ELABORAR MAPAS DE PRESCRIPCIÓN EMPLEANDO QGIS PARA EL
CONTROL DE PROFUNDIDAD DE SUELO UTILIZANDO EL CONTROLADOR
FMX

Presenta:

EDUARDO CURIEL CURIEL

TESIS

Presentada como requisito para obtener el título de:

INGENIERO MECÁNICO AGRÍCOLA

Buenavista, Saltillo, Coahuila, México.

Junio del 2016
UNIVERSIDAD AUTÓNOMA AGRARIA ANTONIO NARRO
DIVISIÓN DE INGENIERÍA
DEPARTAMENTO DE MAQUINARIA AGRÍCOLA

ELABORAR MAPAS DE PRESCRIPCIÓN EMPLEANDO QGIS PARA EL
CONTROL DE PROFUNDIDAD DE SUELO UTILIZANDO EL CONTROLADOR
FMX

Por:
EDUARDO CURIEL CURIEL

TESIS

Que somete a consideración del H. Jurado Examinador como Requisito Parcial para Obtener el
Título de:

INGENIERO MECÁNICO AGRÍCOLA

Aprobado por el comité de tesis

Asesor principal

Dr. Santos Gabriel Campos-Magaña

Sinodal

Ing. Héctor E. González Ramírez

Coordinador de la División de Ingeniería

Dr. Luis Samaniego Moreno

Buenavista, Saltillo, Coahuila, México

Universidad Autónoma Agraria "ANTONIO NARRO"
AGRADECIMIENTOS

A mi alma Terra Mater, Universidad Autónoma Agraria Antonio Narro. Por abrirme sus puertas y darme la oportunidad de formarme profesionalmente, ya que para mí fue un gran honor estar en mi UAAAN. Gracias por permitirme cumplir un sueño más.

Dr. Santos Gabriel Magaña, primeramente por darme la oportunidad de formar parte en su proyecto de tesis, por confiar en mí, por compartir sus conocimientos, su experiencia y su valioso tiempo, por el gran apoyo que me brindo en el transcurso de mi formación profesional.

A todas las personas que hicieron posible directa e indirectamente la realización de este trabajo de tesis.

A todos mis Compañeros de Generación, Ingeniero Mecánico Agrícola gracias por su amistad y su apoyo en el transcurso de la carrera.
DEDICATORIA

Para mis padres:

Reyna Curiel Martínez y Juan Teodoro Curiel López por haberme brindado incondicionalmente todo el apoyo necesario para mi formación y que, con sacrificio hicieron posible que mis sueño se hiciera realidad el de convertirme en un profesionista y hacer de mí un hombre de bien, gracias por su apoyo y confianza pero sobre todo por el amor y cariño depositado en mí, a lo largo de mi vida.

A mis hermanos:

Donato, Luz María, Martina, Víctor Miguel, Juan Carlos y Filadelfo por su gran amistad, apoyo y comprensión haciendo posible la culminación de mi carrera así como también por el gran amor que nos ha unido y que ha sido el pilar en la unión de nuestra familia.

A mis sobrinos:

Cesar, Yahir, Cinthya, Irán, Leonardo, Brayan, Jessica, Paola, Bibiana y Maritza, ojalá y sea un ejemplo para ellos y le sirva de estímulo para su formación profesional.

Y a todos mis familiares:

Cuñados, cuñada, primos, primas, tíos, tías, que confiaron en mí y me bridaron consejos para ir por el buen camino y hoy más que nunca me siento orgullosamente feliz de tener una familia como ustedes.

“Con todo amor y cariño dedico
este trabajo a toda mi familia.”
ÍNDICE DE CONTENIDO

1. INTRODUCCION ...1
 1.1 Objetivo general..2
 1.1.1 Objetivos específicos ...3
 1.2 Hipótesis...3

2. REVISIÓN DE LITERATURA ...4
 2.1 Labranza...4
 2.2 Agricultura de precisión..4
 2.2.1 Ventajas y objetivos de la Agricultura de Precisión ...7
 2.3 Manejo de sitio específico..7
 2.3.1 Mapas de rendimiento ..10
 2.3.2 Mapas de diagnósticos ..12
 2.3.3 Mapa de prescripción ...13
 2.3.4 Variabilidad espacial ...14
 2.3.5 Variabilidad temporal ...14
 2.3.6 Variabilidad predictiva ..15
 2.4 GPS Y SIG en agricultura de precisión ..15
 2.4.1 GPS (Global Positioning System) ..15
 2.4.2 Sistema de información geográfica (SIG) ...17
 2.4.3 Interpolación en SIG ..18
 2.5 Productos software SIG en el mercado ..19
 2.5.1 Productos comerciales ...19
 2.5.2 Productos libres ..19
 2.6 sistema de control en la AP ..19
 2.6.1 Controlador FmX ..19
 2.7 Señales de corrección...21
 2.7.1 Center Point RTK ..21
 2.7.2 Center Point RTX ..22
 2.7.3 Omni STAR XP ...23
 2.7.4 Omni STAR G2 ...24
 2.8 Válvula electrohidráulica proporcional (Danfoss) ...24
 2.9 Nivelación del Suelo Agrícola ...25
 2.9.1 Nivelación de suelo agrícola por GPS para agricultura de precisión25
 2.10 Programa de diseño para nivelaciones 3D MultiPlane ..26
A3. Levantamiento topográfico con nivelación GPS ... 69
A.4 Extraer datos de QGIS a Excel para convertirlos a UTM .. 78
A.5 Convertir Coordenadas Decimales a UTM .. 86
A.6 Convertir archivo de .TXT a SHP .. 88
A.7 Mapa de prescripción en QGIS ... 93
ANEXO B .. 109
MANUAL DE CONVERSOR DE COORDENADAS DECIMALES A UTM 109
ANEXO C .. 112
MANUAL PARA EDICION EN MULTIPLANE ... 112
ANEXO D .. 120
SUBIR ARCHIVO A LA PANTALLA FMX ... 120
ANEXO E .. 123
METODOLOGÍA PARA ANALIZAR DATOS ... 123
ÍNDICE DE FIGURAS

Figura 2.1 Tecnologías y prácticas asociadas al manejo de sitio específico (Terry, 2000).8
Figura 2.2 Etapas en el manejo de sitio- específico (Pagani, 2013)...9
Figura 2.3 Proceso para generar Mapas de Rendimiento (Lago, 2011)..11
Figura 2.4 Mapa de rendimiento y detalles de puntos (Albarenque y Vélez, 2011).12
Figura 2.5 Variabilidad temporal del rendimiento de maíz (Chartuni et al., 2007).15
Figura 2.6 Sistema de posicionamiento global (Kreimer, 2003). ...16
Figura 2.7 Imagen: capas de un SIG (FAO, 1999). ...18
Figura 2.8 Controlador FmX (Trimble, 2016a). ..20
Figura 2.9 Pantalla FmX de Trimble (García et al., 2014). ...22
Figura 2.10 Infraestructura de tecnología de posicionamiento RTX (Trimble, 2012)23
Figura 2.11 Válvula EP instalada en el implemento (Galindo, 2015). ..25
Figura 2.12 Sistema Nivelación por GPS (De Gutado, 2005). ...26
Figura 2.13 Software de diseño 3D MultiPlane (Trimble, 2015c). ...27
Figura 3.1 Sitio de prueba, 25°20'56.49"N y 101°1'51.70"O, a 1794.55 msnm ..28
Figura 3.2 Pantalla FmX acoplada al tractor..30
Figura 3.3 Sistema de corrección RTK, a) Estación base, b) Receptor móvil. ...31
Figura 3.4 Sonar acoplado al arado articulado...32
Figura 3.5 Arado articulado, a) Electroválvula Danfoss, b) Actuadores hidráulicos..33
Figura 3.6 Entradas de señales al circuito interno de la válvula proporcional Danfoss33
Figura 3.7 Actuadores en el punto neutro ...34
Figura 3.8 Metodología para elaboración de mapas de prescripción..35
Figura 3.9 Antena de corrección RTK ...36
Figura 3.10 Eliminar puntos erróneos del levantamiento topográfico..37
Figura 3.11 Conversión de coordenadas Decimales a UTM..37
Figura 4.1 Levantamiento topográfico ...40
Figura 4.2 Mapas generado por la pantalla FmX. a) Altura, b) Corte y relleno ...40
Figura 4.3 Diagrama del funcionamiento del arado articulado (Peláez, 2015) ..42
Figura 4.4 Componentes del arado articulado..43
Figura 4.5 Prescripción con datos originales ...43
Figura 4.6 Mapa dividido por lotes ..44
Figura 4.7 Mapa de prescripción propuesto por Qgis ..45
Figura 4.8 Profundidad de laboreo. A) -10, B)0, C)+10 ..45
Figura 4.9 Copiar los datos de generados en la edición en qgis a excel ...46
Figura A.22 Archivo de datos en pantalla principal.
Figura A.21 Recorrido en zig zag por el interior del polígono.
Figura A.20 Selección de interior.
Figura A.19 Selección del límite.
Figura A.18 Definir punto de referencia.
Figura A.17 Corte/relleno activado.
Figura A.16 Selección de P corte /relleno.
Figura A.15 Altura de hoja activada.
Figura A.14 Fijar ítems.
Figura A.13 Selección de altura de hoja.
Figura A.12 Seleccionar ítems.
Figura A.11 Configuración de sistema.
Figura A.10 Configuración de hoja.
Figura A.9 Configuración del FieldLevel II para plano de nivelación GPS.
Figura A.8 Configuración de frecuencia.
Figura A.7 Configuración de Receptor GPS.
Figura A.6 Agregar complementos.
Figura A.5 Seleccionar complementos.
Figura A.4 Pantalla para ingresar contraseña.
Figura A.3 Pantalla de configuración del sistema.
Figura A.2 Pantalla de configuración.
Figura A.1 Pantalla de inicio.
Figura 4.21 prueba dinámica.
Figura 4.20 Recorrido de prueba dinámica.
Figura 4.19 Localización del tractor en el punto de relleno.
Figura 4.18 Prueba estática en color rojo para corte (200 mm)
Figura 4.17 Localización del tractor en el punto de corte.
Figura 4.16 Prueba estática en color rojo para corte (190 mm)
Figura 4.15 Localización del tractor en la parte Neutra.
Figura 4.14 Prueba estática en el punto neutro
Figura 4.13 Recomendaciones del software MultiPlane
Figura 4.12 Nivelación de arado articulado
Figura 4.10 Mapa generado por MultiPlane
Figura 4.9 Configuración del FieldLevel II para plano de nivelación GPS.
Figura A.59 Generar cuadrícula..99
Figura A.60 Guardar cuadrícula..99
Figura A.61 Agregar cuadrícula a Qgis ..100
Figura A.62 Visualización de cuadrícula ..100
Figura A.63 Quitar relleno solido ..101
Figura A.64 Generar lotes ...102
Figura A.65 Guardar archivo Shape (lote) ..103
Figura A.66 Visualización de lote..103
Figura A.67 Modificar alturas ...104
Figura A.68 Calculadora de campos ..105
Figura A.69 Combinar Shape (lotes) en uno ...105
Figura A.70 Seleccionar capas ...106
Figura A.71 Visualización de archivo final ..106
Figura A.72 Tabla de atributos del archivo final ..107
Figura A.73 Copiar tabla de atributos ..107
Figura A.74 Ordenar datos ..108
Figura B.1 Abrir el conversor en Excel ...110
Figura B.2 Pegar las coordenadas decimales en el conversor ..110
Figura B.3 Copiar las coordenadas UTM a una nueva hoja de Excel ..111
Figura C.1 Importar el archivo ..112
Figura C.2 Abrir cuadro de import ..113
Figura C.3 Entrar a ventana de import generic ..113
Figura C.4 Cambiar unidades a metros ..114
Figura C.5 Llenado de campo ...114
Figura C.6 Selección de carpeta de destino ..115
Figura C.7 Confirmación de la información asignada ..115
Figura C.8 Mapa en 2D ...116
Figura C.9 Comando Best Fit ..116
Figura C.10 Confirmación de Best Fit ...117
Figura C.11 Mapas de diseño y existente en 2D ...117
Figura C.12 Cuadro del comando Options ..118
Figura C.13 Cuadro del comando File ..118
Figura C.14 Confirmar guardar el archivo ..119
Figura C.15 Fin del a edición ..119
Figura D.1 Eliminar archivo del levantamiento topográfico original ..120
Figura D.2 Cambiar el diseño de nivelación GPS a diseño MultiPlane ..120
Figura D.3 Configurar la altura de la antena ..121
Figura D.4 Fijar el MBP ...122
ÍNDICE DE CUADROS

Tabla 2.1 Principales etapas o pasos para la aplicación de agricultura de precisión AP (Ortega, 2000). ..6
Tabla 3.1 Niveles de voltaje ...33
Tabla 4.1 Valores de prueba dinámica ...55
RESUMEN

El presente trabajo forma parte del proyecto de labranza inteligente llevado a cabo en el Departamento de Maquinaria Agrícola de la Universidad Autónoma Agraria Antonio Narro.

