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Este trabajo trata sobre ideas fundamentales en la Teoŕıa del Muestreo y tiene tres ob-

jetivos básicos: (i) Estudiar la idea de diseño de muestreo probabiĺıstico, (ii) Formular

la noción de estimadores de expansión como los únicos estimadores lineales insesgados

del total poblacional, y (iii) Estimar la varianza de los estimadores de expansión. Las

conclusiones obtenidas del análisis de estos problemas se ilustran por medio de varios

ejemplos analizados detalladamente. La organización de este trabajo es como sigue: En el

Caṕıtulo 1 se presenta una perspectiva general del material subsecuente, mientras que en

el Caṕıtulo 2 se introducen los conceptos de población, muestra y parámetro, y además

se formula el problema básico de estimación en la teoŕıa del muestreo. A continuación,

se discuten estrategias (esquemas) generales para seleccionar una muestra, ilustrando las

ideas por medio de dos esquemas, a saber, el simple y el de Bernoulli. En el Caṕıtulo 3

se definen los estimadores de expansión, también conocidos como estimadores de Horvitz-

Thompson, y se estudia la estimación de su varianza. Finalmente, el Caṕıtulo 4 trata

sobre el muestreo con reemplazo y el diseño de Bernoulli. Se muestra que bajo el diseño
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de Bernoulli la varianza muestral es un estimador asintóticamente insesgado de la var-

ianza poblacional, y se estudian los estimadres de Hurtwitz-Hensen, los cuales son los

estimadores de expansión en la teoŕıa de muestreo con reemplazo.
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This work is about basic ideas in Sampling Theory and has three main objectives: (i)

To study the concept of probability sampling design, (ii) To introduce the expansion es-

timators as the unique linear unbiased estimators of the population total, and (iii) To

estimate the variance of expansion estimators. The conclusions obtained from the anal-

ysis of these problems are illustrated using carefully analyzed examples. The subsequent

material is organized as follows: Chapter 1 presents a general perspective of this work,

whereas in Chapter 2 the notions of population, sample and parameter are introduced,

and the basic problem in the theory of sampling is formally stated. Next, general strate-

gies (or schemes) to select a sample are briefly described, and they are illustrated using

two important schemes, namely, the simple and Bernoulli strategies. In Chapter 3 the

Horvitz-Thompson (expansion) estimators of the population total are introduced, and the

estimation of their variances is studied. Finally, Chapter 4 is concerned with the Bernoulli

design and sample with replacement. It is shown that, under the Bernoulli design, the bias

of the sample variance as estimator of the population variance is asymptotically negligible,

and the Hurwitz-Hansen estimators are studied.
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Chapter 1

This Work in Perspective

1.1. Introduction

This work concerns with sampling theory, a branch of Classical Statistics which has to do with

the following problem: To establish inferences about a finite population based on the knowledge of

just a part of it, which is referred to as the sample. Usually, the inference takes the form of point

estimation, and in this case it must be accompanied with a measure of the error of the estimate.

In this chapter the main objectives of this work are stated and the organization of the subsequent

material is briefly described.

With the objective of establishing conclusions about a whole population, nowadays results of sam-

pling surveys on diverse topics are frequently reported in newspapers and magazines, as well as on

Radio and TV shows. For instance, the winner of the 2020 edition of La Academia singer contest

was Dalú, who obtained 24.29% of the phone votes, whereas Angie got 24.05% and was awarded

the second position. Also, El Financiero reports every day the result of the #AMLOTrackingPoll,

which is described by Roy Campos as a ‘digital measure of the performance of public administra-

tion’; on March 25, 2020, it was reported that 50.2% of Mexican citizens approve president’s work.

On the other hand, on a quarterly basis, INEGI publishes the result of surveys on employment,

particularly, the percentage of unemployed people in the country; on February 2020, the reported

unemployment rate was 3.5% of the economically active population. What all of these figures say?

They all are intend to reflect the ‘behavior’ of a whole population, but the reported quantities were

obtained studying just a part (and, usually, a ‘very small’ part) of the population. So, the following

is a most important question:
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• How is it possible the establish conclusions about a whole population by studying just a (small)

sample?

This question will be addressed later, after the discussion in the following section

1.2. Estimation Problem

To introduce the fundamental estimation problem of sampling theory, consider the following situa-

tion. In a small town with 1000 workers (the population), an analyst will use a subset of 10 workers

(the sample) to estimate the total monthly income of all the workers in town, which is denoted by

t (this is the unknown parameter). Let y1, y2, . . . , y10 be the monthly income of the ten workers in

the sample, so that the total income for the sample is (y1 +y2 + · · ·+y10); since the population has

100 times the workers in the sample, it is natural to estimate the total population monthly income

t by

t̂ = 100(y1 + y2 + · · ·+ y10) = 1000 ȳ10,

where ȳ10 = (y1 + y2 + · · · + y10)/10 is the average income of the ten workers in the sample.

Now suppose that the ȳ10 = 4000 has been observed, so that t̂ = 4000000 is the estimate of

the population total t. What is the meaning of such a value of t̂ ? A first answer is that t̂

‘approximates’ the unknown value t. Next, suppose that a different sample of 10 workers is chosen

and that ȳ10 = 3000 was observed, and in this case t̂ = 300000 is the estimate of t; this figure is

also an ‘approximation’ for t but, how far are these two numbers form t ? At this point it seems

clear that declaring that ‘t̂ is an approximation for t’ is not a very useful statement, unless a bound

B for the error |t− t̂| is provided, so that |t− t̂| ≤ B. Therefore, after analyzing the sample of 10

workers, a useful conclusion would be like the following one:

. t̂ approximates t and |t̂− t| ≤ B / (1.2.1)

where, possibly, B depends on the sample data yi, i = 1, 2, . . . , 10. The main point in this discussion

is that declaring that t̂ approximates the unknown value t is not useful if no bound about the

difference |t̂ − t| is provided. Suppose now that the analyst has devised a procedure to associate,

with each sample data y = (y1, y2, . . . , y10), a bound B(y) such that |t̂ − t| ≤ B(y) or, more

explicitly,

t̂(y)−B(y) ≤ t ≤ t̂(y) +B(y); (1.2.2)

recall that t̂ = t̂(y) depends on the sample data vector y. Now have a glance at this relation, and

note that the extreme terms depend only on the 10 monthly incomes y1, . . . , y10 of the 10 workers

in the sample, whereas the middle quantity t, the total monthly income of all the workers in the
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population, is given by t = Y1 +Y2 + · · ·+Y1000, where Yi is the monthly income of the i-th worker

in town. Thus, the above display can be explicitly written as

t̂(y1, y2, . . . , y10)−B(y1, y2, . . . , y10) ≤ Y1 + Y2 + . . .+ Y1000

≤ t̂(y1, y2, . . . , y10) +B(y1, y2, . . . , y10),
(1.2.3)

where the sample vector y is given by

(y1, . . . , y|10) = (Yi1 , Yi2 , . . . , Yi10),

and the the sample consists of workers i1, i2, . . . , i10. Hence, (1.2.3) is equivalent to

t̂(Yi1 , Yi2 , . . . , Yi10)−B(Yi1 , Yi2 , . . . , Yi10)

≤ Y1 + Y2 + . . .+ Y1000

≤ t̂(Yi1 , Yi2 , . . . , Yi10) +B(Yi1 , Yi2 , . . . , Yi10),

(1.2.4)

A glance at this relation reveals that it can not be satisfied for every sample. In fact, the extreme

terms in the above display depend only on the ten values Yi1 , . . . , Yi10 , and if j 6= i1, . . . , i10,

then replacement of Yj by Yj + h adds h to the middle term but leaves the extremes values

invariable; hence, selecting h appropriately, the inequalities in (1.2.4) fail. Since (1.2.1)–(1.2.4) are

all equivalent statements, it follows that it is not possible to design a procedure such that the goal

(1.2.1) is always satisfied. The key point in this last sentence is the word always, and instead of

looking for a method generating a correct assertion every time that a sample is analyzed, the main

goal of the estimation problem in sampling theory is slightly less ambitious:

• To devise a method producing an estimate t̂ for the

parameter t, in such a way that

|t̂− t| ≤ B

is true at least in a proportion γ of all the times in which

the method is used.

(1.2.5)

In this last display t̂ is a statistic, that is, a function of the data obtained after analyzing the

sample, |t̂− t| is the error and B is the bound on the error, and γ ∈ (0, 1) is the confidence level.

Both γ and B are prescribed by the analyst, and the estimation problem consists in devising a

procedure such that the inequality (1.2.5) holds at least in a fraction γ of all the times that the

procedure is used.

1.3. Random Samples and Main Objectives

The key clue to achieve the goal (1.2.5) is to use randomization to select the subset of the population

to be analyzed. Suppose that the sample s = {u1, u2, . . . , un} is selected via a random procedure
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and that, after analyzing each unit ui, the corresponding relevant information yi is determined,

i = 1, 2, . . . , n. Next, using the data vector y = (y1, y2, . . . , yn) the estimate t̂ = t̂(y) is computed.

Since y depends on s and t̂ depends on y, after all t̂ is a function of s and then, it is a random

variable. Therefore, given γ ∈ (0, 1), there exists a constant Cγ (depending on the the distribution

of t̂), such that

P [|t̂− t| ≤ Cγ ] ≥ γ;

Thus, if after computing t̂ it is declared that |t̂− t| ≤ Cγ , then this assertion will be correct in at

least a fraction γ of all possible cases, satisfying (1.2.5) if

Cγ ≤ B. (1.3.1)

Selecting appropriately the procedure to choose the sample (including the number of selected

elements), it is possible to satisfy the above inequality and achieve the goal (1.2.5). Frequently,

Cγ has the form cγ/
√
n, for a certain constant cγ , and then the above relation will be satisfied if

cγ/B ≤
√
n, that is,

c2γ
B2
≤ n

For details see Lohr (2000). Thus, the answer to the question posed at the end of Section 1 is:

Using a randomization procedure to choose the sample.

The importance of randomization in sampling theory provided the motivation for the present work,

and the main objectives can be stated as follows:

(i) To analyze two fundamental methods to choose a random sample, namely, the draw sequential

and listing selection procedures, and to illustrate their application using the simple and Bernoulli

schemes;

(ii) To study the construction of the Horvitz-Thompson (expansion) estimators for the popula-

tion total, and the conditions under which the corresponding variance of such estimators can be

ubiasedly estimated.

(iii) To provide carefully analyzed examples on the topics under consideration, including the for-

mulation of the Hansen Hurwitz estimators for the case of sampling with replacement.

1.4. The Origin of This Work

This work is a byproduct of the seminar entitled Mathematical Statistics: Elements of Theory

and Examples, relaunched on July 2016 by the Graduate Program in Statistics at the Universidad

Autónoma Agraria Antonio Narro. The basic aims of the project are:
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(i) To be a framework were statistical problems can be freely and fruitfully discussed;

(ii) To promote the understanding of basic statistical and analytical tools through the analysis and

detailed solution of exercises.

(iii) To develop the writing skills of the participants, generating an organized set of neatly solved

examples, which can used by other members of the program, as well as by the statistical communities

in other institutions and countries.

(iv) To develop the communication skills of the students and faculty through the regular par-

ticipation in seminars, were the results of their activities are discussed with the members of the

program.

The activities of the seminar are concerned with fundamental statistical theory at an intermediate

(non-measure theoretical) level, as in the book Mathematical Statistics by Dudewicz and Mishra

(1998). When necessary, other more advanced references that have been useful are Lehmann and

Casella (1998), Borobkov (1999) and Shao (2002), whereas deeper probabilistic aspects have been

studied in the classical text by Loève (1984). On the other hand, statistical analysis requires

algebraic and analytical tools, and the basic references on these disciplines are Apostol (1980),

Fulks (1980), Khuri (2002) and Royden (2003), which concern mathematical analysis, whereas the

algebraic aspects are covered in Graybill (2000, 2001) and Harville (2008). Initially, the project

was concerned with the theory of Point Estimation and Hypothesis Testing. During the last two

years the seminar has been focused on Sampling Theory at the level of Lohr (2000), Tucker (1992),

Hansen et al. (2002), and Sarndal et al. (1992); the examples presented in the following chapters

were selected from the unsolved exercises in this last reference.

