = (20,30,30)
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(a) Observe now that #,({1,2}) = 91 + 72 = 50 and #,({1,2,3}) = 41 + 92 + 93 = 80. Proceeding

similarly, the following table is obtained:

s: {1,2} {1,3} {2,3} {1,2,3}
04 03 02

p(s) : 0.1
te: 50 50 60 80
tr—55: =5 -5 5 25

It follows that E[t,] = 50-0.7+60-0.2+80-0.1 = 35+ 12+ 8 = 55, verifying that , is an unbiased
estimator, and

V(ix) = (5)2-0.9 + 252 - 0.1 = 85.

(b) First observe that the second order probabilities m; ; are given by
Mo = s =P[{1,2} € ] = P[S = {1,2}] + P[S = {1,2,3}] = 0.5
ms1 =ms =P[{1,3} € S] = P[S = {1,3}] + P[S = {1,2,3}] = 0.4
3o =g =P[{2,3} C 8] = P[S = {2,3}] + P[S = {1,2,3}] = 0.3

and
7T1’1:7T1:P[1€S]

= P[S={1,2}] + P[S = {1,3}] + P[S = {1,2,3}]
=0.8
whereas 7 9 and 73 3 are computed similarly. The matrix [m; ;] was introduced in the R environment

under the name pimat and then the matrix
A =[Aj k] = [mjk — m5mi] = Cov (I, Ii)
was computed using the following R code:
Delta <- pimat - crossprod (rbind(diag ( pimat) ) )

and the following result was obtained:

0.16 -0.06 —-0.08
A=1]-006 021 -0.12
—-0.08 —-0.12 0.24

In terms of the covariance matrix A, the variance of ¢ is given by

R (1
Vitz] = (F1, U2, U3)A | U2
U3
0.16 —0.06 —0.08 20 -1
= (20,30,30) | —=0.06 0.21 —0.12 30 | =(20,30,30) | 1.5 | = 85.
—0.08 —-0.12 0.24 30 2

(¢) OV (tx) = (V[tx])/?/E[t] = 85'/2/55 = 0.1676281
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(d) The estimator of the variance V (f,) is given by
V(i) = > 08, ki
s

where
0.2 -0.12 —-0.2

A=[Ajr/mixl=|-012 03 04
-02 —04 04

Using these two last displays, for each possible sample s, the estimate V(fw) can be immediately

computed. For instance, if s = {1,2}, then

20
V() ({1,2}) = (20,30,0)A | 30 | = 206
0

The entries in the third line of the following table are computed similarly.

s: {1,2} {1,3} {2,3} {1,2,3}
p(s): 04 03 02 0.1
V(ie)(s): 206 200, —90  —394

It is interesting to observe that V[fﬂ] attains negative values at some samples.

(d) Note that
E[V(f;)] =206 - 0.4 +200-0.3 — 90 -0.2 — 394 - 0.1 = 85,

confirming that V[f,] is an unbiased estimator of V[i,]. O
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Chapter 4

Simple and Bernoulli Schemes

4.1. Introduction

The simple and Bernoulli sampling schemes have been previously studied, and in this chapter they
will be analyzed more deeply. To begin with, in Section 2 it is shown that, conditionally on the
observed sample size, the sample obtained from a Bernoulli scheme is a simple random sample,
and it is shown that, under the SI design, the sample variance as an unbiased estimator of the
population variance. Next, in Section 3 it is proved that under the Bernoulli scheme the sample
variance is a biased estimator, but that the relative bias converges to zero as the population size
grows, and the section concludes analyzing the covariance between two sample means obtained from
disjoint simple random samples. Then, in Section 4 sampling with replacement is considered, the
estimation of the population total is analyzed via the the Hurwitz-Hansen expansion estimator, and
the results are illustrated in Section 5 for the problem of estimating the income per household; an
interesting feature of the of the analysis is that the sampling units are not the population elements
(the individuals), but small clusters (the households). Finally, Sections 6 and 7 contain a formal
statement and proofs of basic properties of the multivariate hypergeometric distribution and the

Bernoulli sampling design.
4.2. Relation Between Simple and Bernoulli Samples

The main objective of this section is to show that, conditionally on the observed sample size,
the sample obtained from a Bernoulli scheme is a simple random sample. The analysis is used

to provide, under the SI design, a short proof of the unbiasedness of the sample variance as an
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estimator of the population variance.