Este proyecto tiene como objetivo generar simulaciones de mapas de prescripción a diferentes profundidades (10, 0, -10 cm) editadas en Qgis. Se realizó un levantamiento topográfico de una parcela para obtener coordenadas en (x, y, z) con un controlador FmX, empleando la aplicación Survey y el sistema de control Field Level II así como un sistema de corrección RTK que nos sirvió para tener una mejor precisión entre los puntos obtenidos. Los mapas generados en Qgis apoyados con GoogleEarth pro, no mostraron ningún desfasamiento en sus posiciones (latitud, longitud) entre el levantamiento topográfico original y el mapa de prescripciones diseñado.

Se realizaron dos calibraciones una estática y una dinámica. El error obtenido durante la calibración estática para cada una de las tres profundidades fue menor a 2.5cm lo cual entra dentro del rango de error del sistema. Para el caso de la verificación dinámica la máxima respuesta obtenida fue 175 mm para un cambio de prescripción de +100 a -100mm. Para los valores de 0 el equipo estuvo fluctuando entre 0 y +/- 25mm. Para cortes de -100 el equipo estuvo fluctuando entre -75 y -100, y para relleno de +100 estuvo fluctuando entre +50 y +100mm.

Correo electrónico; EDUARDO CURIEL CURIEL, eduardo_curiel1993@hotmail.com

Palabras claves: Manejo de sitio específico, simulador FmX, sistema de corrección RTK, mapas de prescripción, levantamiento topográfico, Field Level II, Survey.
CAPÍTULO 1
INTRODUCCION

La agricultura mundial viene enfrentando, a lo largo del tiempo, el desafío constante de aumentar la producción agrícola en respuesta a la creciente demanda de la población. Este aumento, a su vez, se ha producido de dos formas: con la expansión de nuevas áreas agrícolas, y dentro de cada área, con el aumento de los rendimientos.

El aumento de los rendimientos se obtuvo mediante la generación de nuevas tecnologías bajo forma de semillas mejoradas, insumos modernos y agroquímicos más eficientes. Esto, junto al manejo adecuado de nuevas máquinas agrícolas para preparar, sembrar, cultivar, cosechar y procesar los productos agrícolas, permitió avances significativos en el área de producción de alimentos.

Para ello, a partir de la década de los 70´s, se comenzó a delinear un nuevo concepto de agricultura con los estudios sobre automatización de máquinas agrícolas. En forma complementaria, a fines de la década de los 80´s y comienzos de los 90´, con la liberación del sistema de posicionamiento global por satélite (GPS) para uso civil, fue posible desarrollar equipos inteligentes que permitieron el manejo localizado de las prácticas agrícolas, con una mayor eficiencia de aplicación de insumos, reduciendo el impacto sobre el medio ambiente y en consecuencia, disminuyendo los costos de la producción de alimentos. A ese conjunto de procesos y sistemas aplicados se le denomina Agricultura de Precisión (AP).

La Agricultura de Precisión puede definirse como la aplicación de un conjunto de técnicas, apoyadas por equipamiento de alta tecnología, para el manejo de la producción agrícola en forma de sitio específico. Esto significa adaptar la técnica de cultivo a las condiciones particulares que se presentan en cada uno de los sectores del campo. El manejo sitio específico se basa en el supuesto de que los distintos sectores del campo responden de manera diferente a una misma técnica de cultivo aplicada de manera uniforme en toda la extensión del terreno. En tal caso sería posible aumentar la productividad de la explotación agrícola dividiéndola en sub-zonas, y ajustando la técnica de cultivo y las dosis de insumos a las características particulares de cada sub-zona (Baños, 2003).
A nivel mundial como un indicador existen alrededor de 20 países que han incorporado estos sistemas inteligentes y automatizados en la aplicación de insumos agrícolas, entre los que destacan Estados Unidos con 30,000 unidades de producción, Argentina con 1200, Brasil con 250, Reino Unido con 400, Paraguay con 4 y México con Cero unidades. Debido a los altos costos de preparación o laboreo de suelo, la reducción del uso de energía en los sistemas de producción agrícola es un tema de gran importancia, pues contribuye al éxito económico de los mismos; para las labores de establecimiento de cultivos, actualmente se requiere un gran consumo de energía en forma de combustible, esto es un factor que limita la actividad agrícola, pues reduce el costo beneficio del sistema de producción, no obstante, si se implementan cambios tecnológicos apropiados en los sistemas de producción de alimentos, se estima que se puede reducir hasta 50% el uso de energía fósil en los mismos (Pimentel, 2008).

La mayoría de los sistemas experimentales de agricultura de precisión son los sistemas basados en mapas, debido a que la mayoría de los sensores de movimiento continuo o sobre la marcha (on-the-go) para campo, suelo y variabilidad de campo son demasiado caros, no son suficientemente precisos, no están disponibles o no son compatibles con las tecnologías ya desarrolladas en forma comercial (Trimble, 2015a).

La creciente caída de la rentabilidad de la producción de granos básicos es una característica que describe los sistemas productivos de nuestro país, donde la preparación de los suelos destaca como la actividad que consume más energía o combustible y por lo tanto, la que representa los mayores costos. El uso excesivo de la maquinaria agrícola es un indicador de la ausencia de tecnología y conocimiento, representada por la poca información en el establecimiento de los sitios, y por tanto, erróneas decisiones en su manejo (Reynolds, 2012).

1.1 Objetivo general
Aplicar el laboreo primario de suelos basado en un mapa de prescripción de compactación de suelo, utilizando sistemas de control inteligente.
1.1.1 **Objetivos específicos**

- Elaborar levantamiento topográfico usando el software Survey y la pantalla FmX y la antena de corrección RTK.
- Elaborar mapas de prescripción de profundidad variable empleando Qgis.
- Verificación de respuesta empleando la pantalla FmX y el sonar de posición.

1.2 **Hipótesis**

Es posible controlar la profundidad de laboreo en base a un mapa de prescripción mediante un sistema de control inteligente.
CAPÍTULO 2
REVISIÓN DE LITERATURA

2.1 Labranza

La labranza es una actividad que modifica la estructura de la capa superficial del suelo. Sin embargo, existen efectos directos e indirectos que se logran con la labranza, entre los cuales se encuentran: facilitar la producción de los cultivos, el control de malezas, acondicionar la superficie del suelo para permitir una buena irrigación y una cosecha más fácil, además de facilitar la incorporación de materia orgánica, fertilizantes, pesticidas, entre otros (Hoogmoed, 1999). Los sistemas de labranza constituyen un elemento principal dentro de los sistemas agrícolas de producción, donde muchas de las actividades posteriores afectan de forma directa al cultivo ya establecido y que dependen en gran medida del sistema de labranza aplicado a la preparación del terreno (Martínez, 1999).

La labranza se puede definir como la manipulación química, física o biológica de los suelos para optimizar la germinación y emergencia de la semilla, así como el establecimiento de la plántula, tomando en cuenta la cantidad de residuos que se permanecerán en el suelo dependiendo del tipo de implemento que se utiliza. Dentro de toda la gama de sistemas de labranza existentes, se deberá elegir aquel que optimice la producción (Violic, 1989).

Los principales objetivos de la labranza en el suelo consisten en romper las capas duras del mismo, invertir la capa arable para que pueda tener un mayor abastecimiento de oxígeno para el buen desarrollo de los micro-organismos y de las raíces de las plantas, logrando con ello que se facilite la infiltración del agua en el suelo, la incorporación de residuos de los cultivos anteriores incluyendo las malezas y algunos fertilizantes (orgánicos o minerales), en ocasiones se utiliza para controlar plagas y contar con una buena cama de siembra para el desarrollo adecuado de la planta (FAO, 2000).

2.2 Agricultura de precisión

La agricultura de precisión integra diversas tecnologías para optimizar la productividad de un cultivo, al mismo tiempo que minimiza su impacto ambiental. Una vez que se reconoce, localiza, cuantifica y registra la variabilidad espacial y temporal de cada unidad agrícola, es
La Agricultura de Precisión (AP) es un concepto agronómico de gestión de parcelas agrícolas, basado en la existencia de variabilidad en campo. Requiere el uso de las tecnologías de Sistemas de Posicionamiento Global (GPS), sensores, satélites e imágenes aéreas junto con Sistemas de Información Geográfica (SIG) para estimar, evaluar y entender dichas variaciones. La información recolectada puede ser usada para evaluar con mayor precisión la densidad óptima de siembra, estimar fertilizantes y otras entradas necesarias, y predecir con más exactitud la producción de los cultivos (Gil, 2008).

Existen numerosas prácticas de manejo considerado por parte de la AP, en sus diferentes etapas de aplicación. Estas prácticas son realizadas a través de diferentes tecnologías e incluyen tanto actividades de campo como de oficina. En el cuadro 2.1, se presentan las principales etapas o pasos para la aplicación de AP. Las tecnologías involucradas y las actividades realizadas (Ortega, 2000).
<table>
<thead>
<tr>
<th>ETAPA</th>
<th>TECNOLOGÍA INVOLUCRADA</th>
<th>ACTIVIDADES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recolección e ingreso de datos.</td>
<td>• Sistema de posicionamiento global (GPS).</td>
<td>• Medición de la topografía del suelo.</td>
</tr>
<tr>
<td></td>
<td>• Sistema de información geográfica.</td>
<td>• Muestreo del suelo en grilla.</td>
</tr>
<tr>
<td></td>
<td>• Sensores remotos.</td>
<td>• Recorrido de los cultivos para la detención de plagas y enfermedades.</td>
</tr>
<tr>
<td></td>
<td>• Sensores directos.</td>
<td>• Monitoreo de rendimiento.</td>
</tr>
<tr>
<td></td>
<td>• Medición de la topografía del suelo.</td>
<td>• Medición directo de propiedades del suelo y cultivos.</td>
</tr>
<tr>
<td></td>
<td>• Muestreo del suelo en grilla.</td>
<td>• Sensoramientos remotos de suelos y cultivos.</td>
</tr>
<tr>
<td></td>
<td>• Recorrido de los cultivos para la</td>
<td>• Digitalización de mapas.</td>
</tr>
<tr>
<td></td>
<td>detención de plagas y enfermedades.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Monitoreo de rendimiento.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Medición directo de propiedades del</td>
<td></td>
</tr>
<tr>
<td></td>
<td>suelo y cultivos.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sensoramientos remotos de suelos y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>cultivos.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Digitalización de mapas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Análisis de dependencia espacial.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Confección de mapas de evaluación.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Confección de mapas de prescripción.</td>
<td></td>
</tr>
<tr>
<td>Análisis, procesamiento e interpretación</td>
<td>• Programas de SIG.</td>
<td>• Aplicación variable de nutrientes.</td>
</tr>
<tr>
<td>de la información.</td>
<td>• Sistemas expertos.</td>
<td>• Aplicación variable de plaguicidas.</td>
</tr>
<tr>
<td></td>
<td>• Programas estadísticos.</td>
<td>• Siembra diferencial de variedades y aplicación variable de semillas.</td>
</tr>
<tr>
<td></td>
<td>• Experiencia del operador.</td>
<td></td>
</tr>
<tr>
<td>Aplicación diferencial de insumos</td>
<td>• Tecnología de dosis variable.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Pulverización asistida por GPS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Programas computacionales.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aplicación variable de nutrientes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Aplicación variable de plaguicidas.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Siembra diferencial de variedades y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aplicación variable de semillas.</td>
<td></td>
</tr>
</tbody>
</table>
2.2.1 Ventajas y objetivos de la Agricultura de Precisión

De acuerdo con el Grupo Sensor (1993), el objetivo de la automatización es aumentar la productividad de los operarios, reduciendo su trabajo mediante la automatización de aquellas tareas que puedan ser automatizadas. Reducción de los insumos mediante la aplicación inteligente de los mismos, realizando mediciones a través de sensores altamente precisos, y haciendo uso de tecnología avanzada. Aumentar la simplicidad y la comodidad de los operarios, facilitando su labor diaria. Aumentar la rentabilidad para el productor agropecuario (esto se logra gracias a los puntos anteriores, es decir, una reducción en la mano de obra y en los insumos necesarios para lograr los mismos resultados o incluso mejores).