1.5. The Organization

The remainder of this work has been organized as follows: In Chapter 2 the notions of population,

sample and parameter are introduced, and the basic problem in the theory of sampling is formally

stated. Next, two general strategies (or schemes) to select a sample are briefly described, and they

are illustrated by means of two important schemes, namely, the simple and Bernoulli strategies.

Then, the concept of sampling (probability) design is formulated and an alternative implementation

of the simple design is studied. The chapter concludes studying the ideas of inclusion probabilities

and membership indicators.

Next, Chapter 3 introduces that the expansion estimator for the population total, it is shown that

it is unbiased and the estimator for the corresponding variance is formulated. Also, an alternative
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(and ‘appealing’) expression for the variance and its estimators is provided for the case of a constant

sample size.

Finally, in Chapter 4 the simple and Bernoulli sampling schemes are studied. It is shown that,

conditionally on the observed sample size, the sample obtained from a Bernoulli scheme is a simple

random sample. Also, it is proved that under the Bernoulli scheme the sample variance is a biased

estimator of the population variance, although the relative bias converges to zero as the population

size grows. Next, the Hurwitz-Hansen estimators are introduced as expansion estimators in the

case of sampling with replacement. Finally, the exposition concludes with the derivation of basic

properties of the multivariate hypergeometric distribution and the Bernoulli sampling design.
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Chapter 2

Probability Samples

2.1. Introduction

The basic problem studied in the Theory of Sampling consists in formulating inferences about a

whole population U using knowledge of just one part (a subset) of U . In principle, the population

is finite, the subset of the population which is analyzed to state the inferences is called the sample

and, generally, it is required to accompany the stated conclusions about the population with an

assessment of their precision or reliability. Such a requirement can be fulfilled if the analyzed

sample is chosen via a random procedure, and this chapter introduces the basic ideas of ‘probability

sampling schemes’. The subsequent material has been organized as follows: In Section 2 the

notions of population, sample and parameter are introduced, and the basic problem in the theory of

sampling is formally stated. Next, in Section 3 two general strategies (or schemes) to select a sample

are briefly described, and they are illustrated by means of two important schemes, namely, the

simple and Bernoulli strategies. Then, the concept of sampling (probability) design is formulated in

Section 4, and an alternative implementation of the simple design is presented in Section 5. Finally,

the chapter concludes in Section 6, which concerns with two notions that will pay important roles

in the study of estimation problems, namely, the ideas of inclusion probabilities and membership

indicators.

2.2. Population and Random Samples

The environment of a sampling problem has an essential component, namely, the population, which

is an abstract representation of a collection of objects (entities) that contain relevant information.
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In these note the population is represented by a set

U = {U1, U2, U3, . . . , UN} (2.2.1)

and the information conveyed by the units Ui is given by a function Y defined on U and taking

values in IR or IRk; the function Y is frequently referred to as the study variable. The notation

Y(Ui) = Yi, i = 1, 2, 3, . . . , N (2.2.2)

will be used for the value associated to Ui by the function Y. For instance, if the units Ui are

persons, Yi might be the weight of the i-th person. It is assumed that N , the number of elements

of the population, is known, but the function Y is unknown. Thus, the value Yi associated to Ui

can be determined only after analyzing the unit Ui. A parameter θ is a value that depends on the

whole set of values Y1, Y2, . . . , YN , that is,

θ = f(Y1, Y2, Y3, . . . , YN ) (2.2.3)

for a certain function f . Common examples of parameters are the population total

t = Y1 + Y2 + Y3 + · · ·+ YN ≡ Y (2.2.4)

and the population average

t̄ =
Y1 + Y2 + Y3 + · · ·+ YN

N
≡ Ȳ . (2.2.5).

The main problem in sampling theory can be now stated as follows:

To estimate a population parameter based on the knowledge

of Yi = Y(Ui) for Ui in a subset S of the population U
(2.2.6)

The importance of this problem stems from the fact that, frequently, it is impossible, impractical

or expensive to examine all of the units in the population to determine the whole set of values

Y1, Y2, . . . , YN and then compute exactly the value of the parameter. However, it is possible that

the available resources (time, budget) allow to examine some units Ui1 , Ui2 , . . . , Uin so that the

corresponding Y-values Yi1 , Yi2 , . . . , Yin can be determined, and the problem is to obtain ‘a reason-

able approximation’ of the parameter value using only the information obtained from the analyzed

units.

A subset of the population is called a sample and the problem stated above can be rephrased as

follows:
To estimate a population parameter based on the knowledge

of the values Yi corresponding to units Ui in a sample S.
(2.2.7)
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Since the parameter θ is unknown, every time that a ‘reasonable approximation’ θ̂ for θ is proposed,

it is important to provide a measure of the ‘estimation error’ |θ̂− θ|. In general such an assessment

is possible if the sample used in the analysis was selected via a random mechanism. All of the

samples considered below will be obtained from U using a procedure that involves randomness.

2.3. Sample Selection Schemes

Two general methods can be used used to select a sample via a random mechanism:

• A Draw-Sequential Scheme consists of a series of random experiments which lead to the selection

of population elements, whose number depends on the result of the experiments. Each experiments

that leads to select one of the (possible) units is called a draw, and draws are performed as many

times as necessary until a certain stopping condition is fulfilled, for instance, when the desired

number of elements has been selected.

• A List-Sequential Scheme consists in traveling down the list of units, performing random experi-

ments each time that a new element is visited. As a result, the set of elements previously selected is

modified, for instance, adding the current element to the selection, or removing some units already

included. The process ends according to a sopping rule, so that it is possible that the process

concludes before the N -th unit is reached.

Example 2.3.1. [A Draw-Sequential Scheme]. The simple random sampling scheme (without re-

placement), which is used to obtain a sample of size n < N , is as follows:

1. Select a member of the population using a random mechanism assigning probability 1/N to each

one of the N elements of U ;

2. Remove from the population the unit selected in the previous draw and, with equal probability

1/(N − 1), select from the remaining N − 1 elements a new member of the population;

...

n. Remove from the population the units selected in the n− 1 draws already performed and, with

equal probability 1/(N − n+ 1), select a new element from the remaining N − n+ 1 units.

After these steps, a (random) sequence

S̃ = (Ui1 , Ui2 , . . . , Uin) (2.3.1)

is obtained, where Uik is the unit selected in the k-th draw. This is a vector of distinct units taking

values in the space

S̃n: = {s̃ = (u1, u2, . . . , un) |u1, u2, . . . , un are different elements of U}. (2.3.2)
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The elements of S̃n are the ordered samples without replacement of size n and are also referred to

as the permutations of size n of the population U . From the above description it follows that

P [S̃ = s̃] =
1

(N)n
=

1

N(N − 1) · · · (N − n+ 1)
, s̃ ∈ S̃n,

that is, all of the ordered samples (permutations) of size n have the same probability of selection.

Finally, a set S is immediately determined form S̃ forgetting the order in which the units were

selected:

S = {Ui1 , Ui2 , . . . , Uin}.

This set is a member of the family

Sn = {s| s is a subset of size n of U}.

which consists of all subsets (samples) of size n of U . Since the elements of a set of size n can be

arranged into a sequence in n! forms, it follows that

P [S = s] =
n!

(N)n
=

1(
N
n

) , s ∈ S, (2.3.3)

so that all of the samples of size n have the same probability of selection. tu

Example 2.3.2. [A List-Sequential Scheme]. Let ε1, ε2, . . . , εN be independent random variables

with U(0, 1) distribution, i.e., the uniform distribution in (0, 1). Given a number π ∈ [0, 1], the

Bernoulli (sequential) sampling scheme is as follows:

For each i = 1, 2, . . . , N , include the unit

Ui in the sample if and only if εi < π.
(2.3.4)

Denote by S the family of all subsets of U and let S be the random sample (subset) obtained by

using the above Bernoulli scheme, so that

P [Ui ∈ S] = P [εi < π]

= π

= 1− P [εi ≥ π] = 1− P [Ui /∈ S], S ∈ S, i = 1, 2, 3, . . . , N,

so that for i 6= j the events [Ui ∈ S] and [Uj ∈ S] are independent with probability π. Hence,

the corresponding indicator functions I[Ui ∈ S] and I[Uj ∈ S] are independent with common

distribution Bernoulli (π). It follows that

P [S = s] = πns(1− π)N−ns , s ∈ S, (2.3.5)

where ns is the number of elements of the (sample) subset s. tu
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2.4. Sampling Designs

As already noted, in this work all the sample under consideration will be obtained via a random

procedure, which determines a probability distribution on the space of possible samples.

Definition 2.4.1. Let S be the space of all samples (subsets) of the population U . A sampling design

is a probability function p:S → [0, 1] such that

p(s) = probability of selecting the sample s, s ∈ S;

a sampling design is also referred to as a sampling plan.

Note that a sampling design p(·) satisfies two conditions: p(s) ≥ 0 for every s ∈ S, and
∑
s∈S p(s) =

1.

Example 2.4.1. (i) Let n be a positive integer less than N . The simple random sampling design

without replacement is

p(s) =
1(
N
n

) , s ∈ Sn, p(s) = 0, s ∈ S \ Sn, (2.4.1)

where Sn is the class of all samples with n elements, and S is the family of all subsets of the

population U . This design will be denoted by SI where the sample size n is understood from

the context. Note that under (2.4.1) all of the samples outisde Sn have probability zero of being

observed.

(ii) The Bernoulli design corresponding to a number π ∈ [0, 1] is defined by

p(s) = πns(1− π)N−ns (2.4.2)

where ns is the number of elements of s. Note that every sample has positive probability of being

selected under (2.4.2), which will be denoted by BE, where the value of π will be clear from the

context. tu

Remark 2.4.1. In principle, any sampling design can be implemented as follows:

1. Determine the class S∗ = {s ∈ S | p(s) > 0}, and label its elements as s1, s2, . . . , sM , where M

= number of elements of S∗.

2. Generate a random variable ε with distribution U(0, 1) and define the random sample S by

S = sk if
∑
r<k

p(sr) ≤ ε <
∑
r≤k

p(sr) =
∑
r<k

p(sr) + p(sk).
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It follows that P [S = sk] = p(sk) for every k = 1, 2, . . . ,M , that is,

P [S = s] = p(s),

when s ∈ S∗, and then for every s ∈ S, since both sides of the above display are null if s ∈ S \ S∗.

Although the above procedure looks simple and direct it has a serious drawback, namely, usually

the number M of samples with positive probability is really huge, even for ‘moderate’population

sizes, and then it is impossible to store the set S∗ in a computer’s memory. For instance, consider

the design BE in Example 2.4.1(ii). In that case all of the samples of S have positive probability,

and then M = 2N . If N = 2000 then M = 22000 ∼ 2.14 × 10602; this figure is too large to

implement the above procedure in a computer. Now consider the SI design and suppose that the

population has N = 5000 elements, and that a sample of size n = 250 is going to be selected.

In this case the number M of samples with positive probability is M =
(
5000
250

)
∼ 10429, again

an astronomical number. These comments highlight the importance of a good sampling scheme,

allowing to implement a given design in practice. tu

2.5. Implementing the SI Scheme

Usually, the schemes in Examples 2.3.1 and 2.3.2 are employed to implement the SI and BE designs,

respectively. An alternative implementation of the SI design is discussed in the example below.

Example 2.5.1. The following draw sequential scheme implements the SI design:

Successively select with equal probability 1/N a unit from of the population U and do not remove

the element chosen. Perform independent repetitions of the draw until n different units have been

selected. tu

As it is shown in the following proposition, this scheme implements the SI design.