Example 4.2.1. Let S be a sample realized from the BE design with 7, = 7 for every k and, as
usual, let ng denote the (random) sample size of S. Show that, conditionally on ng = n, the

probability of any sample s of size n is 1/ (17\{ )7 the same probability as in the ST design. 0O

Solution. Under Bernoulli sampling, ng ~ B(N, ), where N is the population size, so that

N
n

Plng =n] = ( >7r"(1 —m)N=n,

Now, let s be an arbitrary sample (subset of the population i) with n elements, and note that

under Bernoulli sampling

Thus,

P[S = s|ng =n] = — _7 = — o

and then

Thus, conditionally on the event ng = n, all samples of size n have the same probability 1/ (]X ), as

in the SI design. a

Example 4.2.2. The objective of this exercise is to show that, in the SI design, the equality
Esi[S}.) = Soy (4.2.1)

holds, so that the expected value of the (corrected) sample variance equals the (corrected) popula-

tion variance. Note that, for every set A C U,

1

§2, =——
yA ’/LAfl

> (yi — ya)*, where ga = > _yi/na

icA i€A
and n 4 is the number of elements of A.

(a) Establish (4.2.1) using that

n
T szyz] S 122)
kes keU U
and
n(n—1

J#k.j,k€s J#k,j,keU J#k,3,keU
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(b) Prove (4.2.1) using that
D (y; —wk)* = 2n(n = 1)S;, (4.2.4)

S

with a similar relation for S;U 0O

Solution. (a) Observe that under the SI design ns = n for every possible sample, and then

(n=1)S5, = (yi —9:)> = Y _yi —ny

i€s 1€ES
1 ’ 1
SIEEL OIS SEEEY TN s
i€s keEs i1€s kEs j#k,j,k€Es
n—1 1
=D v Y5
i€s Jj#k.j.kEs

Combining this relation with (4.2.2) and (4.2.3) it follows that

n—1

(n=1E[S;]= —F

ys

Zy?]—iE > vk

i€s j#k,j,kEs

_n—1n J2 - 1 n(n—1) ‘
T oon Yi nN(N 1) Z YiYk
J#k,j,keU

N
- Z — n_ll) Z YjYk

J#k,j,keU

Z YiYk

Jj#k,j,kelU
To continue, observe that
ST (zy) SN
J#k,j, k€U keU keU keU

an equality that together with the previous display yields that

- =t S (WU o]

keU

- Rt v

o [zyl Nga] -1y

€U

and (4.2.1) follows.
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(b) First, it will be verified that 2n(n —1)S;, = doigesWi — y;)?. Note that

i)=Y Wi—7,— (y —7,))°

,J = ]Ze: [(yi = 7.)° + (45 = 5))* = 2(vi — ) (y; — 7))
= i: (i =7 + Ze: (v = 7,))* =2 Ze: (vi = 9,)(v; = 7,)
—:ZEX ~7,) +;Ze: =) —;g(yi —@s);(yj -7,
= QN;(% v,)% J J

since S, = (n—1)7! doijesWi — y;)?, it follows that

S wi-y)P=2n) (4 —7,)* =2n(n—1)S2,

i,JES i€s

establishing the desired equality. Next, observe that

>y — )’ lek :

so that
2n(n— DE[S,) = E |> Ly, yk)zl
U
_ n(n—1) 5
n(n —1) 9
= NN = 1)2N(N )SyU =2n(n — 1)SyU,
where equality (4.2.4) for SiU was used in the last step. O

4.3. Relative Bias Under BE Design

In this section it is shown that, under the Bernoulli scheme, the sample variance is a biased estima-
tor, and that the relative bias converges to zero as the population size grows. Next, the covariance

between two sample means obtained from disjoint simple random samples will be obtained.