La empresa Trimble ofrece los productos, software y soluciones de agricultura de precisión que pueden ayudar a los agricultores en cada uno de los pasos del proceso agrícola: desde la preparación del terreno hasta la plantación, administración de nutrientes, gestión de plagas y fases de cosecha de un ciclo de cultivo (Sensor, 1993)

2.3 Manejo de sitio específico

El área de mayor desarrollo dentro de la AP es el manejo de Nutrientes Sitio-Específico (MNSE), también llamado Tecnología de Dosis Variables (TDV), que corresponde a la aplicación variable de dosis de fertilizantes de acuerdo al nivel de fertilidad de cada sector de manejo homogéneo dentro del potrero, lo cual significa que no se trabaja, necesariamente con una sola dosis de fertilizante, sino que con tantas dosis como áreas significativamente homogéneas existentes en la explotación (Ortega y Flores, 2008).

En AP existen dos aproximaciones para la aplicación variable de insumos. La primera de ellas se basa en el muestreo y mapeo de los factores de producción a ser manejados en forma diferencial (fertilidad del suelo, malezas, etc.) y la posterior elaboración de mapas de prescripción para la aplicación variable de los insumos (fertilizantes, herbicidas, etc.). La segunda aproximación es el sensoramiento directo del suelo y/o el cultivo para la aplicación inmediata de los insumos en forma variable. El uso de una u otra dependerá del nivel tecnológico disponible y del costo de operación involucrado (INIA, 1999).

El concepto de Manejo de Sitio Específico no es nuevo, pero nuevas herramientas de alta tecnología hacen más fácil manejar distintas áreas en los lotes de forma diferencial. Las
tecnologías de precisión incluyen sistemas de posicionamiento global diferencial (DGPS), monitores de rendimiento, sistemas de información geográfica (SIG o GIS), software de computación, y tecnología de dosis variable (VRT) (Figura 2.1). Los muestreos intensivos de suelo y reconocimientos de campo completan el paquete tecnológico.

![Figura 2.1 Tecnologías y prácticas asociadas al manejo de sitio específico (Terry, 2000).](image)

El manejo de sitio específico, significa tratar áreas menores dentro de lotes de una manera distinta a la que se manejaría el lote entero. El manejo de sitio específico reconoce e identifica variaciones en tipo de suelo, textura, color y productividad dentro de lotes. Luego se trata de manejar esa variabilidad en una escala mucho menor que en las prácticas normales. Incluye recolectar, interpretar y manejar gran cantidad de datos agronómicos detallados, de lugares precisos en los lotes en un intento de ajustar y mejorar la eficiencia de la producción de cultivos (Terry, 2000).

El manejo de sitio específico mejora la rentabilidad al incrementar los rendimientos y reducir el costo de los insumos. Esto no implica tácitamente que se vayan a utilizar menos insumos, sino más bien que se hace más eficiente su uso, obteniendo más rendimiento por unidad de superficie (Espinosa, 2016).

Pagani (2013), menciona que el manejo de sitio-específico de nutrientes es la tecnología de procesos que permite diagnosticar y variar espacialmente los niveles de
nutrientes y enmiendas a aplicar. Con el fin de alcanzar el nivel óptimo de cada nutriente en cada parte del lote.

En la figura 2.2 se muestran las etapas del manejo de sitio específico, que comprende en términos generales la delimitación de las zonas de manejo, el diagnóstico y la aplicación de variable.

![Figura 2.2 Etapas en el manejo de sitio específico (Pagani, 2013).](image)

Las aplicaciones de insumos agrícolas por sitio específico se pueden implementar dividiendo un campo en zonas más pequeñas; que sean más homogéneas en las propiedades de interés que el campo en su totalidad. Un manejo de sitio específico, se define como una porción del terreno, que tiene una combinación homogénea de factores limitantes del rendimiento, para los que se requiere de una dosis de un insumo agrícola en específico (Doerge, 1998). Así el manejo de sitio específico en un campo puede ser diferente para los diferentes insumos. El manejo de un sitio puede ser delimitado por más de un insumo agrícola. En este caso, se aplica una dosificación simple para cada insumo dentro del sitio. El número de los diferentes sitios dentro de un mismo campo está en función de la variabilidad natural del campo, la extensión del terreno y ciertos factores de manejo. El tamaño mínimo de un sitio está limitado por la habilidad del agricultor para diferenciar regiones dentro de un campo. Si se utiliza un GPS para controlar la aplicación o para guiar el implemento, entonces no hay razón para restringir la forma del sitio. Sin embargo, en realidad, cuando se delimitan los sitios
específicos se debe considerar el patrón que seguirá el equipo de aplicación en el campo (Kvien y Pocknee, 2000).

2.3.1 Mapas de rendimiento

Mapa de rendimiento, es la representación gráfica de una serie de datos geopositionados de rendimiento y humedad de granos obtenidos mediante una cosechadora equipada con un monitor de rendimientos y un receptor DGPS. Los mapas de rendimiento permiten cuantificar la variabilidad existente en lotes de cultivo (Amuchástegui, 1999).

Los datos recogidos a través de las diferentes capas de información pueden ser: mapas de rendimiento de cultivos anteriores, fotografía aérea, mapas topográficos, imágenes satelitales, experiencias anteriores del productor o bien mapas de suelo de áreas homogéneas, permite definir dentro de un lote sitios con potencialidad de rendimiento muy diferentes, bien definidas. Si el área y las diferencias de rendimiento justifican agronómicamente y económicamente el tratamiento diferencial de los insumos, se podría comenzar con la siguiente etapa, que consiste en la caracterización de los ambientes y posterior diagnóstico de la aplicación de insumos (semilla y/o fertilizante) en forma variable, estos cambios de dosis y densidades pueden lograrse dado que existen en el mercado navegadores, controladores, actuadores y GPS que posibilitan realizar los cambios de dosis y densidades ente tiempo real siguiendo prescripciones o recomendaciones que son cargadas previamente en monitores de máquinas inteligentes (Reynolds, 2014).

Los mapas de rendimiento (MR) son imágenes georreferenciados con una escala de colores que indican el rendimiento de un punto en específico. Por lo general, son desarrollados por especialistas en la agricultura, donde los interesados (agricultores, cosechadores y productores) deben pagar un precio alto para obtenerlos. Los MR son entradas para el proceso de aplicación de Dosis Variable (DV) de los distintos químicos que necesita un cultivo (fertilizantes, herbicidas, riegos, etc.). Las cosechadoras, fertilizadoras, y otras maquinarias, necesitan de la instalación de una Computadora abordo para el control y monitoreo, también es válido el uso de sensores de flujos para medir y registrar el rendimiento puntual (Figura 2.3) (Lago, 2011).
Figura 2.3 Proceso para generar Mapas de Rendimiento (Lago, 2011).

La información que se obtiene de un mapa de rendimiento es una herramienta básica para la agricultura de precisión, ya que permite visualizar y también cuantificar la variabilidad espacial que se puede encontrar en un lote. Una adecuada utilización de mapas de rendimiento requiere de técnicas para poder acondicionar los datos que el mapa nos ofrece, eliminando errores podemos obtener una mejor lectura de los datos y ello nos ayudara a realizar una lectura más acertada de la información que contengan los mismos para poder tomar decisiones a futuro más acertadas (Labandibar, 2014).

Los mapas de rendimiento son la mejor herramienta para la delineación de zonas de manejo o la delineación de zonas donde se muestrean los diferentes factores que afectan la producción, ya que el rendimiento del cultivo es el mejor indicador de la productividad del suelo en las distintas áreas de una finca (Bongiovanni et al., 2006).

Un mapa de rendimiento posee formato vectorial, donde los datos se representan utilizando puntos, y un sistema de coordenadas x, y (cartesiano) referencia las ubicaciones del mundo real (Figura 2.4). Cada punto de un mapa posee coordenadas, y la cantidad de información que se obtiene de cada punto depende del monitor de rendimiento que se utilice; estos pueden ser: altura de cabezal, ancho de franja, distancia recorrida, velocidad de avance,
flujo de granos, humedad de grano, pérdidas de cosecha, entre otros (Albarenque y Vélez, 2011).

Figura 2.4 Mapa de rendimiento y detalles de puntos (Albarenque y Vélez, 2011).

El Mapa de Rendimiento produce información detallada de la productividad del campo y brinda parámetros para diagnosticar y corregir los problemas de bajo rendimiento en algunas áreas del campo o estudiar las causas por las cuales el rendimiento es más elevado en algunas zonas del terreno. Un monitor de rendimiento es un sistema que recoge la información procedente de distintos sensores y con la ayuda de un software calcula el rendimiento de un cultivo en el tiempo y en el espacio, basándose en la información de localización de cada parcela proporcionada por el sistema GPS (García y Flego, 2005).

2.3.2 Mapas de diagnósticos

Para los mapas de diagnósticos se utilizan métodos cartográficos para representar los resultados de la evaluación de los suelos de una determinada región. Se delimita el área geográfica, además se efectúa una recopilación de toda la información existente de la zona. Inventario de recursos (suelo, clima, topografía, vegetación, y uso del suelo). Se hace un estudio, análisis e interpretación de fotografías aéreas y manejo de mapas (Martínez, 2013).
2.3.3 Mapa de prescripción

El mapa de prescripción es la clave para realizar una correcta aplicación selectiva de herbicidas y lograr el control deseado de las malezas presentes en el lote. Para elaborar los mapas de prescripción se parten de imágenes aéreas georreferenciadas del lote, tomadas previamente. Es importante mencionar que las imágenes no deben ser muy antiguas y deben reflejar el la situación real presente en el lote (Hernán, 2015).

Los mapas de prescripción se obtienen de imágenes aéreas geo-referenciadas del lote, tomadas previamente para reflejar la densidad de malezas real presente en el lote. La clave para describir adecuadamente la variabilidad de las propiedades químicas del suelo que limitan el rendimiento es la obtención de muestras espacialmente dependientes para la interpolación y generación de mapas. A partir de estas imágenes y mediante el uso de un software GIS, se puede generar un mapa que nos permita delimitar las zonas afectadas por malezas. Los mapas de rendimiento sirven para evaluar si realmente el factor limitante de la producción (nutriente) fue eliminado o si además existen otros factores que impiden la respuesta aplicada. Para un correcto mapeo de rendimiento debe utilizarse un software especializado (Martínez, 2013).

Agüera y Pérez (2013), mencionan que la información que conforman los mapas de prescripciones pueden provenir de muchas fuentes (mapas de producción, sensores del terreno, del cultivo, etc.), imposible de manejar mediante sistemas tradicionales. En este caso son los ordenadores, mediante aplicaciones informáticas especiales denominadas Sistemas de Información Geográfica para Agricultura (AgGIS), los que intervienen. Estas aplicaciones, además de almacenar ordenadamente toda la información, permiten su visualización así como su tratamiento estadístico para el cruce de los distintos datos. La creación de una base de datos de cada parcela es una herramienta fundamental para optimizar la toma de decisiones en un sistema productivo agrícola. Estos datos generan capas de información tales como, propiedades químicas de los suelos, compactación, plagas y enfermedades, humedad, conductividad eléctrica, etc., y posteriormente serán utilizadas para la adecuada interpretación de la variabilidad espacial (dentro de la parcela) y temporal (entre años) de los rendimientos
2.3.4 Variabilidad espacial

Se entiende como los cambios sufridos a lo largo del terreno de cultivo. Estos cambios se pueden ver, por ejemplo, en un mapa de rendimiento, para lo cual es necesario recopilar datos en posiciones precisas. Para localizar estas posiciones en latitud y longitud se utiliza un sistema DGPS (GPS diferencial), al tiempo que se van recopilando otros datos de interés que mantengan una relación espacial, como pueden ser la calidad del suelo, cantidad de agua en el terreno, densidad del cultivo con ello se busca obtener mapas que resulten representativos del terreno y de utilidad para el agricultor (Kreimer, 2003).

El aumento de la salinidad del suelo por las aguas de riego es la causa de la pérdida gradual de cosecha y de la progresiva degradación del suelo en zonas áridas y semiáridas. El Instituto de Investigación Agraria de Baril (Italia) ha desarrollado un modelo probabilístico basado en multivariables geo-estadísticas y en sistemas de información geográfica para medir la variabilidad espacial de la salinidad del suelo y así poder generar mapas de las zonas con mayor riesgo de salinización (Cervantes, 2007).

2.3.5 Variabilidad temporal

La variabilidad temporal es el resultado de comparar un determinado número de mapas del mismo terreno a través de los años. Al interpretar este tipo de variabilidad se obtienen deducciones, pero aun así pueden obtenerse mapas de tendencias que muestren características esenciales (Kreimer, 2003).