Proposition 2.5.1. If S is the set consisting of the n different elements obtained from the scheme

described in Example 2.5.1, then

P [S = s] =
1(
N
n

) , s is a subset of U with n elements.

Proof. Let s̃ = (Uk1 , Uk2 , . . . , Ukn) ∈ S̃n be an arbitrary ordered sample with n elements and, for

nonnegative integers r1, r2, . . . , rn−1, consider the event

A(Uk1 , r1, Uk2 , r2, . . . , Ukn−1 , rn−1, Ukn)
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determined by the following conditions, whose probability is indicated in parenthesis:

1 (a). Unit Uk1 is selected in the first draw; (1/N):

1 (b). In the next r1 draws unit Uk1 is chosen. ((1/N)r1)

2 (a). The next draw (number r1 + 2) yields unit Uk2 ; (1/N)

2 (b). In the next r2 draws either units Uk1 or Uk2 are chosen. (2/N)r2

3 (a). Unit Uk3 is selected in the next draw (number r1 + r2 + 3); (1/N)

3 (b). In the next r3 draws either units Uk1 , Uk2 or Uk3 are chosen. (3/N)r3 .

...

(n− 1)(a). Draw number r1 + r2 + · · ·+ rn−2 + n− 1 yields unit Ukn−1 ; (1/N)

(n− 1)(b). In each one of the the next rn−1 draws one of Uk1 , Uk2 , . . . Ukn−1 is chosen. ( ((n−

1)/N)rn−1 ).

n(a). Draw number r1 + r2 + · · ·+ rn−1 + n yields unit Ukn ; (1/N)

Since successive draws are independent, it follows that

P [A(Uk1 , r1, Uk2 , r2, . . . , Ukn−1
, rn−1, Ukn)] = (1/N)n

n−1∏
k=1

(k/N)rk (2.5.1)

Now, let S̃ be the random ordered sample of size n whose components are the different units that

are selected using the above scheme and preserving the order of selection, so that

[S̃ = s̃] =
⋃

r1,r2,...,rn−1≥0

A(Uk1 , r1, Uk2 , r2, . . . , Ukn−1
, rn−1, Ukn).

Since the different events in this union are disjoint, combining these two last displays it follows that

P [S̃ = s̃] = (1/N)n
∑

r1,r2,...,rn−1≥0

n−1∏
k=1

(k/N)rk .

Next, observe
∑
rk≥0(k/N)rk =

∑∞
rk=0(k/N)rk = 1/(1− k/N) = N/(N − k), and then

∑
r1,r2,...,rn−1≥0

n−1∏
k=1

(k/N)rk =

n−1∏
k=1

∞∑
rk=0

(k/N)rk =

n−1∏
k=1

N

N − k

a relation that combined with the above formula for P [S̃ = s̃] leads to

P [S̃ = s̃] = (1/N)n
n−1∏
k=1

N

N − k
=

1

N

n−1∏
k=1

1

N − k
=

1

(N)n
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Finally, since the n! posssible orderings of s̃ generate the same (unordered) sample s = {Uk1 , Uk2 , . . . , Ukn},

it follows that P [S = s] = n!/(N)n = 1/
(
N
n

)
. tu

After a sample s has been chosen, the problem is to use the data obtained from s to establish

inferences about a certain parameter θ, and an estimator θ̂ is required at this step.

Definition 2.5.1. The sampling strategy is the pair that consists of the sampling design and the

estimator(s) used to estimate the parameter(s) of interest.

Example 2.5.2. Consider the problem of estimating the population mean Ȳ in (2.2.5). An example

of a sampling strategy is (SI , θ̂)), where the design SI is based on a sample of size n, and

θ̂ =
1

n

n∑
i=1

yi

is the sample mean of the values yi = Y(Uki) corresponding to the units Uki in the sample,

i = 1, 2, . . . , n. Other example of a sampling strategy is (SI , θ̃), where

θ̃ =
max{y1, y2, . . . , yn}+ min{y1, y2, . . . , yn}

2
. tu

2.6. Inclusion Probabilities and Membership Indicators

Suppose that a sampling plan p(·) is used to select a sample S from the population U . In this case

S is a random object whose distribution is given by

P [S = s] = p(s), s ∈ S.

Definition 2.6.1. (i) For each k = 1, 2, 3, . . . , N , the membership indicator Ik of the unit Uk ∈ U is

defined by

Ik ≡ Ik(S) = 1 if Uk ∈ S, Ik ≡ Ik(S) = 0 if Uk 6∈ S,

whereas

πk: = P [Ik(S) = 1] = P [k ∈ S]

is the (first order) inclusion probability of the unit Uk.

(ii) For Uj , Uk ∈ U the corresponding second order inclusion probability is

πjk = P [Uj ∈ S, Uk ∈ S] = P [Ik(S) = 1, Ij(S) = 1].
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Note that Ik is a random variable with Bernoulli distribution of parameter πk, so that

E[Ik] = πk, and Var [Ik] = πk(1− πk). (2.6.1)

The second order inclusion probability πjk is

πjk = P [Ij = 1, Ik = 1] = E[IjIk] (2.6.2)

and with this notation

Cov (Ij , Ik) = πjk − πjπk =: ∆jk; (2.6.3).

note that πkk = πk = E[Ik] and ∆kk = Var [Ik] for every k. The sample size nS is defined by

nS =
∑
U
Ik ≡

∑
U
Ik(S), (2.6.4)

where
∑
U is used as an abbreviated form of

∑
k∈U . Observe that

E[nS ] =
∑
U
E[Ik] =

∑
U
πk

Var [nS ] =
∑
U

Var [Ik] +
∑

j,k∈U, j 6=k

Cov (Ij , Ik)

=
∑
U

∆kk +
∑

j,k∈U, j 6=k

∆jk

(2.6.5)

Example 2.6.1. (i) Consider the SI sampling design in Example 2.4.1(i). In this case

πk = PSI [Uk ∈ S] =
∑

s∈Sn:Uk∈s
p(s) =

∑
s∈Sn:Uk∈s

1(
N
n

) ,
and then, since there are

(
N−1
n−1

)
samples of size n that contain Uk, it follows that

πk =

(
N−1
n−1

)(
N
n

) =
n

N
.

Next, observe that

πjk = PSI [Uj ∈ S,Uk ∈ S] =
∑

s∈Sn:Uj∈S, Uk∈s
p(s) =

∑
s∈Sn:Uj∈S, Uk∈s

1(
N
n

) ,
and using that there are

(
N−2
n−2

)
samples of size n that include Uj and Uk, it follows that

πjk =

(
N−2
n−2

)(
N
n

) =
n(n− 1)

N(N − 1)
, j 6= k,

and then

∆jk = πjk − πjπk =
n(n− 1)

N(N − 1)
−
( n
N

)2
= − n

N

(
1− n

N

) 1

N − 1
, j 6= k.
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Of course, in the present context the sample size nS is the constant n, so that E[nS ] = n and

Var [nS ] = 0. To verify these equalities have a glance at (2.6.1) and note that

E[nS ] =
∑
U
πk =

∑
U

n

N
= n

where the fact that U has N elements was used to set the last equality. On the other hand,

Var [nS ] = Var

[∑
U
Ik

]
=
∑
U

Var [Ik] +
∑

j,k∈U : j 6=k

Cov (Ij , Ik)

=
∑
k

πk(1− πk) +
∑

j,k∈U : j 6=k

∆jk

=
∑
U

n

N

(
1− n

N

)
−

∑
j,k∈U : j 6=k

n

N

(
1− n

N

) 1

N − 1
.

Since U has N elements, and there are N(N − 1) pairs (j, k) with different components in U it

follows that

Var [nS ] = N
n

N

(
1− n

N

)
−N(N − 1)

n

N

(
1− n

N

) 1

N − 1
= 0.

(ii) For the BE sampling design in Example 2.4.1 the membership indicators are independent with

common Bernoulli (π) distribution. Thus,

πk = EBE [Ik] = π, ∆jk = CovBE [Ij , Ik] = 0, j 6= k,

and nS has the Binomial (N, π) distribution, a property that leads to E[nS ] = Nπ and Var [nS ] =

Nπ(1− π). tu

Proposition 2.6.1. Assume that the sample size nS is constant and equal to n under certain sampling

design. In that context, the following relation hold;

(a)
∑
U πk = n;

(b) For each fixed j,
∑
k∈U πkj = nπj ;

(c)
∑
k 6=j πkj = n(n− 1).

Proof. Recall that

nS =
∑
U
Ik
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so that E[nS ] =
∑
U E[Ik] =

∑
U πk, and part (a) follows since nS is equal to n with probability 1.

Now, multiply both sides of the above display by Ij and, recalling that nS is constant and equal

to n, take expectation in both sides of the resulting equality to obtain

nπj = E[nSIj ] =
∑
k∈U

E[IkIj ] =
∑
k∈U

πkj

establishing part (b). Using this conclusion it follows that

∑
j,k∈U

πkj = n
∑
j∈U

πj = n2,

where part (a) was used to set the second equality. Next, recalling that πk k = πk, observe now

that
∑
j,k∈U πkj =

∑
j,k∈U, j 6=k πkj+

∑
k∈U πk =

∑
j,k∈U, j 6=k πkj+n. These relations and the above

display together lead to n2 =
∑
j,k∈U, j 6=k πkj + n, and part (c) follows. tu

To conclude this section note that the whole vector of membership functions and the sample S

determine each other. In fact, given s ∈ S, define define

i∗(s) = (i∗1(s), i∗2(s), i∗3(s), . . . , i∗N (s)),

where i∗k(s) = 1 if Uk ∈ s and i∗k(s) = 0 if Uk 6∈ s. In this case,

(I1(S), I2(S), . . . IN (S)) = i∗(s) ⇐⇒ S = s. (2.6.6)
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Chapter 3

Horvitz-Thompson Estimators

3.1. Introduction

This chapter analyzes the problem of estimating a population parameter on the basis of a sample

obtained via a probability selection scheme. The main objective is to introduce the expansion

estimator for the population total, to show that it is unbiased, and to introduce the estimator

for the corresponding variance. The presentation has been organized as follows: In Section 2 the

expansion estimator is defined, and it is shown that it is unique and unbiased in the class of linear

estimators. Next, in Section 3, the ‘measurability condition’ is introduced, and it is shown that

its is sufficient to estimate the variance of the expansion estimator via an unbiased statistic. Also,

an alternative formula for the estimation of the variance is established for the case of designs

with constant sample size. In Section 4 the previous ideas are illustrated via a detailed example

with constant sample size, whereas Section 5 studies a Bernoulli design, which has a non-constant

sample size. Finally, the exposition concludes in Section 6, using a population with three elements

to provide a global illustration of the main ideas introduced in the chapter.

3.2. The Expansion Estimators

Before going any further, its is convenient to introduce some notation: A random sample obtained

via a given sampling design is denoted by s = {Uk1 , Uk2 , . . . , Ukn} and yi = Y(Uki) stands for the

value of the study variable at unit Uki in the sample. The lower case yi indicates that the value was
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obtained from a unit in the random sample s under consideration. On the other hand,
∑
s yi is the

summation of the values yi over all indices ki such that Uki ∈ s. Thus, if s = {Uk1 , Uk2 , . . . , Ukn},

then
∑
s yi = y1 + y2 + · · ·+ yn = Yk1 + Yk2 + . . .+ Ykn . Note that, by Definition 2.6.1(i),∑

s

yi =
∑
U
IkYk.

Consider the problem of estimating the population total

t =
∑
U
Yk = Y1 + Y2 + Y4 + · · ·+ YN .