Example 4.3.1. Let s be a sample drawn by the BE design with 7, = 7 for all k. Set

2 Es(yk - gs)Q
Bus = a2 1)

Show that, as an estimator of SyU, the relative bias of 55;,

ifng>2, Sy =0,ifn, <1

namely
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is given by

= —Plns <1] = —[1 - m)™ + Nr(1 —m)N ). 0

Solution. Recall that, under the BE design, given ng = k the conditional distribution of the sample
s is the same as if s were selected via the SI design; see Example 4.2.1. Since SZS is an unbiased

estimator of SiU when the sample size is larger than 1, it follows that

E[S2,|ng = k] = S2,, k>2.

ys y

On the other hand, 555 = 0 when ny < 1, and combining this fact with the above display it follows
that E[S;.] = Sy, P[ns > 2], so that

E[Sgs] - SSU

52 :P[n522}71:fp[n5§1].
yU

Too conclude recall that ng ~ B(N, ) under the BE design, and then
Png<1)=1-m)N + N1 —m)¥"1x,

completing the argument. O
Now, the covariance between to disjoint simple random samples will be obtained.

Example 4.3.2. Let s4 be an SI sample, and let sp be an SI sample from U \ s4. Denote by 4
and yp the sample means corresponding to s4 and sg, respectively. Determine the covariance and

the correlation between y4 and ypg. 0O

Solution. Given s4, sp is an SI sample from U \ s4, so that

R 1
Eljplsal = N _na > we
U\sa
1
_ _ , 4.3.1
el o
o NY—”AZ)SA
B N—TLA

and then, since g4 is a function of s4,
NjaY —naji

Elgagplsal = ——~

recalling that E[j4] =Y (since s4 is an SI sample) it follows that

. NY? — nsE[§3
Bljags) = ——F—> ;‘LA 4], (4.3.2)
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On the other hand, since g4 is the sample mean of an SI sample of size n 4,

whereas, via (4.3.1),
Elyp] = E[E[jpsall
NY — TLA@SA
_ g |2 T AYsa
[ N — na
_ NY = n4E [j,]
N — na
o NY — TLAY
N N — na
and then, E[jp] =Y. Hence, (4.3.2) leads to

Cov (§4,98) = E[§ays] — Eljal E[js]
NV Bl
N — na
naY? — naE[j}]
N — na
= _NiAnA Var [§4]
na 1 N-— na

N—TLATLA N

2

and then

. 1
Cov (44, 0B) = _NSSU'

Now observe that that the formula for the variance from an SI sample yields that

- - 1 N—-n 1 N—n
YVl Varfis] = o L M, LN g

yU@
\/NTLBNTLAISQ
N na ng NV

and together with the above displayed expression, it follows that

Corr(ga,yB) = \/(N _ nT:;?Zl\Bf —na) .

4.4. Sampling with Replacement

In this section sampling with replacement is considered, and the estimation of the population total

is analyzed. The following example introduces the Hurwitz-Hansen estimator.

Example 4.4.1. Let Y = {U1,Us,...,Un} be a population of size N and suppose that y; = y(U;)

is the quantity of interest associated with the unit U;. An ordered sample § = (u;,, Uiy, ..., Uu;,, ) IS
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selected with replacement in such a way that, in each draw, the probability of selecting unit U; is
pi, 1 =1,2,...,N. Consider the Hansen-Hurwitz estimator of the total t = y; +ys +--- + yn (or

p-expanded estimator) £, which is given by
~ 1 n Yi .
tpwr - .
m ; Di;

Show that

(a) E[tpwr] =t

(b) The variance of ,,, is given by

N 2
~ 1
Var [tpwr} = Evl’ where V) = Zpk (i/]: — t) .
k=1

(¢) V1 has estimator

(d) Show that

N 2 m 2
~ 1 i ~
V'l — E yi _ t2, and Vl — § (yJ) —-m tiwr . (441)