La variabilidad temporal formula los cambios de producción en un mismo campo, en distintas campañas de cosecha (Figura 2.7) (Chartuni et al., 2007).

En la figura 2.5 muestra la variabilidad temporal del rendimiento de maíz.
Figura 2.5 Variabilidad temporal del rendimiento de maíz (Chartuni et al., 2007).

2.3.6 Variabilidad predictiva

Este tipo de variabilidad está más relacionada con los errores de administración, como por ejemplo, los precios estimados para la venta. Ésta puede ser calculada midiendo la diferencia entre los valores esperados y los valores realmente logrados (Kreimer, 2003).

2.4 GPS Y SIG en agricultura de precisión

2.4.1 GPS (Global Positioning System)

El sistema de posicionamiento global (GPS) es un sistema de localización, diseñado por la defensa de los Estados Unidos con fines militares para proporcionar estimaciones precisas de posición, velocidad y tiempo, operativo desde 1995 utiliza conjuntamente una red de ordenadores y una constelación de satélites para determinar por triangulación, la altitud, longitud y latitud de cualquier objeto en la superficie de la tierra, la figura (2.6) muestra el sistema de posicionamiento global (Ortiz, 2007).
Las aplicaciones de los sistemas de posicionamiento global y de navegación en la agricultura pueden ser muy diversas. No obstante, las más comunes que se pueden citar son las siguientes: determinación de los límites de la finca, guiado automático de maquinaria agrícola, asignar las coordenadas a las muestras tomadas con objeto de elaborar los mapas de producción u otra característica y determinar la actuación en cada punto. Un ejemplo de esto último, sería distribuir la dosis de fertilizantes y fitosanitarios en función de las coordenadas (Riquelme, 2011).

En la misma línea, los sistemas de navegación también resultan muy útiles en la agricultura. Estos sistemas son muy necesarios en explotaciones grandes a la hora de aplicar los tratamientos fitosanitarios y los fertilizantes. En estas tareas se emplea maquinaria agrícola pesada, y pequeños errores en la conducción pueden provocar que una franja del cultivo quede sin tratar (pérdidas de producción), que se aplique una sobredosis (perjuicios medioambientales y económicos), etc. Los sistemas de navegación también resultan de gran utilidad en casos concretos, como la aplicación de los herbicidas sistémicos que se deben aplicar durante el crespúsculo, así como en el guiado del vehículo cuando las condiciones atmosféricas son adversas. Por ello, no es de extrañar que numerosos investigadores trabajen en este campo (Riquelme, 2011).

El GPS se ha convertido en la herramienta más potente para el posicionamiento, proporcionando posiciones espaciales para puntos fijos o en movimiento, con una precisión...
que varía desde los pocos milímetros hasta un par de decenas de metros. Todos los receptores GPS muestran la ubicación de un punto mediante coordenadas. Estas pueden ser geográficas (geodésicas) o cartesianas, pero en general los GPS muestran las coordenadas geográficas a menos que se programe de otra manera. Las coordenadas geográficas se expresan en latitud, longitud y altura, siendo las unidades de las primeras dos en grados, minutos y segundos por ser ángulos y la altura se expresa en metros o pies. Estas coordenadas se basan en un sistema de 3 ejes con centro en el centro de masa de la tierra (Manfredi, 2000).

Las coordenadas geográficas se pueden definir de la siguiente manera:

a) Longitud: es el ángulo que se forma, en el centro de la tierra, entre el plano del meridiano de Greenwich y el plano del punto a ubicar. Para la longitud se toma como cero el meridiano de Greenwich, y va hasta +180º hacia el Este y –180º hacia el Oeste.

b) Latitud: es el ángulo entre el plano del Ecuador y el plano formado por el punto a ubicar y el centro de la tierra. Va de 0 a 90º, siendo 0 el Ecuador, y +90º el polo Norte y –90º el polo Sur. Estos se denominan paralelos.

c) Altura: siendo las unidades de las primeras dos en grados, minutos y segundos por ser ángulos y la altura se expresa en metros o pies. Estas coordenadas se basan en un sistema de 3 ejes con centro en el centro de masa de la tierra (Manfredi, 2000).

2.4.2 Sistema de información geográfica (SIG)

Un sistema de información geográfica (SIG), es un término general usado para describir cualquier sistema basado en computadora compatible para la entrada, almacenamiento, manipulación y representar datos que están geográficamente referenciados geográficamente la figura (2.7) muestra las capas de un SIG (datos espaciales) (Earl et. al.; 2000).

En general, un sistema de información geográfica consiste en la unión de información y herramientas informáticas (software) para su análisis con unos objetivos concretos. En el caso de los SIG, se asume que la información incluye la posición en el espacio (Sarria, 2000).
El termino sistema de información geográfica o SIG se aplica actualmente a los sistemas computarizados de almacenamiento, elaboración y recuperación de datos con equipo y software específicamente designados para manejar los datos espaciales de referencia geográfica y los correspondientes datos cualitativos o atributos (FAO, 1999).

Figura 2.7 Imagen: capas de un SIG (FAO, 1999).

2.4.3 Interpolación en SIG

La interpolación de los datos ofrece la ventaja de proyectar mapas o superficies continuas a partir de datos discretos; sin embargo, la utilización de una buena cantidad de puntos del área en estudio limita su utilización (Johnston et. al., 2001).

Dentro de los interpoladores usados existen un grupo llamado Kriging, nombre dado por su creador, el ingeniero en minas surafricano D.G. Krige. Hasta el día de hoy, todos los interpoladores geo estadísticos están en el grupo de los Kriging (con sus variantes), los cuales ofrecen no solo predicciones y superficies de respuesta requeridas, sino también mapas de probabilidades y cuantiles (Johnston et. al., 2001).

El método IDW es similar al Kriging ordinario, ya que da más peso a los valores cercanos a un punto, pero posee una menor complejidad del cálculo. El IDW utiliza un algoritmo simple basados en distancias (Johnston et. al., 2001).
El proceso de interpolación espacial consiste en la estimación de los valores que alcanza una variable Z en un conjunto de puntos definidos por un par de coordenadas (X, Y); partiendo de lo que adopta Z es una muestra de puntos situados en el mismo área de estudio, la estimación de valores fuera del área de estudio de denomina extrapolación.

2.5 Productos software SIG en el mercado

2.5.1 Productos comerciales

- ArcGis SIG ráster y vectorial.
- Autodesk MapGuide SIG vectorial.
- Geomedia SIG vectorial y ráster.
- Idrisi SIG ráster.
- Manifold SIG vectorial.
- Mapinfo SIG vectorial.
- Microstation geographic SIG vectorial.
- Smallworld SIG vectorial.

2.5.2 Productos libres

- Qgis SIG vectoriales y ráster.
- Spring SIG ráster.
- Grass SIG ráster.
- GvSIG SIG vectorial y ráster.

2.6 sistema de control en la AP

2.6.1 Controlador FmX

La pantalla integrada Trimble FmX, que consiste tanto uso de software como de hardware, es un avanzado sistema de administración de datos de campo. El software se ejecuta en una pantalla táctil LCD en color de 30 cm (12 pulgadas). Es compatible con el sistema de dirección automática (AutoPilot). Ahora, con la pantalla integrada FmX, la misma precisión puede ser controlada con una interfaz táctil y proporcionar una dirección confiable, precisa y fácil. La pantalla integrada FmX® es una pantalla de guía avanzada con todas las prestaciones necesarias para encargarse de todas sus operaciones de agricultura de precisión.
Esta pantalla versátil le permite actualizar el equipo a medida que se desarrolla su negocio. Acceda a prestaciones de tecnología de punta para mejorar la productividad en cualquier etapa del ciclo del cultivo, en la figura 2.8 muestra la apariencia del controlador FmX (Trimble, 2016a).

![Controlador FmX](image)

Figura 2.8 Controlador FmX (Trimble, 2016a).

Martínez (2013), obtuvo la elaboración de cinco manuales para la operación y funcionamiento del controlador FmX, de los cuales el primer manual elaborado consistió en el uso y manejo de la pantalla FmX, los manuales restantes contienen la información y pasos a seguir para la generación, edición, registro y presentación gráfica de mapas dentro de los programas Arcview 3.2, GS+ v5 y un software de prescripción FarmWorks Office.

Cuervo (2014), obtuvo una manual para la manipulación de control de profundidad con el controlador FmX, en el cual describe los pasos a seguir para una prescripción de profundidad variable con la válvula mandando la señal con la pantalla FmX, en este método se definieron 15 MBP (Master Bench Point), para diferentes profundidades de laboreo que fueron entre 20 cm, 30 cm y 40 cm. Dicho proceso se llevó a cabo con el sistema de control automático conformado por la pantalla FmX, la estación base RTK, los actuadores hidráulicos y la electroválvula Danfos.

Vásquez (2014) Obtuvo unos manuales para, conversión de coordenadas relativas a UTM, manipulación de archivos .txt en Excel, conversión de archivos .txt a Shape, uso de...
Qgis, uso de FarmWorks, elaboración de mapas de prescripción. Para posteriormente hacer una edición en software MultiPlane y subirlo a la pantalla FmX.

2.7 Señales de corrección

La RTK es útil para todos los tipos de cultivo y proporciona precisión mejorada a lo largo de todo el ciclo de cultivo, desde las actividades iniciales de preparación del terreno hasta el momento de la cosecha. Los agricultores que cultivan en hileras generalmente piensan que consiguen la mejor inversión utilizando los sistemas RTK ya que estos les permiten localizar el lugar preciso donde plantar, fumigar, regar y cosechar directamente sobre la planta. Los agricultores que se dedican a la agricultura sin labranza y a la agricultura de labranza localizada piensan que el sistema RTK es irreemplazable ya que dependen de una exactitud y repetitividad altamente precisa.

2.7.1 Center Point RTK

Se denomina RTK (Real Time Kinematic - Cinemático en tiempo real) a la tecnología que provee a un sistema de dos GPS la habilidad de determinar distancias a los satélites midiendo la fase (frecuencia) de la señal portadora y lograr así una solución a la dispersión de la posición del GPS fijo (Base), y simultáneamente transmitir en tiempo real esta solución al GPS móvil (Vehículo) para que éste genere coordenadas al centímetro. La señal RTK se obtiene de una antena Base o red de antenas con coordenadas conocidas, las cuales envían la señal corregida al receptor del vehículo a través de sistemas de radio. De esta manera el receptor del móvil recibe la señal satelital y la de las antenas RTK otorgándole de esta manera una precisión centimétrica (2,5 cm). Estas redes de bases actualmente pueden estar fijas abarcando un radio de cobertura captado por los receptores abonados a esa base, o bien pueden ser móviles, las cuales se montan en los lugares donde se realiza la labor que necesita corrección. A medida que el vehículo se aleja de la red de cobertura de la base, la precisión disminuye. Para la agricultura de precisión determinadas tareas, como cultivos donde la uniformidad de los surcos es muy importante, labranzas o mapa topográfico, la precisión submétrica del DGPS no es suficiente, es necesaria una solución a nivel centimétrica mediante RTK. Es una señal que brinda repetitividad absoluta entre campañas, es decir que si se utilizó en la siembra, puede utilizarse el mismo recorrido en labores sucesivas e incluso en años posteriores logrando la misma precisión (Villarroel et al., 2016).
La RTK es útil para todos los tipos de cultivo y proporciona precisión mejorada a lo largo de todo el ciclo de cultivo, desde las actividades iniciales de preparación del terreno hasta el momento de la cosecha. Los agricultores que cultivan en hileras generalmente piensan que consiguen la mejor inversión utilizando los sistemas RTK ya que estos les permiten localizar el lugar preciso donde plantar, fumigar, regar y cosechar directamente sobre la planta. Los agricultores que se dedican a la agricultura sin labranza y a la agricultura de labranza localizada piensan que el sistema RTK es irreemplazable ya que dependen de una exactitud y repetitividad altamente precisa.

2.7.2 Center Point RTX

El sistema CenterPoint se utiliza en combinación con la pantalla FmX (Figura 2.9) que dispone de dos receptores GPS/GNSS integrados. Se trata de una pantalla táctil en color compatible con los diferentes sistemas de guiado automático de Trimble (AutoPilot, EZ-Pilot o EZSteer) y en la que se pueden configurar las diferentes operaciones de agricultura de precisión realizadas por el operario y también agregar los sistemas de control de aperos (TrueGuide o True-Tracker). También se pueden utilizar la pantalla CFX-750 o el receptor AG-372 de Trimble (García et al., 2014).

Figura 2.9 Pantalla FmX de Trimble (García et al., 2014).