When a sample s = {Uk1 , Uk2 . . . , Ukn} is available only the values Yk1 , Yk2 , . . . , Ykn are known and

t can not be calculated exactly. In that case, estimations of t must be constructed. The following

linear estimators will be studied:

t̂ =
∑
U
ckIkYk,

where the ck’s are constants. Note that E[t̂] =
∑
U ckE[Ik]Yk =

∑
U ckπkYk, and then E[t̂] = t if

and only if ck = 1/πk for every k, that is, there is only one choice of the coefficients ck so that t̂ is

an unbiased estimator of t.

Definition 3.2.1. (i) A sampling design p(·) is a probability design if

πk > 0, k = 1, 2, . . . , N.

(ii) For a probability design, the π-expanded estimator of t is

t̂: =
∑
s

yi
πki

=
∑
s

y̌i =
∑
U
IkY̌k (3.2.1)

where

y̌i: =
yi
πki

=
Yki
πki

, i = 1, 2, . . . , n (3.2.2)

is the expanded i-th sample value, and

Y̌k =
Yk
πk

is the k-th expanded population value.

The statistic t̂ in (3.2.1) is also known as the Horvitz-Thompson estimator.

3.3. Mean and Variance

By construction, the expansion estimator in Definition 3.2.1 is unbiased, so that E[t̂] = t. In the

following proposition this result is stated for future reference, and the variance of t̂ is computed.
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Proposition 3.3.1. (i) The estimator t̂ in (3.2.1) satisfies

E[t̂] = t and Var
[
t̂
]

=
∑
j,k∈U

y̌j∆jky̌k.

see (2.6.3).

(ii) Assume that the following ‘measurability condition’ holds:

πjk 6= 0, j, k = 1, 2, . . . , N. (3.3.1)

In this case an unbiased estimator of Var
[
t̂
]

is

V̂ (t̂) =
∑
j,k∈S

y̌j∆̌jky̌k, where ∆̌jk: =
∆jk

πkj
. (3.3.2)

(iii) If the sample size is constant, then

Var
[
t̂
]

= −1

2

∑
j,k∈U

∆jk(y̌j − y̌k)2

and, under the measurabilty condition (3.3.1), an unbiased estimator of Var
[
t̂
]

is given by

V̂ (t̂) = −1

2

∑
j,k∈S

∆̌jk(y̌j − y̌k)2. (3.3.3)

Proof. (i) Observe that

E[t̂] = E

[∑
U
Iky̌k

]
=
∑
U
πky̌k =

∑
U
yk = t,

where (3.2.2) was used to set the last equality. To conclude note that

Var
[
t̂
]

= Var

[∑
U
Iky̌k

]
=
∑
j,k∈U

y̌jCov (Ij , Ik) y̌k =
∑
j,k∈U

y̌j∆jky̌k.

(ii) To begin with, observe that

V̂ (t̂) =
∑
j,k∈S

y̌j∆̌jky̌k =
∑
j,k∈U

IjIky̌j∆̌jky̌k,

and then

E
[
V̂ (t̂)

]
= E

 ∑
j,k∈U

IjIky̌j∆̌jky̌k

 =
∑
j,k∈U

E[IjIk]y̌j∆̌jky̌k =
∑
j,k∈U

πjky̌j∆̌jky̌k,

and via (3.3.2) it follows that E[V̂ (t̂)] =
∑
j,k∈U y̌j∆jky̌k = Var

[
t̂
]
.
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(iii) Suppose that nS is constant, say n, so that
∑
k∈U Ik = n. It follows that

0 = Cov (n, Ij) = Cov

(∑
k∈U

Ik, Ij

)
=
∑
k∈U

∆k,j .

Then, multiplying by y̌2j , the above equality yields that
∑
k∈U ∆k,j y̌

2
j = 0, and then

∑
j,k∈U

∆k,j y̌
2
j = 0.

Similarly, ∑
j,k∈U

∆k,j y̌
2
k = 0.

Therefore,

Var
[
t̂
]

=
∑
j,k∈U

y̌j∆jky̌k

=
∑
j,k∈U

y̌j∆jky̌k −
1

2

∑
j,k∈U

∆jky̌
2
k −

1

2

∑
j,k∈U

∆jky̌
2
j

= −1

2

∑
j,k∈U

∆jk

[
−2y̌j y̌k + y̌2k + y̌2j

]
= −1

2

∑
j,k∈U

∆jk(y̌j − y̌k)2

To conclude, note that

V̂ (t̂) = −1

2

∑
j,k∈S

∆̌jk(y̌j − y̌k)2 = −1

2

∑
j,k∈U

IkIj∆̌jk(y̌j − y̌k)2

and then

E[V̂ (t̂)] = −1

2

∑
j,k∈U

E[IkIj ]∆̌jk(y̌j − y̌k)2 = −1

2

∑
j,k∈U

πjk∆̌jk(y̌j − y̌k)2;

via (3.3.2), it follows that E[V̂ (t̂)] = −1

2

∑
j,k∈U

∆jk(y̌j − y̌k)2 = Var
[
t̂
]
. tu

3.4. An Example with Constant Sample Size

This section illustrates the idea of inclusion probability as well as the results in Proposition 2.6.1

concerning designs with constant sample size. Also, the problem of determining the sample inclusion

probability in an SI design is studied.

Example 3.4.1. In planning an office network study, the following draw sequential sampling

scheme was proposed for selecting a random sample of two nonadjacent office hours intervals

[9, 10), [10, 11), . . . , [15, 16), [16, 17) (labeled 1–8).
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1. Draw the first interval with equal probability from the eight intervals.

2. Draw, without replacement, the second interval from the intervals that are nonadjacent to the

first one selected.

(a) Determine the first and second order inclusion probabilities;

(b) Is the sampling design induced by the proposed selection scheme measurable?

(c) Determine the covariance of the sample membership indicators

(d) Verify that the fixed sample relations are satisfied in this case. tu

Solution. The application of the sampling scheme produces an ordered sample s̃ = (ũ1, ũ2), and

s = {x |x = ũ1 or x = ũ2} is the corresponding (unordered) sample that is finally obtained. Note

that the intervals ũ1 = 1 and ũ1 = 8 (i.e., [9, 10) and [16, 17)) have just one adjacent interval

([10, 11) for ũ1 = 1 and [15, 16) for ũ1 = 8), whereas if ũ1 = x ∈ {2, 3, 4, 5, 6, 7} then x has five

nonadjacent intervals. Since the second unit is selected without replacement from intervals which

are nonadjacent to ũ1, it follows that

P [ũ2 = x|ũ1 = 1] = 1/6, x ∈ {3, 4, 5, 6, 7, 8}
P [ũ2 = x|ũ1 = 2] = 1/5, x ∈ {4, 5, 6, 7, 8}
P [ũ2 = x|ũ1 = 3] = 1/5, x ∈ {1, 5, 6, 7, 8}
P [ũ2 = x|ũ1 = 4] = 1/5, x ∈ {1, 2, 6, 7, 8}
P [ũ2 = x|ũ1 = 5] = 1/5, x ∈ {1, 2, 3, 7, 8}
P [ũ2 = x|ũ1 = 6] = 1/5, x ∈ {1, 2, 3, 4, 8}
P [ũ2 = x|ũ1 = 7] = 1/5, x ∈ {1, 2, 3, 4, 5}
P [ũ2 = x|ũ1 = 8] = 1/6, x ∈ {1, 2, 3, 4, 5, 6}

Note that after each equality the set of units that are nonadjacent to ũ1 is explicitly indicated.

Recalling that P [ũ1 = y] = 1/8 for every y ∈ {1, 2, . . . , 8} it follows from the multiplication rule

that
P [(ũ1, ũ2) = (1, x)] = 1/48, x ∈ {3, 4, 5, 6, 7, 8}
P [(ũ1, ũ2) = (2, x)] = 1/40, x ∈ {4, 5, 6, 7, 8}
P [(ũ1, ũ2) = (3, x)] = 1/40, x ∈ {1, 5, 6, 7, 8}
P [(ũ1, ũ2) = (4, x)] = 1/40, x ∈ {1, 2, 6, 7, 8}
P [(ũ1, ũ2) = (5, x)] = 1/40, x ∈ {1, 2, 3, 7, 8}
P [(ũ1, ũ2) = (6, x)] = 1/40, x ∈ {1, 2, 3, 4, 8}
P [(ũ1, ũ2) = (7, x)] = 1/40, x ∈ {1, 2, 3, 4, 5}
P [(ũ1, ũ2) = (8, x)] = 1/48, x ∈ {1, 2, 3, 4, 5, 6}

The same information is presented in the following matrix where the i, j entry gives the probability

P [ũ1 = i, ũ2 = j]:

P [S̃ = (i, j)]
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0 0 1/48 1/48 1/48 1/48 1/48 1/48
0 0 0 1/40 1/40 1/40 1/40 1/40

1/40 0 0 0 1/40 1/40 1/40 1/40
1/40 1/40 0 0 0 1/40 1/40 1/40
1/40 1/40 1/40 0 0 0 1/40 1/40
1/40 1/40 1/40 1/40 0 0 0 1/40
1/40 1/40 1/40 1/40 1/40 0 0 0
1/48 1/48 1/48 1/48 1/48 1/48 0 0

This table can be used to determine the probability of selecting any unordered sample s as follows:

If s = {i, j},

p(s) = P [S = s] = P [S̃ = (i, j)] + P [S̃ = (j, i)].

The following upper triangular matrix gives the distribution of S; for each pair (i, j) with 1 ≤ i <

j < 8 and i ≤ 6, P [S = {i, j}] is given in the (i, j) entry.

P [S = {s1, s2}], s1 < s2

0 0 11/240 11/240 11/240 11/240 11/240 10/240
0 0 0 12/240 12/240 12/240 12/240 11/240
0 0 0 0 12/240 12/240 12/240 11/240
0 0 0 0 0 12/240 12/240 11/240
0 0 0 0 0 0 12/240 11/240
0 0 0 0 0 0 0 11/240

(3.4.1)

In decimal notation this matrix is

0 0 0.046 0.046 0.046 0.046 0.046 0.042
0 0 0 0.05 0.05 0.05 0.05 0.046
0 0 0 0 0.05 0.05 0.05 0.046
0 0 0 0 0 0.05 0.05 0.046
0 0 0 0 0 0 0.05 0.046
0 0 0 0 0 0 0 0.046

(3.4.2)

For instance, p({2, 5}) = 12/240 = 0.05, and p({4, 8}) = 11/240 = 0.046.

(a) Recall that Ik = I[uk ∈ S] is the membership indicator of the k-th unit, and that the sampling

design is given in (3.4.1) or (3.4.2). Observe now that in the present case πk = P [k ∈ S] =∑
j>k P [S = {k, j}] +

∑
j<k P [S = {j, k}] is the summation of the k-th row and column of the

matrix (3.4.1). For instance,

π4 =
∑
j>4

P [S = {4, j}] +
∑
j<4

P [S = {j, 4}]

= (12/240 + 12/240 + 11/240) + (11/240 + 12/240) = 58/240

and
π7 =

∑
j>7

P [S = {7, j}] +
∑
j<7

P [S = {j, 7}]

= (0) + (11/240 + 12/240 + 12/240 + 12/240 + 12/240) = 59/240
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The vector π of first order inclusion probabilities is given below:

π1 π2 π3 π4
65/240 59/240 58/240 58/240
π5 π6 π7 π8

58/240 58/240 59/240 65/240

(3.4.3)

On the other hand, the matrix [πj,k] is given by

πj,k = P [uj ∈ S, uk ∈ S] = P [Ij = 1, Ik = 1] = P [S = {j, k}],

where πk,k = P [k ∈ S] = πk. Thus, the matrix [πj,k], can be immediately determined combining

(3.4.1) or (3.4.2) with (3.4.3):

[πj,k] =
1

240



65 0 11 11 11 11 11 10
0 59 0 12 12 12 12 11
11 0 58 0 12 12 12 11
11 12 0 58 0 12 12 11
11 12 12 0 58 0 12 11
11 12 12 12 0 58 0 11
11 12 12 12 12 0 59 0
10 11 11 11 11 11 0 65


(3.4.4)

(b) The sampling design p is measurable if

πj,k = P [Uj ∈ S,Uk ∈ S] > 0

for each pair of different units Uj and Uk. In the present case π3,4 = 0 and then the design p is not

measurable.