Solution. (a) Let N; be the random number of times that unit U; appears in the sample, and

observe that

NkNB(m,pk), k‘:1,2,3,...,N,

as well as

Therefore, E[Nj] = mpy and

m N N N
Yi; k k k
B>~k z”kl =Y L) = 3" Loy = mt
=1 Pi =1 Pk =1 P¥ k=1 1k
so that
~ 1 m Yi .
Elt,wr E|— | =t
[Epur] - Z o
j=1°""
(b) Let Z; be defined by
Z, =% j=12..m
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Since in each selection the unit U, is selected with probability p,., it follows that, for each j, the

variable Z; attains value yy/py with probability py, so that

N N
E(Z;] = Z ylpk = Zyk =t (4.4.2)
=1 Pk k=1
and v ,
1= 21— Ye _ _.
Var [Z;] = E[(Z; — )] 1; Di <pk t) Vi (4.4.3)

Observe now that 21, Zs, ..., Z,, are independent and identically distributed, and that

1 m
by = — ;Zj =Zmm.
Jj=

These two last displays immediately lead to

Var [fpwr] = %

(c) Vi is the variance of the common distribution of the variables Z;, which are independent and

identically distributed. Thus, an unbiased estimator of V; is the (corrected) sample variance

A 1 _
=—) (Z; - Zn)?
Vl m_ljzl(J )

m 2
1 Yi,
e by
m—1\pj

(d) Observe that V; = Var [Z;] = E[Z}] — (E[Z;])?. Thus, since Z; attains the values y;/pj, with
probability px, k =1,2,3,..., N, it follows from (4.4.2) that

N 2 N 2
N
k=1 Pk k=1 Pk
establishing the first equality in (4.4.1). As for the second one, recall that for a1, as,...,an € R,

m m
Z(ak —a)’= Za? —ma
k=1 k=1
Now set ax = yi, /pi, and note that @ =m~=1>"" | (i, /pi) = tpwr. Thus, the above display yields
) 1 m " 2 1 m " 2
v, = <%k _ gpw> - [Z (%) - mt“fm]
m—lkz1 m—1 = \Pix

Diy,

which is the second equality in (4.4.1). O
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4.5. An Example: Income per Household

In this section an example about the average income per household is analyzed. There are two
interesting features in this context: The sampling scheme is with replacement, and the sampling

units are not the elements of the population (the households) but the inhabitants.

Example 4.5.1. To estimate the average income per household (>, yx/N) for a population of
N = 200 households, a listing of the 600 individuals that belong to the 200 households was used as
follows: A simple random sample with replacement of m = 10 persons was drawn. The households
of the selected persons were identified, and information on the average income in the household
(yi/x;) was collected, where yy, is the total household income in dollars, and zj is the number of
persons in the households. The results are as follows:

Draw Average household income
(yij /xij )
7000
8000
6000
5000
9000
4000
7000
8000
4000
2000

© 00 O Ui W -,

—
)

Compute an estimate of the average income per household based on the pwr estimator as well as

the corresponding estimated coefficient of variation. O

Solution. The population consists of N = 200 households, whereas the sampling scheme is done
on the class of all 600 inhabitants of the households. Once a person is selected, the corresponding
household is fully analyzed to determine the total income (y;). Thus, the scheme selects household
¢ with probability p; = x;/600, where x; is the number of inhabitants of household i. Tthe p-
expanded estimator of the total t = )", yx, based on a sample with replacement of size m = 10

is

1 10 vi 1 10 "
bpwr = — Y == =600— b
P 10 ; Diy, 10 ; Ty,

and
=i
~ 200 "
is an unbiased estimator of the average income per household ), yx/200. Note that
10 ;
o I 502 11 > k=1 Wi /Pi) — tpuwr]”

V) = 5502V trer) = 5555 10 10—1
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and then o ~
10 10-1

With the above data, direct calculations yield that fpw = 3600, 000 and then

t = 18,000.