La tecnología de posicionamiento RTX recientemente desarrollada por Trimble figura (2.10), combina una variedad de técnicas innovadoras que ofrecen a los usuarios posicionamiento centimétrico en tiempo real en cualquier lugar de (o próximo a) la superficie terrestre. Este nuevo método de posicionamiento se basa en la generación y envío de correcciones satelitales precisas (órbita, relojes, y sesgo del sistema) a escala global mediante enlaces de satélites de banda L o por Internet. La infraestructura general del sistema puede verse en el organigrama de la figura 4.11 RTX (Trimble, 2012).
Figura 2.10 Infraestructura de tecnología de posicionamiento RTX (Trimble, 2012)

El Center Point tiene una Precisión: 3.8 cm.

Inicialización/convergencia: Estándar.

Center Point RTX es más adecuado para:

- Establecimientos agrícolas de cualquier lugar del mundo.
- Establecimientos agrícolas alejados de las zonas de cobertura de estación base RTK.
- Usar con la pantalla integrada Trimble FmX, la pantalla CFX.750 o el receptor AG-372 GNSS.
- Usar con cultivos y aplicaciones que necesiten precisión de 3,8 cm.

2.7.3 Omni STAR XP

Es un sistema de aumentación basado en satélites (SBAS). La señal de corrección Omnistar se obtiene a través de una suscripción, la cual autoriza su uso. El sistema utiliza satélites geoestacionarios en 8 regiones que cubren la mayor parte de la Tierra. Para acceder a la corrección el usuario debe tener un receptor capaz de recibir esta señal, disponible para cierto número de fabricantes de GPS como Autofarm, Hemisphere GPS, Novatel, Topcon, Trimble, Raven, etc.
El sistema Omni STAR XP tiene una precisión de 8-10 cm. Inicialización/convergencia: Estándar.

Omni STAR XP es más adecuado para:

- Aplicaciones de siembra localizada y pulverización de cultivos con alta precisión.
- Operaciones en zonas con clara visibilidad del cielo en todo momento.

Omni STAR XP (Extended Performance) La señal XP se transmite hasta el receptor vía satélite, por lo que la cobertura es global. La señal corrige tanto L1, como L2, por lo que la precisión que se logra es muy alta. Esta señal no requiere de una estación cercana, pero el receptor necesita un determinado tiempo para realizar los cálculos iniciales, llamado “tiempo de convergencia”. Este tiempo varía dependiendo de la cantidad de satélites que el receptor esté recibiendo y la geometría de distribución de los mismos (Villarroel et al., 2016).

2.7.4 Omni STAR G2

Precisión: 8-10 cm.

Inicialización/convergencia: Estándar.

Omni STAR G2 es más adecuado para:

- Utilizar cuando se necesite un tiempo de cobertura más confiable, al usar satélites GLONASS además de los satélites GPS normales.
- Operaciones en zonas con clara visibilidad del cielo en todo momento.

2.8 Válvula electrohidráulica proporcional (Danfoss)

Son válvulas que regulan la presión y el caudal por medio de impulsos mediante una señal eléctrica y su principal aplicación es el control de posición (figura 2.11).

El desplazamiento de la parte móvil del arado articulado se realiza mediante la válvula electrohidráulica proporcional, que regulara la presión y el caudal del sistema hidráulico mediante señales eléctricas recibidas por la pantalla FmX, logrando de esta manera un desplazamiento mucho más preciso de los vástagos en los actuadores hidráulicos (Galindo, 2015).
Figura 2.11 Válvula EP instalada en el implemento (Galindo, 2015).

2.9 Nivelación del Suelo Agrícola

La nivelación de suelos agrícolas es una forma de acondicionamiento físico que consiste en la remoción de suelo de las partes altas, su acarreo y depósito en las bajas, a fin de dejar una superficie plana, que se ajuste hasta donde sea posible a las pendientes naturales del terreno, y que facilite las labores agrícolas, especialmente para la aplicación del agua de riego. Se considera imprescindible en toda iniciación de siembra de cultivo que va a ser irrigado por cualquiera de los diversos métodos de riego. La producción agrícola está basada en la toma de decisiones, el éxito depende de hacerlas de forma inteligente con el fin de sobrellevar los retos que día a día se nos presentan, para esto se requiere de información precisa, equipos de tecnología avanzada y la asesoría de profesionales en la materia. Es necesario proveer de tecnología que mejore la eficiencia y rendimiento de las labores (Cruz, 2009).

Ventajas de la nivelación del suelo agrícola

Disminuye el tiempo para completar las tareas, se obtienen una mejor cosecha, reduce los problemas de mala hierba, cosechas con cultivos uniformes (CVIA, 2004).

2.9.1 Nivelación de suelo agrícola por GPS para agricultura de precisión

La nivelación GPS necesita de una antena montada sobre la traílla y de un sistema hidráulico para el accionamiento automático de la cuchilla. En este caso se monta una antena Choke Ring capaz de absorber el efecto multitrayectoria de las señales GPS provenientes de los satélites. La utilización de estos sistemas permite precisiones en el trabajo de 1 y 2cm. En general estos equipos aumentan los rendimientos y se consigue un beneficio medioambiental gracias a la mejor dosificación de agroquímicos en las parcelas y se reducen los efectos de la
compactación, controlando el sitio exacto de las pasadas en las sucesivas labores, en la figura (2.14) muestra un sistema de nivelación por GPS (De Gutado, 2005).

![PlanoAuto](image)

Figura 2.12 Sistema Nivelación por GPS (De Gutado, 2005).

Una de las características más destacadas del sistema FieldLevel II, es la de disponer directamente en la pantalla del tractor de las herramientas necesarias para hacer el diseño completo del trabajo a realizar, gracias al cual disponemos de forma totalmente automática de la información referente a las pendientes más idóneas del terreno, volumen de tierra a mover, así como un mapa detallado con las cotas de desmonte y relleno en cada zona de la parcela. Para trabajos más especiales con terrenos muy accidentados y donde es necesario poder realizar un diseño de la nivelación más complejo, disponemos del software de diseño MultiPlane, el cual nos permite la realización de diseños en nuestra propia PC con los datos recogidos previamente en la pantalla FmX y el posterior volcado de nuevo en el equipo para ejecutar el trabajo según se diseñó en la oficina (Trimble, 2015d).

2.10 Programa de diseño para nivelaciones 3D MultiPlane

Durante muchos años, los agricultores han estado mejorando el rendimiento de sus campos utilizando equipos laser para nivelar sus parcelas y facilitar un riego y drenaje lo más uniforme posible. El reparto uniforme del agua por los cultivos incrementa la productividad y la estabilidad del suelo, lo que se traduce en un aumento de los beneficios. La herramienta de software AgGPS MultiPlane se usa para ayudar al diseño de la nivelación y el drenaje del terreno de forma que podamos dejar unas pendientes concretas con el menor movimiento de tierra posible. El programa MultiPlane ha sido diseñado para trabajar en conjunto con el
sistema de nivelación FieldLevel II de Trimble, utilizando las altas precisiones de los receptores RTK AgGPS 442 o de la pantalla integrada AgGPS FmX. El software MultiPlane lee los datos topográficos tomados con los equipos RTK y crea un modelo de la superficie existente del terreno (Trimble, 2016 b).

Con el software de diseño y cálculo 3D para movimientos de tierra MultiPlane figura (2.13), puede adaptar el funcionamiento del equipo de nivelación FieldLevel II para conseguir el máximo ahorro en sus trabajos de nivelación. La herramienta de software AgGPS MultiPlane se usa para ayudar al diseño de la nivelación y el drenaje del terreno de forma que podamos dejar unas pendientes concretas con el menor movimiento de tierra posible. El programa MultiPlane ha sido diseñado para trabajar en conjunto con el sistema de nivelación FieldLevel II de Trimble, utilizando las altas precisiones de los receptores RTK AgGPS 442 o de la pantalla integrada AgGPS FmX. El software MultiPlane lee los datos topográficos tomados con los equipos RTK y crea un modelo de la superficie existente del terreno (Trimble, 2015c).

Figura 2.13 Software de diseño 3D MultiPlane (Trimble, 2015c).
CAPÍTULO 3
MATERIALES Y MÉTODOS

3.1 Materiales

3.1.1 Localización del sitio de prueba

Las pruebas de calibración que anteceden al trabajo de campo se realizaron en la Universidad Autónoma Agraria Antonio Narro (UAAAN) en el Departamento de Maquinaria Agrícola.

El desarrollo de este trabajo fue en la UAAAN, se utilizó un predio de tres cuartos de hectárea para realizar las pruebas correspondientes, con coordenadas geográficas 25°20'56.49"N y 101° 1'51.70" O, a una altura de 1794.55 msnm como se muestra en la figura (3.1).

Figura 3.1 Sitio de prueba, 25°20'56.49"N y 101° 1'51.70" O, a 1794.55 msnm
3.1.2 Software empleados

- Qgis 2.12.3.
- GoogleEarth 7.1.1.
- Microsoft Excel 2013.

Qgis. Es un Sistema de Información Geográfica (SIG) de código abierto que ofrece muchas funcionalidades comunes, entre las que podemos mencionar:

- Ver datos.
- Exploración de datos y diseños de mapas.
- Crear, editar, manejar y exportar datos.
- Análisis de datos espaciales.

GoogleEarth. Es un programa informático que muestra un globo virtual que permite visualizar múltiples cartografías, con base en fotografía satelital. El mapa de GoogleEarth está compuesto por una superposición de imágenes obtenidas por imagen satelital, fotografías aéreas, informaciones geográficas provenientes de modelos de datos SIG de todo el mundo y modelos creados por ordenadores.

Microsoft Excel. Es un software que permite crear tablas, calcular y analizar datos. Este tipo de software se denomina software de hoja de cálculo. Excel permite crear tablas que calculan de forma automática los totales de los valores numéricos que especifica, imprimir tablas con diseños cuidados, y crear gráficos simples. Excel forma parte de “Office”, un conjunto de productos que combina varios tipos de software para crear documentos, hojas de cálculo y presentaciones, y para administrar el correo electrónico.

3.1.3 Equipos y aplicaciones empleados

- Pantalla integrada FMX.
- Survey.
- FieldLevel II.
- Software MultiPlane.
- Antena de corrección RTK.
- Sensor de distancia (sonar).
- Arado articulado.
- Válvula Danfoss.
- Actuadores hidráulicos.
- Tractor John Deere 6403.

Pantalla integrada FmX. Permite realizar una amplia gama de operaciones de agricultura de precisión. Permite un buen rendimiento y control al contar con un sistema de doble recepción GPS/GNSS que permite actualizar para obtener mejores calidades y rangos de precisión con las señales OmniSTAR, RTX, RTK y GLONASS. Debido a sus prestaciones avanzadas en todas las etapas del ciclo del cultivo, desde la preparación del terreno a la cosecha, aumenta la productividad a lo largo de todo el año. Permite la guía, dirección y registro de varias aplicaciones para agricultura de precisión en actividades como: preparación de terrenos, control de equipos de aspersión, siembra y cosecha. Como se muestra en la figura (3.2).

![Figura 3.2 Pantalla FmX acoplada al tractor](image)

Survey. Es una aplicación de la pantalla FmX usada para mapear campos, crea límites, puntos interiores y las superficies con facilidad, calcula e informa sobre la verdadera superficie de su estudio de la zona-para cobertura de campo óptimo y diseños de superficie precisos. Analiza una vista 3D de los datos de elevación para entender fácilmente la disponibilidad de agua dentro en el lote. Crea mapas de los canales y todo el sistema de tuberías e ingresa información, Tal como el tipo de material a usar y el tamaño de la tubería.
FieldLevel II. Es una facilidad del sistema de control FmX que proporciona soluciones completas para la topografía, el diseño, y los pasos de nivelación necesarios para los proyectos de nivelación de tierras. Controla las alturas de cortes y rellenos de acuerdo a los mapas de prescripción diseñados.

MultiPlane software. Lee los levantamientos topográficos de campo recogidos con un sistema de información de campo AgGPS y AgGPS 214 receptor o GeoStar sistema y construye un modelo de superficie existente de la encuesta. Así mismo genera el mapa de prescripción con sus archivos correspondientes para ser cargados a la pantalla FmX y ser operados por el software de control FIELD LEVEL II.

Antena de corrección RTK. (Del inglés Real Time Kinematic) o navegación cinemática satelital en tiempo real, esta es una técnica usada para la topografía y navegación marina basado en el usos de medidas de fase de navegadores con señales GPS, GLONASS. Donde una sola estación de referencia proporciona correcciones en tiempo real, obteniendo una exactitud sub métrica. La estación base RTK envía correcciones mediante un transmisor de radio a los receptores móviles que hay en el vehículo. Estas pueden proporcionar una precisión de 2.5 cm. La figura (3.3) muestra el sistema de corrección RTK en la estación base y móvil.