(c) The covariance matrix λ = [Cov (Ik, Ij)] = [πj,k − πjπk] is given by

λ =



0.197 −0.067 −0.02 −0.02 −0.02 −0.02 −0.021 −0.032
−0.067 0.185 −0.059 −0.009 −0.009 −0.009 −0.01 −0.021
−0.02 −0.059 0.183 −0.058 −0.008 −0.008 −0.009 −0.02
−0.02 −0.009 −0.058 0.183 −0.058 −0.008 −0.009 −0.02
−0.02 −0.009 −0.008 −0.058 0.183 −0.058 −0.009 −0.02
−0.02 −0.009 −0.008 −0.008 −0.058 0.183 −0.059 −0.02
−0.021 −0.01 −0.009 −0.009 −0.009 −0.059 0.185 −0.067
−0.032 −0.021 −0.02 −0.02 −0.02 −0.02 −0.067 0.197


(3.4.5)

(d) The fixed sample relations are:

(i)
∑
k πk = n. In the present case (3.4.3) yields that

8∑
k=1

πk =
65 + 59 + 58 + 58 + 58 + 58 + 59 + 65

240
=

480

240
= 2.

(ii)
∑
k,j∈U,j 6=k πk,j = n(n− 1).
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The matrix [πj,k] in (3.4.4) was computed and saved in R under the name PIMat. The summation

of interest was obtained with following R-code:

AUX <- PIMat; diag(AUX) <- 0; sum(AUX)

The result is 2; since n ∗ (n − 1) = 2 ∗ (2 − 1) it follows that the equality (ii) holds. Note that

AUX has zeros along the main diagonal, and that the command sum(AUX) returns the sum of all

elements of the matrix AUX.

(iii) The third relation is ∑
j:j∈U, j 6=k

πk,j = (n− 1)πk.

Since n = 2, the right-hand side equals the k-th component of the vector diag(PIMat). The

left-hand side is the k-th component of apply(AUX, 1, sum). Thus, to verify the equality in the

present context, it is sufficient to issue the following R-command:

round( apply(AUX, 1, sum) - diag(PIMat), 5 )

and to check that a vector of zeros is produced. The output is the null vector of size 8, verifying

the third equality; note that, because of unavoidable rounding errors, the use of the round function

is necessary. tu

Example 3.4.2. A sample s of n individuals is drawn by the SI design from a frame that contains N

individuals. The households corresponding to the selected individuals are identified. Compute the

inclusion probability of a household composed by M individuals, whereM < n. Obtain approximate

expressions for the inclusion probability for M = 1, 2, 3, supposing that both N and n are large

with n/N = fN → f > 0. tu

Solution. A household of M inhabitants is included for analysis if and only if one of the M indi-

viduals is selected in the SI sample s. Thus, the probability of inclusion of a household of size M

is

αM = 1−
(
N−M
n

)(
N
n

)
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Observe that (
N−M
n

)(
N
n

) =
(N −M)n

(N)n

=
(N − n)(N − n− 1) · · · (N −M − n+ 1)

N(N − 1) · · · (N −M + 1)

=
(1− fN )(1− fN − 1/N) · · · (1− fN − (M − 1)/N)

1(1− 1/N) · · · (1− (M − 1)/N)

Thus, if M is fixed, then as n and N go to ∞ in such a way that n/N = fN → f it follows that

(
N−M
n

)(
N
n

) → (1− f)M ,

and then αM → 1− (1− f)M . tu

3.5. Inclusion Probabilities in Bernoulli Designs

This section contains two examples about the inclusion probabilities in Bernoulli sample designs,

where the underlying population is subdivided in clusters.

Example 3.5.1. Consider a population U with three subpopulations U1, U2 and U3 of sizes N1 = 600,

N2 = 300 and N3 = 100, so that U is of size N = 1000. For each k in U , the inclusion in the

sample s is determined by a Bernoulli experiment that gives the element k the probability πk of

being selected. The experiments are independent.

(a) Let πk = 0.1 for k ∈ U1, πk = 0.2 for k ∈ U2, and πk = 0.8 for k ∈ U3. Find the expected value

and variance of nS under this design.

(b) Suppose that πk is constant for every k ∈ U . Determine this constant so that the expected

value of the sample size agrees with the expected value obtained in the previous part (a). Next,

determine the variance of the sample size and compare it with the variance in case (a). tu

Solution. (a) Let n
(i)
S be the number of elements in the sample that belong to the subpopulation

Ui, so that

(i) n
(1)
S , n

(2)
S , n

(3)
S are independent;

(ii) n
(1)
S ∼ Ber(π1, 600) = Ber(0.1, 600), n

(2)
S ∼ Ber(π2, 300) = Ber(0.2, 300) and n

(3)
S ∼ Ber(π3, 100) =

Ber(0.8, 100);

(iii) nS = n
(1)
S + n

(2)
S + n

(3)
S .
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It follows that

E[nS ] = E[n
(1)
S ] + E[n

(2)
S ] + E[n

(3)
S ]

= 600(0.1) + 300(0.2) + 100(0.8) = 60 + 60 + 80 = 200

and

Var [nS ] = Var
[
n
(1)
S

]
+ Var

[
n
(2)
S

]
+ Var

[
n
(3)
S

]
= 600(0.1)(0.9) + 300(0.2)(0.8) + 100(0.8)(0.2) = 54 + 48 + 16 = 118.

(b) Let πk = π for every k ∈ U . In this case, the number of elements nS in the sample S is a

random variable with distribution Ber(π, 1000) so that E[nS ] = 1000π, and Var [nS ] = 1000π(1−π).

Thus, in order to have that the expected value 1000π coincides with the one in part (a) the

equality 1000π = 200 must be satisfied, so that π = 0.20. In this case the variance is Var [nS ] =

1000(0.2)(0.8) = 160, which is larger than the one in part (a). tu

Example 3.5.2. A Population of 1, 600 individuals is divided into 800 clusters (households) with

the number of clusters of size a is Na for a = 1, 2, 3, 4 as indicated below:

a : 1 2 3 4
Na : 250 350 150 50

A sample of individuals is selected as follows: 300 clusters are drawn from the 800 by the SI design

and all individuals in the selected clusters constitute the sample. Determine E[nS ] and Var [nS ] tu

The argument below relies on the formulas for the expectation and variance of a random vector

with multidimensional hypergeometric distribution, which are established at the end of the Chapter

4.

Solution. The sample of n = 300 households is selected form the population U , which is the union

of four subpopulations U1,U2,U3,U4 of sizes N1 = 250, N2 = 350, N3 = 150, N4 = 50, respectively.

If Xi is the number of units in the sample that belong to Ui, it follows that

X = (X1, X2, X3, X4) ∼ H4(300, 800; 250, 350, 150, 50)

and then

E[X] = np and Var [X] = n(1− f̃) [diag(p)− p′p]

where

p = (N1/N,N2/N,N3/N,N4/N) = (0.3125, 0.4375, 0.1875, 0.0625)

and

f̃ =
n− 1

N − 1
=

299

799
.



28

Consequently

E[X] = np = (93.75, 131.25, 56.25, 18.75).

and

Var [X] =


40.3336 −25.6668 −11.0001 −3.6667
−25.6668 46.2003 −15.4001 −5.1334
−11.0001 −15.4001 28.6002 −2.2
−3.6667 −5.1334 −2.2 11.0001


The number of individuals in the selected clusters is

nS = X1 + 2X2 + 3X3 + 4X4 = (1, 2, 3, 4) ·X

and then

E[nS ] = (1, 2, 3, 4) · E[X] = (1, 2, 3, 4) · (93.75, 131.25, 56.25, 18.75) = 600,

and

Var [nS ] = (1, 2, 3, 4)V


1
2
3
4

 = 140.801

completing the argument. tu

3.6. An Example with Variable Sample Size

In this section two simple examples are used to illustrate the main ideas introduced in this chapter.

Example 3.6.1. Consider a population of size N = 3, say U = {1, 2, 3} and let the sampling design

p(·) be determined as follows:

s : {1, 2} {1, 3} {2, 3} {1, 2, 3}
p(s) : 0.4 0.3 0.2 0.1

(a) Compute the vector π = (πk) and the matrix [πj,k].

(b) Find E[nS ] by direct calculation using the table above;

(c) Find E[nS ] by using the formula in terms of the inclusion probabilities πk. tu

Solution. Recall the πk = P [k ∈ S] is the probability of inclusion of the unit k in the selected

sample S, whereas πj,k = P [j ∈ S, k ∈ S] is the probability of having that both units j and k

belong to S.
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(a) The inclusion probabilities are given by

k : 1 2 3
πk = P [k ∈ S] : 0.8 0.7 0.6

that is,

(π1, π2, π3) = (0.8, 0.7, 0.6)

For instance

π2 = P [2 ∈ S]

= P [S = {1, 2}] + P [S = {2, 3}] + P [S = {1, 2, 3}] = 0.4 + 0.2 + 0.1 = 0.7.

On the other hand,

[πj,k] =

 0.8 0.5 0.4
0.5 0.7 0.3
0.4 0.3 0.6


As an example, π1,3 = P [1 ∈ S, 3 ∈ S] = P [S = {1, 3}] + P [S = {1, 2, 3}] = 0.3 + 0.1 = 0.4.

(b) From the definition of the sampling design, nS attains two values, namely 2 and 3. Note that

P [nS = 2] = P [S = {1, 2}] + P [S = {1, 3}] + P [S = {2, 3}] = 0.9, and P [nS = 3] = P [S =

{1, 2, 3, }] = 0.1. Consequently,

E[nS ] = 2P [nS = 2] + 3P [nS = 3] = 2 · 0.9 + 3 · 0.1 = 2.1.

(c) Note that E[nS ] = π1 + π2 + π3 = 0.8 + 0.7 + 0.6 = 2.1. tu

Example 3.6.2. In the context of Exercise 3.6.1, let the values of the the study variables be

y1 = 16, y2 = 21, y3 = 18,

so that the total is

t = 55.

(a) Compute the expectation and variance of the π-estimator t̂π.

(b) Compute the variance of t̂π using the general formula in terms of the covariances ∆j,k.

(c) Compute the coefficient of variation of the π estimator.

(d) Compute the estimator of the variance V̂ (t̂π) using the π expansion formula.

(e) Find the expectation of V̂ (t̂π) using the definition of expected value. tu

Solution. The expanded values of yi, namely, y̌i = yi/πi are given by

y̌′ = (y̌1, y̌2, y̌3) = (20, 30, 30).
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(a) Observe now that t̂π({1, 2}) = y̌1 + y̌2 = 50 and t̂π({1, 2, 3}) = y̌1 + y̌2 + y̌3 = 80. Proceeding

similarly, the following table is obtained:

s : {1, 2} {1, 3} {2, 3} {1, 2, 3}
p(s) : 0.4 0.3 0.2 0.1
t̂π : 50 50 60 80

t̂π − 55 : −5 −5 5 25

It follows that E[t̂π] = 50 ·0.7+60 ·0.2+80 ·0.1 = 35+12+8 = 55, verifying that t̂π is an unbiased

estimator, and

V (t̂π) = (5)2 · 0.9 + 252 · 0.1 = 85.