On the other hand " ~
o L2 By /i) — 1)?

t) = =44
V(t) 10 10 — 1 00, 000
so that o
. (V@E)Y?2  2,097.618
) = Z = =0.1165343.
cve(t) ; 15,000 0.1165343
is the estimated coefficient of variation. O

Example 4.5.2. In the general with-replacement sampling of size m, show that the first and second
order inclusion probabilities are

szlf(lfpk)m
and

mik=1—1—pe)" = (1 —p)" + (1 —pj —pr)™. 0

Solution. Recall that py is the probability of drawing unit k in any extraction. Thus, in m extrac-

tions the probability that the unit k is not present is (1 — px)™, and then
7 = P[I, = 1] = P[Unit k appears in the sample] =1 — (1 — 7)™,

On the other hand,
Pl =0o0r I; =0] = P[I;y =0+ P[I; =0] — P[I; =0 and I = 0]
=@ =m)" + (L =p)" = (L —pj —pr)™,
and then 7, = P[[; =land iy =1 =1— Py =0or I; = 0], so that mj, =1 — (1 —m)™ —
(L=p)™+ (1 =p; —pr)™. 0

4.6. Multivariate Hypergeometric Distribution

Let the population U of size N be the union of k subpopulations Uy ,Us, . .., U of sizes N1, No, ..., Ny.

A simple random sample of size n is taken form & and X; denotes the number of elements in the



sample that belong to U;, ¢ = 1,2,...,k. The distribution of the vector X = (X7, Xo,...

the Hypergeometric distribution Hy(n, N; Ny, Na, ..., Ni) and is determined by

() ) Gi) - i)
()

P[X = (n1,n9,...,nk)] =

where n1,ns ... n; are nonnegative integers adding up to n. Note that

3 () i) Gig) - Gab)

()
n1>0,n3>0,...,np >0 n
nytnotdng=n

=1

The mean and variance matrix of X will be now determined: The identity

a afa—1
= - >
<b> b(b_l), 0>b>0

will be used (Dudewicz and Mishra, 2008).

(i) The compute E[X;] observe that, by symmetry, it is sufficient to find E[X;]:

E[X|] = > n

n1>0,m9>0,...,n} >0
nytngt--+np=n

(
(

n1>0,m5>0,...,np >0
nytnotdng=n

Ny () G2 G) - G

= NnNn—
N n1>0,n92>0,..., np >0 (Nil)

n—1
nytngttng=n

M (GG G

- N N-1
k1>0,m0>0,...,n} >0 (n—l)
kj+ng+ - +np=n—1

_.M

N

(4.6.1)

(4.6.2)

(4.6.3)

where (4.6.3) was used to set the the third equality and (4.6.2) (with Ny — 1 and N — 1 instead of

N; and N, respectively) was used in the last step. Therefore,

N.

el

N.
E[X;] = nﬁl i=1,2,..

(4.6.4)

(ii) Now the expectation of F[X;(X; —1)] will be determined. As before, it is sufficient to consider
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the case ¢ = 1.

B -1= Y -l () ) ()

n1>0,m5>0,...,n;, >0
ny+ngt-4np=n

(
(
B T i) <¢i;>§f::> ()

n1>1,m9>0,...,n} >0
nytngt-tnp=n

_ Ni(Ny — 1) () G- ()
=nn-Vgr o

(n=s)
n1>1,n20,..., np >0 n—2
nit+ngtetng=n

BN TE S RS [ [ b Rl 0

N(N - 1) k1>0,m9>0,...,n}, >0 (]15—722)
ky+not-fnp=n—2
Ni(N; —1)
=D FE D)

where a double application of (4.6.3) lead to the third equality and (4.6.2) (with the appropriate

parameters) was used in the last step. Therefore,

Ni(Ny—1) Ny

BIX?] = E[X1(X: — D] + E[X1] = n(n — 1)m "N

and then
Var [X] = B[X7] - (E[X1])?
oMY N (N
YN ) TN '
N1 Nl 1 Nl
=n—((n—1 —n—+1
"N(m N1 N+>
_ N (= DN - N —nNi(N 1) + (N~ DN
N N(N —1)
_ NV =)V = M)
N NN -1)
. N1 N1 N —n
N N)N-1
Therefore,
Var[Xi]—nN(l—N>Nl, 1=1,2,...k. (4.6.5)

(iii) Finally, the covariance between X; and X, will be determined. As usual, it is sufficient to find
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Cov (Xl,XQ) .