![Figura 3.3 Sistema de corrección RTK, a) Estación base, b) Receptor móvil.](image)

Sensor de distancia (sonar). Es el sistema que verifica el desplazamiento de la parte trasera (móvil) sobre la parte delantera (fija) figura (3.4). El sensor de distancia se encuentra
integrado por un sensor sonar (LV-MaxSonar-EZ1), circuito de filtro que permite reducir por debajo de 1% el ruido, cuenta con una constante de calibración de 4.280 mm-mv⁻¹ y correlación del 100%. El sistema mide el desplazamiento de la sección articulada en función de la parte fija del arado, como se observa en la figura (5.10), para el registro de los datos se utiliza el sistema de adquisición de datos (DaqBook 2000) y el acondicionador de señal DBK-43A con sus respectivos cables de conexión.

Figura 3.4 Sonar acoplado al arado articulado

Sistema de control de sección articulado del arado. En la figura (3.5) se muestra el control de la sección articulada del arado, integrada por una electroválvula proporcional y dos actuadores bidireccionales hidráulicos, con un error no mayor a 2.5cm. El sistema de control permite crear labranza variable.
Figura 3.5 Arado articulado, a) Electrovalvula Danfoss, b) Actuadores hidráulicos.

Electrovalvula hidráulica proporcional sauer Danfoss. El accionamiento de la electrovalvula está en función del controlador FmX, el cual emite señales de control de posición variable (pulsos). En respuesta el carrete de la electrovalvula cambia de posición proporcionando el flujo de salida requerido, una vez que este llega a la posición predeterminada, un circuito interno envía la señal de retroalimentación al controlador FmX para verificar la posición o realizar otra acción. En la figura (3.6) se muestra el diagrama de las entradas de señales para el circuito interno de la electrovalvula.

Figura 3.6 Entradas de señales al circuito interno de la válvula proporcional Danfoss

La tabla 3.1 los niveles voltaje para bajar, subir y punto neutral el implemento.

Tabla 3.1 Niveles de voltaje

<table>
<thead>
<tr>
<th>Nivel</th>
<th>Cable</th>
<th>Voltaje</th>
<th>Tipo de V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Rojo</td>
<td>13.89</td>
<td>DC</td>
</tr>
<tr>
<td>2</td>
<td>Negro</td>
<td>3.47 - 10.4</td>
<td>DC</td>
</tr>
<tr>
<td>3</td>
<td>Sin conexión</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Blanco</td>
<td>Tierra</td>
<td>Tierra</td>
</tr>
</tbody>
</table>

Actuadores hidráulicos. Los actuadores transforman la energía hidráulica en energía mecánica. Permitiendo el desplazamiento de la sección articulada del arado (subiendo o bajando), con una carrera ± 20 cm una vez situado en el punto neutro, como se observa en la figura (3.7).
Tractor John Deere 6403. Este fue equipado con los sistemas de control automático para realizar el levantamiento topográfico de la parcela.

- Motor PowerTech turbo cargado de 106 hp, 4 cilindros
- Transmisión sincronizada 9 velocidades de avance y 3 de reversa
- Frenos mecánicos bañados en aceite
- Sistema hidráulico de centro abierto con bomba de engranes a 66.62 litros por minuto.

3.2 Metodología para la elaboración de mapas de prescripción

Para lograr los objetivos de la presente investigación se generaron los mapas de prescripción siguiendo las actividades que se enmarcan en el siguiente diagrama figura (3.8):
Figura 3.8 Metodología para elaboración de mapas de prescripción
3.2.1 Agregar aplicaciones a la pantalla FmX (Survey, Field Level II)

Para poder obtener datos iniciales para la elaboración de mapas de prescripción, se utilizó la pantalla FmX y su controlador Survey. Por lo que el primer paso es saber cómo añadir esta aplicación a la pantalla de control. En el anexo (A.1) se muestra los pasos para añadir esta aplicación así como la del Field Level II.

3.2.2 Configurar la estación base RTK

La necesidad de un posicionamiento preciso es de una gran importancia para la realización de este trabajo de agricultura de precisión, es por eso que se utilizó la estación RTK, que se muestra referencia de posicionamiento global. En el anexo (A.2) se muestra la configuración de este sistema. La figura (3.9) muestra la antena RTK fija.

![Figura 3.9 Antena de corrección RTK](image)

3.2.3 Levantamiento Topográfico

Se utilizó 0.72 Ha Para generar un levantamiento topográfico de la parcela se empleó el controlador FmX con la facilidad Survey, se genera un Máster Bench Point (MBP) o punto maestro fuera del terreno. Luego se define la extensión de la parcela haciendo un recorrido por el borde de la misma, posteriormente se hace un recorrido en el interior del terreno para registrar la altitud, al finalizar se guarda o se cierra el campo generado y la pantalla guarda automáticamente los archivos en su memoria interna que después podrán ser extraídos en un dispositivo de almacenamiento USB, el procedimiento para hacer el levantamiento topográfico se muestra en el anexo (A.3).
3.2.4 Importar archivo Shape generado en el levantamiento topográfico a Qgis

Para facilitar la conversión de coordenadas y eliminar puntos erróneos que no nos sirven para la prescripción, se importa el archivo Shape que se genera en el levantamiento topográfico y se edita en Qgis. En el anexo (A.4) se muestra el procedimiento para la edición.

![Figura 3.10 Eliminar puntos erróneos del levantamiento topográfico](image)

3.2.5 Conversión de coordenadas Decimales a UTM.

Una vez hecho la edición en Qgis, con los nuevos datos, copiamos las coordenadas decimales a un conversor de coordenadas en Excel, que automáticamente nos genera las coordenadas UTM con las que se va a trabajar para generar la prescripción. En el anexo (A.5) se muestra la el procedimiento para la conversión de coordenadas.

![Figura 3.11 Conversión de coordenadas Decimales a UTM](image)
3.2.6 Conversión de archivo .txt a formato Shape

Convertir el archivo .txt (UTM) a un Shape empleando el programa en Excel para este propósito (Conversión.xls), para generar la prescripción en Qgis ya que es la forma en que podemos trabajar porque de otra forma no podemos realizar ningún cambio a menos que sea un formato Shape. En el manual mencionamos la forma de cómo agregar un archivo .txt y la forma en que se convierte a Shape a demás vemos si existe desfasamiento en la conversión de las coordenadas en caso de existir desfasamiento no podemos crear los mapas de prescripción y tendríamos que buscar otra forma de convertir las coordenadas relativas para que fueran más exactas y coincidieran donde se hizo el levantamiento. En el anexo (A.6) se muestra la el procedimiento para la conversión de archivo .TXT a SHP.

3.2.7 Generación de mapas de prescripción

Para generar los mapas de prescripción fue necesario convertir el formato .txt de coordenadas UTM a un formato Shape de Esri.

Con este tipo de archivos se trabajó para poder darles las prescripciones del levantamiento topográfico. Se tomaron en cuenta tanto la proyección y el Datum de nuestra parcela así como la zona a la que pertenece. La proyección que se uso fue la UTM (Universal Transversal de Mercator) y el Datum fue WGS84 zona 14N. Ya que el WGS84 es el Datum utilizado por la mayoría de los sistemas de posicionamiento global (GPS) para registrar posiciones (coordenadas) en la Tierra, el cual es válido para cualquier posición en el planeta Tierra.

Para crear los mapas de prescripción se ordenaron las parcelas en 8 lotes las profundidades que se usaron fueron de 20, 30 y 40 cm, a cada lote se le dio una profundidad de forma aleatoria.

Con el software Qgis se creó una cuadricula simulando la parcela en forma de lotes, luego se unieron los atributos de la cuadricula con el archivo MultiPlane. Una vez teniendo los lotes de manera individual se dieron las diferentes profundidades a cada lote.

Una vez modificada las alturas de los lotes se unieron nuevamente para crear la parcela pero con las prescripciones dadas a cada lote. ANEXO (A)
3.2.8 Edición en Software MultiPlane

Una vez hecho la prescripción en Qgis, con la nueva base de datos copiar a Excel y dejarlo con el mismo formato de la del archivo .txt generado por la pantalla para poder realizar la edición MultiPlane. El procedimiento para hacer la edición se muestra en el anexo (C).
CAPÍTULO 4
RESULTADOS

4.1 Resultado del levantamiento topográfico

En la figura 4.1 se muestra un ejemplo del levantamiento topográfico en el ambiente de la pantalla FmX y empleando la aplicación Survey.

Figura 4.1 Levantamiento topográfico

La pantalla nos genera dos mapas una de altura (a) y otro de cortes y rellenos (b) como se muestra en la figura 4.2.

Figura 4.2 Mapas generado por la pantalla FmX. a) Altura, b) Corte y relleno
4.2 **Archivos que se generan en el levantamiento topográfico**

Se generan archivos en el levantamiento topográfico empleando la pantalla y la facilidad de Survey, con las siguientes extensiones: .pos, .dbf, .xml, .txt, .shp, .shx, .trx. Para trabajar en Qgis se utilizaron archivos con extensión, .txt y .shp.

4.3 **Descripción del funcionamiento del arado articulado-sistema de control automático**

En la figura (4.3) se muestra el diagrama de funcionamiento del sistema de labranza variable. El funcionamiento del arado articulado está basado en un mapa de prescripción (alturas), previo al avance de operación se nivela el arado en función del terreno. De acuerdo a la localización el controlador manda la señal para iniciar la operación de corte bajando el cincel hasta la profundidad deseada. El sistema verifica el cambio de alturas para tomar la decisión de subir (relleno), bajar (corte) o mantener posición, se sigue este proceso hasta culminar la labor.
Figura 4.3 Diagrama del funcionamiento del arado articulado (Peláez, 2015)
El arado articulado está compuesto por una electroválvula Danfoss, 2 actuadores hidráulicos, parte, parte fija, sensor sonar como se muestra en la figura (4.4).

![Componentes del arado articulado](image)

Figura 4.4 Componentes del arado articulado

4.4 Prescripciones en Qgis

4.4.1 Prescripción en Qgis con los datos originales del levantamiento topográfico

Con los datos obtenidos en el levantamiento topográfico, se utiliza los archivos con la extensión (.txt y .shp), se realiza una prescripción en el software Qgis empleando el archivo Shape y copiar los atributos a una hoja de Excel para convertirlos a coordenadas UTM para poder trabajarlos, para posteriormente modificarlos por lotes de cambios de profundidad con respecto a las alturas y generar una nueva prescripción.

![Prescripción con datos originales](image)

Figura 4.5 Prescripción con datos originales
4.4.2 División de mapas por lotes

Un vez que se abre el archivo en Qgis con la extensión Shape. El mapa es dividido en 8 lotes figura (4.6) modificados con una profundidad de (-0.10, 0,+0.10m) de manera aleatoria. El detalle de la metodología se explica en el Anexo (A.7).

Figura 4.6 Mapa dividido por lotes

La edición del mapa se hace por lotes como se explica en el anexo (A.7), y posteriormente se vuelven a unir los lotes con los cambios de profundidad generando una nueva base de datos con los atributos modificados con extensión Shape

4.4.3 Mapa final propuesta por Qgis

Con la edición de los datos en el software Qgis, obtenemos una nueva base de datos con el cual se genera una nueva interpolación empleado la inversa de la distancia (IDW) que se encuentra en la barra del menú generando un nuevo archivo con la extensión .asc como se explica en el anexo (A.7). En la figura (4.7) nos muestra el mapa de prescripción generado mostrando una diferencia con el levantamiento topográfico original basado en las recomendaciones de la figura Abrir la tabla de atributos del archivo en Qgis, seleccionándolo y copiándolo para posteriormente pegarlos en una hoja de Excel como se explica en el anexo (A.7).
Figura 4.7 Mapa de prescripción propuesto por Qgis

Una vez se copiaron los datos en Excel se guardan con la extensión correspondiente (.txt) para proceder a cargarlo en el software MultiPlane y generar los archivos con la extensión .GPS correspondiente para cargar los archivos generados en la pantalla FmX como mapa de prescripción se tiene que borrar los archivos del levantamiento, de la memoria de la pantalla. Una vez borrado los archivos del levantamiento original, Para cargar el mapa de prescripción su procedimiento se explica en el (anexo D).

4.4.4 Profundidades de laboreo para cada lote (subir después de lotes)

Se les asigno una profundidad de laboreo de manera aleatoria para cada lote como se muestra en la figura (4.8) los amarillos corresponden a las diferentes prescripciones de 0, +10 y -10.