(b) First observe that the second order probabilities πi,j are given by

π2,1 = π1,2 =P [{1, 2} ⊂ S] = P [S = {1, 2}] + P [S = {1, 2, 3}] = 0.5

π3,1 = π1,3 =P [{1, 3} ⊂ S] = P [S = {1, 3}] + P [S = {1, 2, 3}] = 0.4

π3,2 = π2,3 =P [{2, 3} ⊂ S] = P [S = {2, 3}] + P [S = {1, 2, 3}] = 0.3

and
π1,1 = π1 = P [1 ∈ S]

= P [S = {1, 2}] + P [S = {1, 3}] + P [S = {1, 2, 3}]

= 0.8

whereas π2 2 and π3,3 are computed similarly. The matrix [πi j ] was introduced in the R environment

under the name pimat and then the matrix

∆ = [∆j,k] = [πjk − πjπk] = Cov (Ij , Ik)

was computed using the following R code:

Delta <- pimat - crossprod (rbind(diag ( pimat) ) )

and the following result was obtained:

∆ =

 0.16 −0.06 −0.08
−0.06 0.21 −0.12
−0.08 −0.12 0.24


In terms of the covariance matrix ∆, the variance of t̂π is given by

V [t̂π] = (y̌1, y̌2, y̌3)∆

 y̌1y̌2
y̌3


= (20, 30, 30)

 0.16 −0.06 −0.08
−0.06 0.21 −0.12
−0.08 −0.12 0.24

 20
30
30

 = (20, 30, 30)

−1
1.5
2

 = 85.

(c) CV (t̂π) = (V [t̂π])1/2/E[t̂π] = 851/2/55 = 0.1676281
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(d) The estimator of the variance V̂ (t̂π) is given by

V̂ (t̂π) =
∑
S

y̌j∆̌j,ky̌k

where

∆̌ = [∆j,k/πj,k] =

 0.2 −0.12 −0.2
−0.12 0.3 −0.4
−0.2 −0.4 0.4


Using these two last displays, for each possible sample s, the estimate V̂ (t̂π) can be immediately

computed. For instance, if s = {1, 2}, then

V̂ (t̂π)({1, 2}) = (20, 30, 0)∆̌

 20
30
0

 = 206

The entries in the third line of the following table are computed similarly.

s : {1, 2} {1, 3} {2, 3} {1, 2, 3}
p(s) : 0.4 0.3 0.2 0.1

V̂ (t̂π)(s) : 206 200, −90 −394

It is interesting to observe that V̂ [t̂π] attains negative values at some samples.

(d) Note that

E[V̂ (t̂π)] = 206 · 0.4 + 200 · 0.3− 90 · 0.2− 394 · 0.1 = 85,

confirming that V̂ [t̂π] is an unbiased estimator of V [t̂π]. tu



32

Chapter 4

Simple and Bernoulli Schemes

4.1. Introduction

The simple and Bernoulli sampling schemes have been previously studied, and in this chapter they

will be analyzed more deeply. To begin with, in Section 2 it is shown that, conditionally on the

observed sample size, the sample obtained from a Bernoulli scheme is a simple random sample,

and it is shown that, under the SI design, the sample variance as an unbiased estimator of the

population variance. Next, in Section 3 it is proved that under the Bernoulli scheme the sample

variance is a biased estimator, but that the relative bias converges to zero as the population size

grows, and the section concludes analyzing the covariance between two sample means obtained from

disjoint simple random samples. Then, in Section 4 sampling with replacement is considered, the

estimation of the population total is analyzed via the the Hurwitz-Hansen expansion estimator, and

the results are illustrated in Section 5 for the problem of estimating the income per household; an

interesting feature of the of the analysis is that the sampling units are not the population elements

(the individuals), but small clusters (the households). Finally, Sections 6 and 7 contain a formal

statement and proofs of basic properties of the multivariate hypergeometric distribution and the

Bernoulli sampling design.

4.2. Relation Between Simple and Bernoulli Samples

The main objective of this section is to show that, conditionally on the observed sample size,

the sample obtained from a Bernoulli scheme is a simple random sample. The analysis is used

to provide, under the SI design, a short proof of the unbiasedness of the sample variance as an
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estimator of the population variance.

Example 4.2.1. Let S be a sample realized from the BE design with πk = π for every k and, as

usual, let nS denote the (random) sample size of S. Show that, conditionally on nS = n, the

probability of any sample s of size n is 1/
(
N
n

)
, the same probability as in the SI design. tu

Solution. Under Bernoulli sampling, nS ∼ B(N, π), where N is the population size, so that

P [nS = n] =

(
N

n

)
πn(1− π)N−n.

Now, let s be an arbitrary sample (subset of the population U) with n elements, and note that

under Bernoulli sampling

P [S = s] = πn(1− π)N−n

Thus,

P [S = s|nS = n] =
P [S = s, nS = n]

P [nS = n]
=
P [S = s]

nS = n]
=

πn(1− π)N−n(
N
n

)
πn(1− π)N−n

and then

P [S = s|nS = n] =
1(
N
n

) .
Thus, conditionally on the event nS = n, all samples of size n have the same probability 1/

(
N
n

)
, as

in the SI design. tu

Example 4.2.2. The objective of this exercise is to show that, in the SI design, the equality

ESI [S
2
ys] = S2

yU (4.2.1)

holds, so that the expected value of the (corrected) sample variance equals the (corrected) popula-

tion variance. Note that, for every set A ⊂ U ,

S2
yA =

1

nA − 1

∑
i∈A

(yi − ȳA)2, where ȳA =
∑
i∈A

yi/nA

and nA is the number of elements of A.

(a) Establish (4.2.1) using that

E

[∑
k∈s

y2k

]
= E

[∑
k∈U

Iky
2
k

]
=

n

N

∑
U

y2k (4.2.2)

and

E

 ∑
j 6=k,j,k∈s

yjyk

 = E

 ∑
j 6=k,j,k∈U

IjIkyjyk

 =
n(n− 1)

N(N − 1)

∑
j 6=k,j,k∈U

yjyk (4.2.3)
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(b) Prove (4.2.1) using that ∑
s

(yj − yk)2 = 2n(n− 1)S2
ys (4.2.4)

with a similar relation for S2
yU tu

Solution. (a) Observe that under the SI design ns = n for every possible sample, and then

(n− 1)S2
ys =

∑
i∈s

(yi − ȳs)2 =
∑
i∈s

y2i − nȳ2s

=
∑
i∈s

y2i −
1

n

(∑
k∈s

yk

)2

=
∑
i∈s

y2i −
1

n

∑
k∈s

y2k +
∑

j 6=k,j,k∈s

yjyk


=
n− 1

n

∑
i∈s

y2i −
1

n

∑
j 6=k,j,k∈s

yjyk

Combining this relation with (4.2.2) and (4.2.3) it follows that

(n− 1)E[S2
ys] =

n− 1

n
E

[∑
i∈s

y2i

]
− 1

n
E

 ∑
j 6=k,j,k∈s

yjyk


=
n− 1

n

n

N

∑
i∈U

y2i −
1

n

n(n− 1)

N(N − 1)

∑
j 6=k,j,k∈U

yjyk

=
n− 1

N

∑
i∈U

y2i −
n− 1

N(N − 1)

∑
j 6=k,j,k∈U

yjyk

=
n− 1

N

∑
i∈U

y2i −
1

N − 1

∑
j 6=k,j,k∈U

yjyk


To continue, observe that

∑
j 6=k,j,k∈U

yjyk =

(∑
k∈U

yk

)2

−
∑
k∈U

y2k = N2ȳ2U −
∑
k∈U

y2k,

an equality that together with the previous display yields that

(n− 1)E[S2
ys] =

n− 1

N

[∑
i∈U

y2i −
1

N − 1

(
N2ȳ2U −

∑
k∈U

y2k

)]

=
n− 1

N

[
N

N − 1

∑
i∈U

y2i −
N2

N − 1
ȳ2U

]

=
n− 1

N − 1

[∑
i∈U

y2i −Nȳ2U

]
= (n− 1)S2

yU

and (4.2.1) follows.
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(b) First, it will be verified that 2n(n− 1)S2
ys =

∑
i,j∈s(yi − yj)2. Note that∑

i,j∈s
(yi − yj)2 =

∑
i,j∈s

(yi − ys − (yj − ys))2

=
∑
i,j∈s

[(yi − ys)2 + (yj − ys))2 − 2(yi − ys)(yj − ys)]

=
∑
i,j∈s

(yi − ys)2 +
∑
i,j∈s

(yj − ys))2 − 2
∑
i,j∈s

(yi − ys)(yj − ys)

= n
∑
i∈s

(yi − ys)2 + n
∑
j∈s

(yj − ys))2 − 2
∑
i∈s

(yi − ys)
∑
j∈s

(yj − ys)

= 2n
∑
i∈s

(yi − ys)2;

since S2
ys = (n− 1)−1

∑
i,j∈s(yi − yj)2, it follows that∑
i,j∈s

(yi − yj)2 = 2n
∑
i∈s

(yi − ys)2 = 2n(n− 1)S2
y s,

establishing the desired equality. Next, observe that∑
s

(yj − yk)2 =
∑
U

IjIk(yj − yk)2,

so that

2n(n− 1)E[S2
ys] = E

[∑
U

IjIk(yj − yk)2

]

=
n(n− 1)

N(N − 1)

∑
U

(yj − yk)2

=
n(n− 1)

N(N − 1)
2N(N − 1)S2

yU = 2n(n− 1)S2
yU ,

where equality (4.2.4) for S2
yU was used in the last step. tu

4.3. Relative Bias Under BE Design

In this section it is shown that, under the Bernoulli scheme, the sample variance is a biased estima-

tor, and that the relative bias converges to zero as the population size grows. Next, the covariance

between two sample means obtained from disjoint simple random samples will be obtained.

Example 4.3.1. Let s be a sample drawn by the BE design with πk = π for all k. Set

S2
ys =

∑
s(yk − ȳs)2

(ns − 1)
if ns ≥ 2, S2

ys = 0, if ns ≤ 1.

Show that, as an estimator of S2
yU , the relative bias of S2

ys, namely

E[S2
ys]− S2

yU

S2
yU

,
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is given by
E[S2

ys]− S2
yU

S2
yU

= −P [nS ≤ 1] = −[(1− π)N +Nπ(1− π)N−1]. tu

Solution. Recall that, under the BE design, given nS = k the conditional distribution of the sample

s is the same as if s were selected via the SI design; see Example 4.2.1. Since S2
ys is an unbiased

estimator of S2
yU when the sample size is larger than 1, it follows that

E[S2
ys|nS = k] = S2

yU , k ≥ 2.

On the other hand, S2
ys = 0 when ns ≤ 1, and combining this fact with the above display it follows

that E[S2
ys] = S2

yUP [nS ≥ 2], so that

E[S2
ys]− S2

yU

S2
yU

= P [nS ≥ 2]− 1 = −P [nS ≤ 1].

Too conclude recall that nS ∼ B(N, π) under the BE design, and then

P [nS ≤ 1] = (1− π)N +N(1− π)N−1π,

completing the argument. tu

Now, the covariance between to disjoint simple random samples will be obtained.

Example 4.3.2. Let sA be an SI sample, and let sB be an SI sample from U \ sA. Denote by ŷA

and ŷB the sample means corresponding to sA and sB , respectively. Determine the covariance and

the correlation between ŷA and ŷB . tu

Solution. Given sA, sB is an SI sample from U \ sA, so that

E[ŷB |sA] =
1

N − nA

∑
U\sA

yk

=
1

N − nA

[∑
U
yk −

∑
sA

yk

]

=
NȲ − nAŷsA
N − nA

, (4.3.1)

and then, since ŷA is a function of sA,

E[ŷAŷB |sA] =
NŷAȲ − nAŷ2A

N − nA
;

recalling that E[ŷA] = Ȳ (since sA is an SI sample) it follows that

E[ŷAŷB ] =
NȲ 2 − nAE[ŷ2A]

N − nA
. (4.3.2)
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On the other hand, since ŷA is the sample mean of an SI sample of size nA,

E[ŷA] = Y

whereas, via (4.3.1),
E[ŷB ] = E [E[ŷB |sA]]

= E

[
NȲ − nAŷsA
N − nA

]
=
NȲ − nAE [ŷsA ]

N − nA

=
NȲ − nAȲ
N − nA

and then, E[ŷB ] = Ȳ . Hence, (4.3.2) leads to

Cov (ŷA, ŷB) = E[ŷAŷB ]− E[ŷA]E[ŷB ]

=
NȲ 2 − nAE[ŷ2A]

N − nA
− Ȳ 2

=
nAȲ

2 − nAE[ŷ2A]

N − nA
= − nA

N − nA
Var [ŷA]

= − nA
N − nA

1

nA

N − nA
N

S2
yU

and then

Cov (ŷA, ŷB) = − 1

N
S2
yU .