B[X1Xs] = Y (ar) Gia) Gag) - Gt

()
n1>0,n92>0,..., np >0 n
nitnog+-+np=n

n1>0,m3>0,n3>0...,n3, >0 (]7\[)
nytngt-Hnp=n
— n(n— 1)1 o) ez G- )
N(N o 1) n1>0,m5>0,n3>0,...,n} >0 (]7\[:22)
nytnot-fng=n
(- 1) CLOCRHE G
N(N - 1) k1>0,ky>0,n3>0,...,n) >0 (17\[:22)
kit+not-tnp=n—2
_ _ N1Ny
=n(n UiN(N =y

where, as before, a double application of (4.6.3) lead to the third equality and (4.6.2) (with the

appropriate parameters) was used to set the last equality. Thus,

Ny N N, N.
Cov (X1, X5) = E[X,X5] — E[X1]E[X2] = n(n — 1)% -n NanQ
and then
nN1Ns [(n—1 n nN1No n—N
X1, Xo) = ——) =
Cov (X1, Xo) = =5 (Nl N) N (N(Nl))
so that

Cov (X1,X5) = —n—— (4.6.6)

The above discussion is summarized in the following theorem

Theorem 4.6.1. Suppose that X ~ Hy(n, N; Ny, ..., Ni) is a random vector with the k-dimensional
hypergeometric distribution; see (4.6.1). Set

so that Zle p; = 1, and define the row vector p and the k x k matrix V by

pP:= (p1,p2, -+, Pk); (4.6.7)

and
V:= diag(p) — p'P-

In this case

E[X]=np, and Var[X]=n(l- f)V,
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where
n—1

=N

is (a form of) the finiteness correction term.

The assertions in this theorem follow directly combining (4.6.4) —(4.6.6) with (4.6.7). Observe the

following interesting points:

(i) p and V are the mean and variance of a multidimensional Bernoulli random vector Y with pa-
rameter p. Hence, np and n'V are the mean and variance of a vector with multinomial distribution

M(n,p) with parameters n and p.

(ii) As n/N — 0, the correction term f goes to 0, and then the variance of X approximates the
variance of M(n,p). The reason for this convergence is that, as f goes to 0, the hypergeometric

distribution Hy(n, N; N1, Na, ..., Ni) approximates M(n, p).

(iii) If the vector p has been loaded in the R environment as p, then the matrix V is easily obtained
using the code

V <- diag(p) - crossprod(rbind(p)).

4.7. The Bernoulli Sampling Design: Properties

The Bernoulli sampling design (BE) is implemented via the following draw sequential selection
method: Let N be the population size and let X1, Xo,..., Xy be N independent random variables
with uniform distribution in [0, 1). The units of the population are considered one by one from U; to
Un, and Uy, is included in the sample if and only if X} < 7 where 7 € (0, 1) is a constant fixed before
starting the selection process. Hence, the indicator function of the event [U, belongs to the sample]

is I, = I| X}, < =], so that
I, 1I5,..., Iy are independent and identically distributed,

and

mp =Pl =1=7=1-P[l;;=0], mj.=Ply=11=1=x° j#k

Thus, E[I;] = m, Var[I;] = (1 — ) and Cov (I;,I) = 0 when j # k. The m-expanded unbiased

estimator of the total is

E=> "= oIk
S U

1
—Zyk I, where g, = Yo _ Yk (4.7.1)
T4 Tk s
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Theorem 4.7.1. (i) Var [{] = (i - 1) Zy,%
U

NI 1/1 N
(i) V(t) = — ( — 1) Z yi is an unbiased estimator of Var [].

m s

Proof. Since the variables I;, are independent and identically distributed with common Bernoulli ()

distribution it follows that

Var [L:] = Var

Z?kfk] = Zﬂ(l — )i = <71r - 1) Zylzc
U

Observe that Var [f] is the population total for the variable

1
=(=—1]4¢?
Wk (ﬂ' > Yk
which admits the following (m-expanded) unbiased estimator
() =Y u Zw 1 Zyg 1/1 2
®) . v — (w ) —~ T 7 <7r > - Yk

completing the argument. O

Remark 4.7.1. A remarkable fact of the formula in Theorem 4.7.1 is that the variance of # is a
positive definite quadratic form, in contrast with other sampling designs where the variance for #

is a quadratic vanishing on the the space of constant vectors. Now set
n=Nm

(the expected sample size) and note that

vl = (5 -1) S =S (- Ry

U

Combining this relation with Y-, 42 = >, (yx —Y)F + NY? = (N = 1)S2;, + NY?, it follows that

Var[f] = 5 (1- ) < (N = 1)82 + NV?)