Figura 4.8 Profundidad de laboreo. A) -10, B)0, C)+10
4.5 Edición con el software MultiPlane

Una vez que se generan los archivos en Qgis, se copia la tabla de atributos y se pega en un archivo en Excel como se muestra en la figura (4.9), guardando el archivo de Excel con la extensión .txt delimitado por tabulaciones.

Figura 4.9 Copiar los datos de generados en la edición en qgis a excel

Se procede al análisis del archivo MultiPlane.txt generado en Excel con el software MultiPlane, generando el diseño que proporciona valores como: Área del terreno de 0.72ha, radio 1.20, distancia máxima de cortes y rellenos 0.35/0.39m, volumen 509/424m³ de corte/relleno y las pendientes (principal 1.232 y secundaria 0.754%), como se muestra en la figura 4.10.

Figura 4.10 Mapa generado por MultiPlane
Los mapas que se muestran en la figura (4.11) presentan la escala de colores, la cual indica las distancias de corte/relleno. La figura (4.11 a) representa el archivo existente (Multiplane.txt) del terreno y la figura (4.1 b) la propuesta (recomendación) generada por el software, el cual se cargara a la interfaz FmX para verificar las profundidades de corte y relleno y tiempos de respuesta en el sitio de prueba. Como se mencionó El software MultiPlane nos genera un archivo con la extensión .GPS que es el que se bira la pantalla FmX como prescripción como se explica en el anexo (xx), hay que recordar que el archivo del levantamiento topográfico se tiene que eliminar. Una vez insertada la USB en la pantalla hay que configurar el FIEL LEVEL como se indica en el anexo (bb), es necesario hacer la configuración en caso contrario no detecta el archivo .GPS de diseño MultiPlane.

Figura 4.11 Mapas generados en MultiPlane .A) Existente generada en Qgis. B) Propuesta por el software MultiPlane

4.6 Prueba de campo

La figura (4.12) muestra la nivelación del arado articulado. Se nivelo la sección fija tomando como referencia el suelo con una altura de .80m, al igual que la parte articulada con la misma altura, se comprueba que si están al mismo nivel con una nivela, una vez nivelado se prosigue con las pruebas.
4.6.1 Resultado de las pruebas estáticas con la recomendación del software MultiPlane

Las pruebas estáticas se llevaron a cabo en colores específicos que proporcionó el mapa de prescripción editado en MultiPlane de cortes y rellenos, el verde se consideró (neutro), amarillo de (corte) y azul cielo de (relleno), con profundidades de laboreo de 0, -0.20, 0.20 m respectivamente, debido a la limitación de la carrera del vástago los cortes y rellenos no terminaban al 100%.

Las principales variables medidas son: Tiempo de respuesta, Distancia Total de profundidad de laboreo, además se puede conocer la distancia recorrida por pulso y el retardo que están en función de las principales variables. La metodología para analiza los datos de variación de profundidad recomendadas se muestran en el anexo (E).

4.6.2 Resultados de las pruebas estáticas recomendadas por software MultiPlane

En base a mapas de prescripciones recomendados por software MultiPlane se realizaron las pruebas estáticas y se encontraron los siguientes resultados, los cuales pertenecen a las profundidades de laboreo y tiempos de respuesta.

Los colores que se muestran en la figura (4.13) corresponde el amarillo a corte, verde neutro y el azul cielo (relleno) y las áreas donde se le asignaron las diferentes profundidades.
Figura 4.13 Recomendaciones del software MultiPlane

Para la verificación de la prueba en el punto neutro nos desplazamos al área de color verde figura (4.15). De acuerdo a la leyenda se esperaría que no tuviera que realizar ningún movimiento, se obtuvo un desplazamiento real de 0 mm, con un tiempo de 89.6 s como se muestra en la figura (4.13), el cual tiene un error de ruido de 12.33 mm y -32.33 mm.
Figura 4.14 Prueba estática en el punto neutro

Para realizar la prueba estática para corte se desplazó el equipo a las áreas de color naranja. La figura (4.16) muestra la gráfica, con desplazamiento de corte, donde se obtuvo una distancia real de 187.87 mm y un tiempo de 87.9 s en promedio para pruebas estáticas, cuando...
la sección articulada baja (corte). La distancia esperada de acuerdo a la escala fue de 200 mm. El cual tiene un porcentaje de error de 6.07%.

Figura 4.16 Prueba estática en color rojo para corte (200 mm)
Figura 4.17 Localización del tractor en el punto de corte

Para realizar la prueba estática para relleno se desplazó el equipo a las áreas de color azul. La figura (4.18) muestra la gráfica donde se obtuvo una distancia real de 162.63 mm y un tiempo de 56.5 s en promedio para pruebas estáticas, cuando la sección articulada sube (relleno). La distancia esperada de acuerdo a la escala fue de 190 mm. El cual tiene un porcentaje de error de 14.4%.
Figura 4.18 Prueba estática en color rojo para corte (190 mm)

Figura 4.19 Localización de tractor en el punto de relleno
En la figura (4.20) se aprecia el trayecto realizado durante las pruebas, partiendo del área neutra (verde) y finalizando en la zona neutra (verde), con una repetición, los resultados se describe a continuación.

Los valores de cortes y rellenos varían teniendo la misma escala de color.

![Recorrido de prueba dinámica](image)

Figura 4.20 Recorrido de prueba dinámica

En la figura (4.21) nos muestra la gráfica de la prueba dinámica, el trayecto realizado durante las pruebas, parte del área neutra (verde) y finalizando en la zona neutra (verde), con una repetición, donde se obtuvo una distancia máxima de corte de 134.592 mm y de relleno un máximo de 56.08 mm y un tiempo total de 307.25 s en promedio para prueba dinámica.
Tabla 4.1 Valores de prueba dinámica

<table>
<thead>
<tr>
<th>Zona</th>
<th>Cambio de prescripción</th>
<th>Distancia neta (mm)</th>
<th>Distancia total (mm)</th>
<th>Tiempo de respuesta(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>CORTE</td>
<td>-53.276</td>
<td>53.276</td>
<td>16.8</td>
</tr>
<tr>
<td>B</td>
<td>CORTE-RELENO</td>
<td>28.04</td>
<td>81.316</td>
<td>23.55</td>
</tr>
<tr>
<td>C</td>
<td>RELENO-CORTE</td>
<td>-28.04</td>
<td>56.08</td>
<td>26.6</td>
</tr>
<tr>
<td>D</td>
<td>CORTE-RELENO</td>
<td>28.04</td>
<td>56.08</td>
<td>30</td>
</tr>
<tr>
<td>E</td>
<td>RELENO-CORTE</td>
<td>-53.276</td>
<td>81.316</td>
<td>27.25</td>
</tr>
<tr>
<td>F</td>
<td>CORTE-RELENO</td>
<td>2.804</td>
<td>56.08</td>
<td>27.3</td>
</tr>
<tr>
<td>G</td>
<td>RELENO-CORTE</td>
<td>-30.844</td>
<td>33.648</td>
<td>12.7</td>
</tr>
<tr>
<td>H</td>
<td>CORTE-RELENO</td>
<td>56.08</td>
<td>86.924</td>
<td>30.55</td>
</tr>
<tr>
<td>I</td>
<td>RELENO-CORTE</td>
<td>-53.276</td>
<td>109.356</td>
<td>26.9</td>
</tr>
<tr>
<td>J</td>
<td>CORTE-RELENO</td>
<td>-25.236</td>
<td>25</td>
<td>28.85</td>
</tr>
<tr>
<td>K</td>
<td>RELENO-CORTE</td>
<td>-134.592</td>
<td>134.592</td>
<td>21</td>
</tr>
<tr>
<td>L</td>
<td>CORTE-RELENO</td>
<td>-25.236</td>
<td>25.236</td>
<td>35.7</td>
</tr>
</tbody>
</table>
CAPÍTULO 5
CONCLUSIONES Y RECOMENDACIONES

5.1 CONCLUSIONES
Se lograron generar los mapas de prescripción en Qgis a partir del Survey modificando las alturas aleatorias con valores de (-0.10m, 0, + 0.10m) para posteriormente hacer una edición en el software MultiPlane.
Se logró verificar la respuesta en campo, obteniendo respuesta favorable en relación a las distancias y tiempos reales, con diferentes profundidades de laboreo.
La comparación entre las pruebas dinámicas y estáticas muestra un retardo en el tiempo de respuesta debido al tipo de señal de entrada, los cuales influyen directamente en los cambios de prescripción reales.
Como producto de la edición realizada en Qgis. Los valores de profundidad de laboreo varían para una misma escala de color en los mapas de prescripción, cuando se le asignaron valores de -.10 y+.10m a diferentes lotes.

5.2 RECOMENDACIONES
Se sugiere evaluar otros sensores de posición con filtros para eliminar el ruido que se ve afectado en los datos cuando no debería haber desplazamiento.
Analizar el mapa de prescripción de profundidades con los valores de la prueba dinámica y ver el error
Se recomienda para reducir la fluctuación para alcanzar la profundidad de laboreo de acuerdo a prescripciones de -10, 0,+10 instalar el módulo VM420 y una válvula solenoide bidireccional en lugar de la válvula proporcional Danfoss. Se recomienda hacer una evaluación sin ordenar los datos generados en Qgis y hacer las pruebas de profundidad de laboreo y verificar el error.
BIBLIOGRAFÍA

BAÑOS, A. (2003), Metodología para la evaluación económica de un proyecto de agricultura de precisión. Instituto universitario idea, 1-44.

CERVANTES, M. 20011, Nuevas Tendencias en la Agricultura de Precisión. 6p.

CRUZ, N. 2009, Nivelación de suelos: una tarea pendiente en el campo.

CVIA. 2004, Uso Agropecuario del Agua: La Nivelación del Terreno Agrícola. México DF.

GIL, E. (2008), Situación actual y posibilidades de la Agricultura de Precisión. Escuela Superior de Agricultura de Barcelona, España, 59(1-12).

GALINDO, C. 2015, Análisis de calidad de respuesta de una válvula electrohidráulica Danfos .Pp.147-152.

GARCÍA. R. F., A. BONÉ., Y M. VIDAL. 2014, Análisis de los sistemas de corrección Trimble CenterPoint RTX y CenterPoint RTK. 5p.

HERNÁN, P. G. 2015, EL A, B, C De Los Mapas de Prescripción De Malezas A Partir De Drónes.

INIA, C. Q., DE RECURSOS NATURALES, D., Y M. AMBIENTE. 1999, Agricultura de precisión: Introducción al manejo de sitio-específico. Ministerio de Agricultura,
Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación Quilamapu.

JOHNSTON K., HOEF J., KRIVORUCHKO K., LUCAS N. (2001), Using ArcGis Geostatical Analyst.ESRI. 300 P.

KVIEN, C. Y S. POCKNEE. 2000, Introduction to why management zone, Technical report, National Environmentally Sound Production Agriculture Laboratory (NESPAL), College of Agricultural and Environmental Science, The University of Georgia.

KREIMER, P. (2003), Las TICs en la agricultura de precisión, Ceditec (centro de difusión de tecnologías ETSIT-UPM). Ceditec (centro de difusión de tecnologías ETSIT-UPM).

ORTÍZ, M (2007), Detección y rastreo de dispositivo de inspección y mantenimiento (DIM) por medio del sistema de posicionamiento global (GPS) para la red de ductos de PEMEX. Universidad Autónoma del Estado de Hidalgo, México, pp.1-172.

PAGANI, A. 2013, Manejo de sitio específico de nutrientes para una mayor eficiencia productiva. Iowa State University, Department Of Agronomy. pp. 2 -10.

PAGINAS WEB CITADAS

Agricultura de precisión. [En línea] [Fecha de consulta Abril 4, 2016]:

Sensor Automatización Agrícola S.A Grupo Senso [En línea] [Fecha de consulta: Abril 4 2016]:

Trimble. FmX. [En línea] [Fecha de consulta: Abril 4,2016]:

Trimble. Sistema de nivelación con GPS FieldLevel II [En línea] [Fecha de consulta: Abril 5,2016]:

AGCO. (2005). [En línea] [Fecha de consulta: Abril 5,2016]:

Trimble. Aplicaciones de GPS en agricultura. [En línea] [Fecha de consulta: Abril 8,2016]:
< http://www.gps.gov/aplications/agriculture/spanish.php >
ANEXO A

MANUAL PARA MAPAS DE PRESCRIPCIÓN

A.1 Agregar aplicaciones a la pantalla FmX

1. Encender la pantalla, aparecerá la siguiente ventana:

Figura A1. Pantalla de inicio

2. Abrir la pantalla de configuración.

Figura A2. Pantalla de configuración
3. Para agregar los complementos Survey y FieldLevel II; presionar pulsar la siguiente secuencia de botones.

- Pulsar **configura**.