Now observe that that the formula for the variance from an SI sample yields that

√
Var [ŷA] Var [ŷB ] =

√
1

nA

N − nA
N

S2
yU

1

nB

N − nB
N

S2
yU

=

√
N − nB
nA

N − nA
nB

1

N
S2
yU

and together with the above displayed expression, it follows that

Corr(ŷA, ŷB) = −
√

nAnB
(N − nB)(N − nA)

. tu

4.4. Sampling with Replacement

In this section sampling with replacement is considered, and the estimation of the population total

is analyzed. The following example introduces the Hurwitz-Hansen estimator.

Example 4.4.1. Let U = {U1, U2, . . . , UN} be a population of size N and suppose that yi = y(Ui)

is the quantity of interest associated with the unit Ui. An ordered sample s̃ = (ui1 , ui2 , . . . , uim) is
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selected with replacement in such a way that, in each draw, the probability of selecting unit Ui is

pi, i = 1, 2, . . . , N . Consider the Hansen-Hurwitz estimator of the total t = y1 + y2 + · · ·+ yN (or

p-expanded estimator) t̂pwr which is given by

t̂pwr =
1

m

m∑
j=1

yij
pij

.

Show that

(a) E[t̂pwr] = t;

(b) The variance of t̂pwr is given by

Var
[
t̂pwr

]
=

1

m
V1, where V1 =

N∑
k=1

pk

(
yk
pk
− t
)2

.

(c) V1 has estimator

V̂1 =
1

m− 1

m∑
j=1

(
yij
pij
− t̂pwr

)2

(d) Show that

V1 =

N∑
k=1

y2k
pk
− t2, and V̂1 =

1

m− 1

 m∑
j=1

(
yij
pij

)2

−m t̂2pwr

 . (4.4.1)

tu

Solution. (a) Let Ni be the random number of times that unit Ui appears in the sample, and

observe that

Nk ∼ B(m, pk), k = 1, 2, 3, . . . , N,

as well as
m∑
j=1

yij
pij

=

N∑
k=1

yk
pk
Nk.

Therefore, E[Nk] = mpk and

E

 m∑
j=1

yij
pij

 = E

[
N∑
k=1

yk
pk
Nk

]
=

N∑
k=1

yk
pk
E [Nk] =

N∑
k=1

yk
pk
mpk = mt,

so that

E[t̂pwr] = E

 1

m

m∑
j=1

yij
pij

 = t.

(b) Let Zj be defined by

Zj =
yij
pij

, j = 1, 2, . . . ,m.
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Since in each selection the unit Ur is selected with probability pr, it follows that, for each j, the

variable Zj attains value yk/pk with probability pk, so that

E[Zj ] =

N∑
k=1

yk
pk
pk =

N∑
k=1

yk = t (4.4.2)

and

Var [Zj ] = E[(Zj − t)2] =

N∑
k=1

pk

(
yk
pk
− t
)2

=:V1. (4.4.3)

Observe now that Z1, Z2, . . . , Zm are independent and identically distributed, and that

t̂pwr =
1

m

m∑
j=1

Zj = Zm.

These two last displays immediately lead to

Var
[
t̂pwr

]
=
V1
m
.

(c) V1 is the variance of the common distribution of the variables Zj , which are independent and

identically distributed. Thus, an unbiased estimator of V1 is the (corrected) sample variance

V̂1 =
1

m− 1

m∑
j=1

(Zj − Zm)2

=
1

m− 1

m∑
j=1

(
yij
pij
− t̂pwr

)2

(d) Observe that V1 = Var [Zj ] = E[Z2
j ] − (E[Zj ])

2. Thus, since Zj attains the values yk/pk with

probability pk, k = 1, 2, 3, . . . , N , it follows from (4.4.2) that

V1 =

N∑
k=1

pk

(
yk
pk

)2

− t2 =

N∑
k=1

y2k
pk
− t2,

establishing the first equality in (4.4.1). As for the second one, recall that for a1, a2, . . . , am ∈ IR,

m∑
k=1

(ak − ā)2 =

m∑
k=1

a2i −mā

Now set ak = yik/pik and note that ā = m−1
∑m
k=1(yik/pik) = t̂pwr. Thus, the above display yields

V̂1 =
1

m− 1

m∑
k=1

(
yik
pik
− t̂pwr

)2

=
1

m− 1

[
m∑
k=1

(
yik
pik

)2

−m t̂2pwr

]

which is the second equality in (4.4.1). tu
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4.5. An Example: Income per Household

In this section an example about the average income per household is analyzed. There are two

interesting features in this context: The sampling scheme is with replacement, and the sampling

units are not the elements of the population (the households) but the inhabitants.

Example 4.5.1. To estimate the average income per household (
∑
U yk/N) for a population of

N = 200 households, a listing of the 600 individuals that belong to the 200 households was used as

follows: A simple random sample with replacement of m = 10 persons was drawn. The households

of the selected persons were identified, and information on the average income in the household

(yi/xi) was collected, where yk is the total household income in dollars, and xk is the number of

persons in the households. The results are as follows:

Draw Average household income
j (yij/xij )
1 7000
2 8000
3 6000
4 5000
5 9000
6 4000
7 7000
8 8000
9 4000
10 2000

Compute an estimate of the average income per household based on the pwr estimator as well as

the corresponding estimated coefficient of variation. tu

Solution. The population consists of N = 200 households, whereas the sampling scheme is done

on the class of all 600 inhabitants of the households. Once a person is selected, the corresponding

household is fully analyzed to determine the total income (yi). Thus, the scheme selects household

i with probability pi = xi/600, where xi is the number of inhabitants of household i. Tthe p-

expanded estimator of the total t =
∑
U yk, based on a sample with replacement of size m = 10

is

t̂pwr =
1

10

10∑
k=1

yik
pik

= 600
1

10

10∑
k=1

yik
xik

and

t̃ =
1

200
t̂pwr

is an unbiased estimator of the average income per household
∑
U yk/200. Note that

V̂ (t̃) =
1

2002
V̂ (t̂pwr) =

1

2002
1

10

∑10
k=1[(yik/pik)− t̂pwr]2

10− 1
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and then

V̂ (t̃) =
1

10

∑10
k=1[3(yik/xik)− t̃)2

10− 1

With the above data, direct calculations yield that t̂pwr = 3600, 000 and then

t̃ = 18, 000.

On the other hand

V̂ (t̃) =
1

10

∑10
k=1[3(yik/xik)− t̃)2

10− 1
= 4400, 000

so that

cve(t̃) =
(V̂ (t̃))1/2

t̃
=

2, 097.618

18, 000
= 0.1165343.

is the estimated coefficient of variation. tu

Example 4.5.2. In the general with-replacement sampling of size m, show that the first and second

order inclusion probabilities are

πk = 1− (1− pk)m

and

πjk = 1− (1− pk)m − (1− pj)m + (1− pj − pk)m. tu

Solution. Recall that pk is the probability of drawing unit k in any extraction. Thus, in m extrac-

tions the probability that the unit k is not present is (1− pk)m, and then

πk = P [Ik = 1] = P [Unit k appears in the sample] = 1− (1− πk)m.

On the other hand,

P [Ik = 0 or Ij = 0] = P [Ik = 0] + P [Ij = 0]− P [Ij = 0 and Ik = 0]

= (1− πk)m + (1− pj)m − (1− pj − pk)m,

and then πj,k = P [Ij = 1 and ik = 1] = 1 − P [Ik = 0 or Ij = 0], so that πj,k = 1 − (1 − πk)m −

(1− pj)m + (1− pj − pk)m. tu

4.6. Multivariate Hypergeometric Distribution

Let the population U of sizeN be the union of k subpopulations U1,U2, . . . ,Uk of sizesN1, N2, . . . , Nk.

A simple random sample of size n is taken form U and Xi denotes the number of elements in the
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sample that belong to Ui, i = 1, 2, . . . , k. The distribution of the vector X = (X1, X2, . . . , Xk) is

the Hypergeometric distribution Hk(n,N ;N1, N2, . . . , Nk) and is determined by

P [X = (n1, n2, . . . , nk)] =

(
N1

n1

)(
N2

n2

)(
N3

n3

)
· · ·
(
Nk

nk

)(
N
n

) (4.6.1)

where n1, n2 . . . nk are nonnegative integers adding up to n. Note that

∑
n1≥0,n2≥0,...,nk≥0

n1+n2+···+nk=n

(
N1

n1

)(
N2

n2

)(
N3

n3

)
· · ·
(
Nk

nk

)(
N
n

) = 1 (4.6.2)

The mean and variance matrix of X will be now determined: The identity

(
a

b

)
=
a

b

(
a− 1

b− 1

)
, a ≥ b > 0 (4.6.3)

will be used (Dudewicz and Mishra, 2008).

(i) The compute E[Xi] observe that, by symmetry, it is sufficient to find E[X1]:

E[X1] =
∑

n1≥0,n2≥0,...,nk≥0

n1+n2+···+nk=n

n1

(
N1

n1

)(
N2

n2

)(
N3

n3

)
· · ·
(
Nk

nk

)(
N
n

)
=

∑
n1>0,n2≥0,...,nk≥0

n1+n2+···+nk=n

n1

(
N1

n1

)(
N2

n2

)(
N3

n3

)
· · ·
(
Nk

nk

)(
N
n

)
= n

N1

N

∑
n1>0,n2≥0,...,nk≥0

n1+n2+···+nk=n

(
N1−1
n1−1

)(
N2

n2

)(
N3

n3

)
· · ·
(
Nk

nk

)(
N−1
n−1

)
= n

N1

N

∑
k1≥0,n2≥0,...,nk≥0

k1+n2+···+nk=n−1

(
N1−1
k1

)(
N2

n2

)(
N3

n3

)
· · ·
(
Nk

nk

)(
N−1
n−1

)
= n

N1

N

where (4.6.3) was used to set the the third equality and (4.6.2) (with N1 − 1 and N − 1 instead of

N1 and N , respectively) was used in the last step. Therefore,

E[Xi] = n
Ni
N
, i = 1, 2, . . . , N. (4.6.4)

(ii) Now the expectation of E[Xi(Xi− 1)] will be determined. As before, it is sufficient to consider
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the case i = 1.