N? n 9 1 9
_710_N)%UO_N+C%U)

For the SI design with sample size (approximately) n the variance of # is

(4.7.2)

~ N? n
Varsi (0) === (1= 57) Siw

and the efficiency of the SI plan with respect to the BE design, is

Var[f] _1_l

—_— + OV 2
Varsy(t) N w



47

Thus, essentially, the ST plan is always more efficient than the BE plan, and is substantially better

when C'Vyy is “small’. 0O

An alternative estimator under BE is given by
N 1 “
fare = N— Zyk ifng #0, fuy=0 ifng=0. (4.7.3)
ns S

Recall that given ng = k the sample S is uniformly distributed on the samples of size k (as if S

has been selected under the ST design). Thus, on the event ng > 0,

1 _
—y ykl =NY =Y
ns 5

. 1 1
Var filns] = N (- = 7 ) S

Eltailns] = NE

(4.7.4)

Next, observe that

2 2
1 1 ng — N7
E|ll—-— 0| =F || ———— 0
(ns 7TN> ns > ( ngNT ) ns > 1
2
’ns—NW
<E||———
< ( Nn > ns>0‘|
1 2
1
1—m
~ 7NPlng > 0]
Setting ng = 1 when S is empty, it follows that
9 1/2
1 1 1 1
E|l|l———| | < _——— >0 1—-— ) Plns=0
[ns 7TN:| [(ns 7TN) s +< Nﬂ') Ins ]

<(vrtasam) ()

Thus, if
N is large and (1 —m) ~ 0 (4.7.5)
then
1 1
Ell———|| =0
|: ns TN :|
and then



48

Combining this fact with (4.7.4) it follows from the formula for the variance in terms of the condi-

tional expectation and variance that, under (4.7.5),

Var [t alt} Var [E[falt|ns]] + E[Var [fa1t|n5]]

where n = E[ng] = Nr.

Theorem 4.7.2. Under the BE design, let 4, be the estimator of the total Y defined in (4.7.3).

With this notation, in the context of condition (4.7.5),

11
Effa)) #Y and Var [tu] ~ N? (n - N> Sa,

where n = N7 is the expected sample size. Consequently, the efficiency of t,; with respect to
m-expanded estimator ¢ is
Var |t [ ] 1

——d x1-—4CV,?
Var[iwg N O

Example 4.7.1. In a population of size N = 1000 a BE sample with 7 = 0.40 is selected. The
observed sample size was ng = 300 and he variable of interest is y; = 0 or y; = 1 for every i. It was

observed that )y, = 200. In this case
~ 1 N 1/1
== = 2.5(200) =500, V() =—=(--1 7 = T750.
- =25000 =50, V=2 (1-1) Yok
A confidence interval with approximate confidence level of 95% is

£+ 1.961/V (£) = 500 = 1.96v/750 = 500 + 53.7.

On the other hand, the estimator fart iS given by

200
tar = 1000— = 1000 — = 666.66
= 10007 Zy‘“ 300
and an (approximately unblased) estimator of SyU is
1
Z v = neg?) = 52— (200 — 300(2/3)?) = 0.2229654

and then

. 11 1 1
tae)) = N2 [ = — = ) S2, = 10002 .2229654 = 334.5
V(tar)) (n N)SS 000 <400 1000)0 965

The (normal approximation) 95% confidence interval based on .y is

Fare £ 1.961/ V(£) = 666.66 £ 1.96 x v/334.5 = 666.66 + 35.8. 0
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