E[X1(X1 − 1)] =
∑

n1≥0,n2≥0,...,nk≥0

n1+n2+···+nk=n

n1(n1 − 1)

(
N1

n1

)(
N2

n2

)(
N3

n3

)
· · ·
(
Nk

nk

)(
N
n

)
=

∑
n1>1,n2≥0,...,nk≥0

n1+n2+···+nk=n

n1(n1 − 1)

(
N1

n1

)(
N2

n2

)(
N3

n3

)
· · ·
(
Nk

nk

)(
N
n

)
= n(n− 1)

N1(N1 − 1)

N(N − 1)

∑
n1>1,n2≥0,...,nk≥0

n1+n2+···+nk=n

(
N1−2
n1−2

)(
N2

n2

)(
N3

n3

)
· · ·
(
Nk

nk

)(
N−2
n−2

)
= n(n− 1)

N1(N1 − 1)

N(N − 1)

∑
k1≥0,n2≥0,...,nk≥0

k1+n2+···+nk=n−2

(
N1−2
k1

)(
N2

n2

)(
N3

n3

)
· · ·
(
Nk

nk

)(
N−2
n−2

)
= n(n− 1)

N1(N1 − 1)

N(N − 1)

where a double application of (4.6.3) lead to the third equality and (4.6.2) (with the appropriate

parameters) was used in the last step. Therefore,

E[X2
1 ] = E[X1(X1 − 1)] + E[X1] = n(n− 1)

N1(N1 − 1)

N(N − 1)
+ n

N1

N

and then

Var [X1] = E[X2
1 ]− (E[X1])2

= n(n− 1)
N1(N1 − 1)

N(N − 1)
+ n

N1

N
−
(
n
N1

N

)2

= n
N1

N

(
(n− 1)

N1 − 1

N − 1
− nN1

N
+ 1

)
= n

N1

N

(
(n− 1)(N1 − 1)N − nN1(N − 1) + (N − 1)N

N(N − 1)

)
= n

N1

N

(N − n)(N −N1)

N(N − 1)

= n
N1

N

(
1− N1

N

)
N − n
N − 1

Therefore,

Var [Xi] = n
Ni
N

(
1− Ni

N

)
N − n
N − 1

, i = 1, 2, . . . , k. (4.6.5)

(iii) Finally, the covariance between Xi and Xj will be determined. As usual, it is sufficient to find
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Cov (X1, X2) .

E[X1X2] =
∑

n1≥0,n2≥0,...,nk≥0

n1+n2+···+nk=n

n1n2

(
N1

n1

)(
N2

n2

)(
N3

n3

)
· · ·
(
Nk

nk

)(
N
n

)
=

∑
n1>0,n2>0,n3≥0...,nk≥0

n1+n2+···+nk=n

n1n2

(
N1

n1

)(
N2

n2

)(
N3

n3

)
· · ·
(
Nk

nk

)(
N
n

)
= n(n− 1)

N1N2

N(N − 1)

∑
n1>0,n2>0,n3≥0,...,nk≥0

n1+n2+···+nk=n

(
N1−1
n1−1

)(
N2−1
n2−1

)(
N3

n3

)
· · ·
(
Nk

nk

)(
N−2
n−2

)
= n(n− 1)

N1N2

N(N − 1)

∑
k1≥0,k2≥0,n3≥0,...,nk≥0

k1+n2+···+nk=n−2

(
N1−1
k1

)(
N2−1
k2

)(
N3

n3

)
· · ·
(
Nk

nk

)(
N−2
n−2

)
= n(n− 1)

N1N2

N(N − 1)

where, as before, a double application of (4.6.3) lead to the third equality and (4.6.2) (with the

appropriate parameters) was used to set the last equality. Thus,

Cov (X1, X2) = E[X1X2]− E[X1]E[X2] = n(n− 1)
N1N2

N(N − 1)
− nN1

N
n
N2

N

and then

Cov (X1, X2) =
nN1N2

N

(
n− 1

N − 1
− n

N

)
=
nN1N2

N

(
n−N

N(N − 1)

)
so that

Cov (X1, X2) = −nN1

N

N2

N

N − n
N − 1

(4.6.6)

The above discussion is summarized in the following theorem

Theorem 4.6.1. Suppose that X ∼ Hk(n,N ;N1, . . . , Nk) is a random vector with the k-dimensional

hypergeometric distribution; see (4.6.1). Set

pi =
N1

N
, i = 1, 2, . . . , k

so that
∑k
i=1 pi = 1, and define the row vector p and the k × k matrix V by

p: = (p1, p2, . . . , pk), (4.6.7)

and

V: = diag(p)− p′p.

In this case

E[X] = np, and Var [X] = n(1− f̃)V,
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where

f̃ =
n− 1

N − 1

is (a form of) the finiteness correction term.

The assertions in this theorem follow directly combining (4.6.4) –(4.6.6) with (4.6.7). Observe the

following interesting points:

(i) p and V are the mean and variance of a multidimensional Bernoulli random vector Y with pa-

rameter p. Hence, np and nV are the mean and variance of a vector with multinomial distribution

M(n,p) with parameters n and p.

(ii) As n/N → 0, the correction term f̃ goes to 0, and then the variance of X approximates the

variance of M(n,p). The reason for this convergence is that, as f̃ goes to 0, the hypergeometric

distribution Hk(n,N ;N1, N2, . . . , Nk) approximates M(n,p).

(iii) If the vector p has been loaded in the R environment as p, then the matrix V is easily obtained

using the code

V <- diag(p) - crossprod(rbind(p)).

4.7. The Bernoulli Sampling Design: Properties

The Bernoulli sampling design (BE) is implemented via the following draw sequential selection

method: Let N be the population size and let X1, X2, . . . , XN be N independent random variables

with uniform distribution in [0, 1). The units of the population are considered one by one from U1 to

UN , and Uk is included in the sample if and only if Xk < π where π ∈ (0, 1) is a constant fixed before

starting the selection process. Hence, the indicator function of the event [Uk belongs to the sample]

is Ik = I[Xk < π], so that

I1, I2, . . . , IN are independent and identically distributed,

and

πk = P [Ik = 1] = π = 1− P [Ik = 0], πj,k = P [Ik = 1, Ij = 1] = π2, j 6= k.

Thus, E[Ik] = π, Var [Ik] = π(1 − π) and Cov (Ij , Ik) = 0 when j 6= k. The π-expanded unbiased

estimator of the total is

t̂ =
∑
S

y̌k =
∑
U

y̌k Ik =
1

π

∑
U

yk Ik where y̌k =
yk
πk

=
yk
π
. (4.7.1)
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Theorem 4.7.1. (i) Var
[
t̂
]

=

(
1

π
− 1

)∑
U

y2k.

(ii) V̂ (t̂) =
1

π

(
1

π
− 1

)∑
s

y2k is an unbiased estimator of Var
[
t̂
]
.

Proof. Since the variables Ik are independent and identically distributed with common Bernoulli (π)

distribution it follows that

Var
[
t̂
]

= Var

[∑
U

y̌kIk

]
=
∑
U

π(1− π)y̌2k =

(
1

π
− 1

)∑
U

y2k.

Observe that Var
[
t̂
]

is the population total for the variable

wk =

(
1

π
− 1

)
y2k,

which admits the following (π-expanded) unbiased estimator

V̂ (t̂) =
∑
s

w̌i =
∑
s

wi
π

=

(
1

π
− 1

)∑
s

y2k
π

=
1

π

(
1

π
− 1

)∑
s

y2k,

completing the argument. tu

Remark 4.7.1. A remarkable fact of the formula in Theorem 4.7.1 is that the variance of t̂ is a

positive definite quadratic form, in contrast with other sampling designs where the variance for t̂

is a quadratic vanishing on the the space of constant vectors. Now set

n = Nπ

(the expected sample size) and note that

Var
[
t̂
]

=

(
N

n
− 1

)∑
U

y2k =
N2

n

(
1− n

N

) 1

N

∑
U

y2k.

Combining this relation with
∑
U y

2
k =

∑
U (yk − Ȳ )k +NȲ 2 = (N − 1)S2

yU +NȲ 2, it follows that

Var
[
t̂
]

=
N2

n

(
1− n

N

) 1

N

(
(N − 1)S2

yU +NȲ 2
)

=
N2

n

(
1− n

N

)
S2
yU

(
1− 1

N
+ CV −2yU

)
.

(4.7.2)

For the SI design with sample size (approximately) n the variance of t̂ is

VarSI(t̂) =
N2

n

(
1− n

N

)
S2
yU

and the efficiency of the SI plan with respect to the BE design, is

Var
[
t̂
]

VarSI(t̂)
= 1− 1

N
+ CV −2yU
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Thus, essentially, the SI plan is always more efficient than the BE plan, and is substantially better

when CVyU is “small’. tu

An alternative estimator under BE is given by

t̂alt = N
1

nS

∑
S

yk if nS 6= 0, t̂alt = 0 if nS = 0. (4.7.3)

Recall that given nS = k the sample S is uniformly distributed on the samples of size k (as if S

has been selected under the SI design). Thus, on the event nS > 0,

E[t̂alt|nS ] = N E

[
1

nS

∑
S

yk

]
= NȲ = Y

Var
[
t̂alt|nS

]
= N2

(
1

nS
− 1

N

)
S2
yU

(4.7.4)

Next, observe that

E

[(
1

nS
− 1

πN

)2
∣∣∣∣∣ nS > 0

]
= E

[(
nS −Nπ
nSNπ

)2
∣∣∣∣∣nS > 0

]

≤ E

[(
nS −Nπ
Nπ

)2
∣∣∣∣∣nS > 0

]

≤ 1

N2π2
E[(nS −Nπ)2|nS > 0]

=
1

N2π2
Nπ(1− π)

≤ 1− π
πNP [nS > 0]

.

Setting nS = 1 when S is empty, it follows that

E

[∣∣∣∣ 1

nS
− 1

πN

∣∣∣∣ ] ≤ E
[(

1

nS
− 1

πN

)2
∣∣∣∣∣ nS > 0

]1/2
+

(
1− 1

Nπ

)
P [nS = 0]

≤
(

1− π
πN(1− (1− π)N )

)1/2

+

(
1− 1

Nπ

)
(1− π)N

Thus, if

N is large and (1− π)N ≈ 0 (4.7.5)

then

E

[∣∣∣∣ 1

nS
− 1

πN

∣∣∣∣ ] ≈ 0

and then

E

[
1

nS

]
≈ 1

πN
.
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Combining this fact with (4.7.4) it follows from the formula for the variance in terms of the condi-

tional expectation and variance that, under (4.7.5),

Var
[
t̂alt
]

= Var
[
E[t̂alt|nS ]

]
+ E[Var

[
t̂alt|nS

]
]

≈ N2

(
E

[
1

nS

]
− 1

N

)
S2
yU

= N2

(
1

Nπ
− 1

N

)
S2
yU

= N2

(
1

n
− 1

N

)
S2
yU ,

where n = E[nS ] = Nπ.

Theorem 4.7.2. Under the BE design, let t̂alt be the estimator of the total Y defined in (4.7.3).

With this notation, in the context of condition (4.7.5),

E[t̂alt] ≈ Y and Var
[
t̂alt
]
≈ N2

(
1

n
− 1

N

)
S2
yU ,

where n = Nπ is the expected sample size. Consequently, the efficiency of t̂alt with respect to

π-expanded estimator t̂ is
Var

[
t̂
]

Var
[
t̂alt
] ≈ 1− 1

N
+ CV −2yU .

Example 4.7.1. In a population of size N = 1000 a BE sample with π = 0.40 is selected. The

observed sample size was ns = 300 and he variable of interest is yi = 0 or yi = 1 for every i. It was

observed that
∑
s yk = 200. In this case

t̂ =
1

π

∑
s

yk = 2.5(200) = 500, V̂ (t̂) =
1

π

(
1

π
− 1

)∑
s

y2k = 750.

A confidence interval with approximate confidence level of 95% is

t̂± 1.96

√
V̂ (t̂) = 500± 1.96

√
750 = 500± 53.7.

On the other hand, the estimator t̂alt is given by

t̂alt = 1000
1

nS

∑
S

yk = 1000
200

300
= 666.66

and an (approximately unbiased) estimator of S2
yU is

S2
yS =

1

300− 1
(
∑
s

y2k − nsȳ2s) =
1

300− 1
(200− 300(2/3)2) = 0.2229654

and then

V̂ (t̂alt)) = N2

(
1

n
− 1

N

)
S2
yS = 10002

(
1

400
− 1

1000

)
0.2229654 = 334.5

The (normal approximation) 95% confidence interval based on t̂alt is

t̂alt ± 1.96

√
V̂ (t̂) = 666.66± 1.96 ∗

√
334.5 = 666.66± 35.8. tu
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