![Figura A3. Pantalla de configuración del sistema](image)

- Pulsar **agregar/quitar**.

Figura A3. Pantalla de configuración del sistema

- Aparecerá la siguiente ventana donde se introduce la contraseña del proveedor para poder avanzar. después dar clic en **ok**.
Figura A4. Pantalla para ingresar contraseña

- Buscar en la lista inactivos los complementos WM-Survey y FieldLevel II, los seleccionamos y clic en **añadir**.

Figura A5. Seleccionar complementos

- Verificar si los complementos se han añadido, después dar clic en ok para finalizar.
A.2 Configuración de la estación base RTK

A.2.1 Configuración del receptor

- En la pantalla de inicio, presione . Utilice la pantalla del modo de funcionamiento para configurar los ajustes del sistema, la configuración de modo, o para ver el SV de estado (por satélite). Ajustes del modo es el valor predeterminado.

- Presione . Base es la configuración predeterminada y no se puede cambiar.

- Pulse . Usar la pantalla de la estación base para seleccionar si el receptor se va a utilizar una posición “aquí” o si las corrientes coordenadas en el receptor se cambiarán.

- Pulse . Cuando editar actual comienza a parpadear, el receptor está en Modo de edición y se puede cambiar la configuración actual.

- Pulse , el ajuste cambia a Nueva Base (Aquí).

- Presione para aceptar el cambio.
• Pulse \(\text{Ε} \) de nuevo. Aparece la pantalla Nombre de Base.

A.2.2 Cambiando el nombre y la descripción de la estación base

En la pantalla de nombre base

• Pulse \(\text{Ε} \). Cuando el primer carácter del nombre base comience a parpadear, el receptor está en modo de edición y puede cambiar la configuración actual.

• Pulse \(\text{Α} \) o \(\text{Β} \) para cambiar el valor del carácter.

• Pulse \(\text{Π} \) para mover el cursor al carácter siguiente.

• Repita los pasos 2 a 3 para introducir el nombre de la estación base.

• El nombre puede tener hasta 16 caracteres. Pulse \(\text{Ε} \) para aceptar el cambio.

A.2.3 Configuración de la referencia latitud, longitud y altura de la estación base

En la pantalla de Latitud Base:

• Si la base se estableció con posición aquí, presione \(\text{Ε} \) para continuar. Para editar la base de latitud, pulse \(\text{Π} \) para comenzar a editar y, a continuación, utilice \(\text{Α} \) y \(\text{Β} \) las flechas para cambiar el valor del carácter para editar.

• La Base Longitud pantalla se utiliza para cambiar la referencia longitud de la estación base. La base fue creada con posición aquí, así que pulse \(\text{Ε} \).

• En la pantalla el punto de altura se utiliza para cambiar la altura de referencia de la estación base. La base fue creada con posición aquí, así que pulse \(\text{Ε} \).
Utilice el tipo de antena pantalla para seleccionar el tipo de antena que se utiliza con el receptor. Pulse Cuando la antena nombre comienza a parpadear, el receptor está en el modo de edición y puede seleccionar una antena.

Pulse para desplazarse por los modelos de antena hasta que aparezca Zephyr Geodetic 2.

Pulse para aceptar el cambio.

Pulse de nuevo. La medida aparece en la pantalla. Consulte a continuación.

A.2.4 Medición y cambio de la altura de la antena

En la pantalla de inicio presione, hasta llegar a la opción de Altura de la Antena.

Pulse . Cuando el método de medición de la antena comienza a parpadear, el receptor está en modo de edición y se puede seleccionar el método de medición de antena.

Pulse para desplazarse a través de los métodos de medición hasta que aparece APC. Pulse para aceptar el cambio.

Pulse .

Utilice en la pantalla, Altura de la antena para cambiar la altura de la antena. Presione . Cuando el primer carácter de la antena altura comienza a parpadear, el receptor está en el modo de edición y podrá cambiar la altura de la antena. La altura de la antena se debe establecer en 0.00 para la mayoría de aplicaciones.

Pulse o para cambiar el valor del carácter.

Pulse para mover el cursor al carácter siguiente.
- Repita el paso 6 hasta el paso 7 para introducir la altura de la antena.
- Presione para aceptar el cambio.
- Presione de nuevo. Aparece la pantalla de salida.

A3. **Levantamiento topográfico con nivelación GPS**
Antes de realizar el levantamiento primero se debe:

1.- Configurar Receptor GPS:

- Ingresar a la pantalla de ajuste, pulsando.

Seleccionar Receptor GPS y dar clic en **configurar**.

- Ingresar a la pantalla de ajuste, pulsando.
- Seleccionar Receptor GPS y dar clic en **configurar**.

![Imagen de configuración](attachment:image.png)

Figura A.7 Configuración de Receptor GPS.

- Esto para verificar que esté proporcionada la siguiente información:
Receptor: Internal Primary.
Correcciones: CenterPoint RTK.
Canal: 1.

- Dar Clic en el menú de frecuencia.
- Clic en editar; aparece un campo donde se introduce la frecuencia de 450.
- Clic OK.
- Clic en Agregar.
- En la siguiente ventana Introducir nuevamente la frecuencia de 450.
- Clic dos veces OK.

La siguiente imagen muestra cómo queda configurado la frecuencia.

![Figura A.8 Configuración de frecuencia.](image)

2.- Configuración de Field Level II.

- Subir el implemento al máximo.
- Nivelar la parte fija del implemento.
- Nivelar el articulado en función de la parte fija.
- Medir la altura desde el suelo hasta la parte superior de la antena.

- Ir a la pantalla FmX y Clic en .
- Seleccionar FieldLevel II.
- Clic en configuración.

Figura A.9 Configuración del FieldLevel II para plano de nivelación GPS.
- Pulsar Plano de nivelación GPS.
- Clic en el menú configuración de hoja.

Figura A.10 Configuración de hoja.
➢ En la opción altura de antena, introducir la altura que capturamos anteriormente.

➢ Pulsar ok.

3.- Configurar sistema (System).

➢ Seleccionar sistema (System).
➢ Clic en configuración.

![Configuración de sistema](image)

Figura A.11 Configuración de sistema.

➢ Seleccionar Ítems de estado.

![Seleccionar Ítems](image)

Figura A.12 Seleccionar Ítems.

➢ Clic en configuración.

En seguida se observa la ventana de Ítems.
➢ En esta ventana, en la parte derecha seleccionar altura de hoja.

![Figura A.13 Selección de altura de hoja.](image)

Nota: Seleccionar la altura de hoja que se encuentre en la parte de WM-Survey.

➢ Clic en fijar ítems tal como se muestra en la siguiente figura.

![Figura A.14 Fijar ítems.](image)

En la siguiente imagen se observa que se activó la opción de altura de hoja.
Figura A.15 Altura de hoja activada.

- En la parte derecha buscar y seleccionar la opción P Corte/Relleno como se muestra en la siguiente imagen.

Figura A.16 Selección de P corte /relleno.

Nota: Seleccionar P Corte/Relleno que se encuentra en la parte de FieldLevel II.

- Clic en Fijar Ítems como se observa en la imagen anterior resaltado en color rojo.

En la siguiente imagen se observa que se ha activado la opción de P Corte/Relleno.
Figura A.17 Corte/relleno activado.

- Pulsar tres veces OK.

4.- Abrir la pantalla de ejecución.

- Pulsar el ícono 🐣.

- En la pantalla selección de configuración pulsar OK.

- Llenar los datos de campo y pulsar OK.

5.- Seleccionar la aplicación de trabajo WM-Survey

- Definir el MBP (Master Bench Point), pero antes posicionarse a un lado y exterior de la parcela posteriormente, pulsar fijar punto de control como se muestra en la imagen y esperar 30 segundos:
NOTA: (MBP) este punto es el punto de referencia de nuestro terreno, para que una vez que se regrese a campo para realizar las pruebas correspondientes nos ubicemos fácilmente. Cabe resaltar que el levantamiento topográfico se llevará a cabo con la opción de cortes/rellenos seleccionados.

5.- Definir el perímetro, o polígono del terreno

- Seleccionar límite y pulsar grabar.

- Conducir el tractor para formar un polígono.

- Una vez completado el recorrido tomando como referencia el MBP, pulsar grabar.

7.- Recorrido interior para definir la pendiente del terreno de trabajo.

- Posicionarse dentro del polígono.

- Seleccionar interior y pulsar grabar.
Figura A.20 Selección de interior.

- Conducir el tractor en zig zag por el interior del polígono, haciendo hileras de 5 metros aproximadamente y una vez terminado el recorrido pulsar grabar.

NOTA: Al hacer el recorrido no se debe salir del límite del polígono.

![Figura A.20 Selección de interior](image)

Figura A.21 Recorrido en zig zag por el interior del polígono.

- Pulsar.
- Pulsar mejor adaptación y OK, para que guarde la información y muestre los mapas de alturas y cortes/rellenos.
- Pulsar el botón de inicio 🏡.
- Pulsar cerrar campo.

3. Extracción de archivos de pantalla FMX.

Siguiendo la metodología de (Galindo, 2015).
Insertar la memoria USB en la parte trasera de la pantalla.

En la pantalla de inicio aparece una opción de Archivos de Datos, como se muestra en la figura siguiente.

Figura A.22 Archivo de datos en pantalla principal.

Se selecciona el archivo de interés que se encuentra en la memoria Internal>datos campo y le damos copiar a USB drive, por ultimo apagamos la pantalla y retiramos la memoria USB.

A.4 Extraer datos de QGIS a Excel para convertirlos a UTM

1. Clic en menú capa.

 • Añadir capa.
Añadir capa vectorial.

Figura A.23 Añadir capa vectorial

2. En la siguiente ventana buscamos el archivo.

 - Clic en explorar.

Figura A.24 Buscar archivo SHP.

3. Seleccionar el archivo .SHP.

 - Abrir.

 - En la siguiente ventana clic en abrir.
Figura A.25 Seleccionar archivo

4. Seleccionamos el sistema de referencia de coordenadas.
 - Wgs84 /UTM zone 14n.
 - Aceptar
5. Capa vectorial SHP en Qgis.

Figura A.27 Visualización de Shape en Qgis

6. Eliminar puntos que no se necesita para la elaboración de la prescripción.

- Menú capa.
 - Abrir tabla de atributos.

Figura A.28 Eliminar puntos erróneos
7. En la tabla de atributos.

- Clic en conmutar el modo edición.

![Figura A.29 Manipular tabla de atributos](image)

8. -Seleccionar los puntos a eliminar.

- Clic en la una columna de nuestra tabla de atributos, y mostrara con color amarillo los puntos a eliminar.
- En la barra de herramientas seleccionar borrar columna o en el teclado de la pc suprimir (Supr).

![Figura A.30 Eliminar puntos](image)
9._ Queda solo los puntos del límite del trabajo y el recorrido interior.

Figura A.31 Visualización de puntos para la prescripción

10._Abrir la tabla de atributos.

- Capa.
 - Abrir tabla de atributos.

Figura A.32 Abrir tabla de atributos
11. _Clic derecho en una celda.

- Seleccionar todo.

Figura A.33 Seleccionar datos

12. _En la barra de menú.

- Clic en copiar todas las filas.
- Pegar en una hoja de cálculo de Excel.

Figura A.34 Visualización de datos seleccionados
13. Pegar los datos en Excel.

Figura A.35 Pegar datos en Excel

14. Eliminar columnas excepto, latitud, longitud y altura (ant_lat, ant-long, height).

- Clic derecho en una columna.
- Eliminar.

Figura A.36 Eliminar columnas que no se utilizara
A.5 Convertir Coordenadas Decimales a UTM

Con las coordenadas decimales obtenidos en Qgis, abrir la hoja de cálculo para convertir a UTM y generar el mapa de prescripción

D1. En Excel abrir el conversor de coordenadas decimales a UTM.

Figura A.37 Abrir conversor de coordenadas

2. Pegar las coordenadas decimales en Excel.

Figura A.38 Pegar coordenadas decimales a Excel
3. Copiar las coordenadas UTM a una nueva hoja de cálculo y pegar como números.

Figura A.39 Copiar coordenadas UTM

4. Los datos UTM guardarlos como:

- Guardar como.
- Seleccionar la carpeta.
- Darle un nombre.
- Delimitado por tabulaciones (.tex).
- Guardar.

Figura A.40 Guardar como archivo delimitado
A.6 Convertir archivo de .TXT a SHP

1._Abrir quantum GIS

Figura A.41 Abrir Qgis

2._Agrega archivo de texto delimitado a QGIS

Figura A.42 Agregar archivo delimitado
3. **Agregando el archivo de texto.**

Figura A.43 Agregando archivo delimitado

- Del cuadro de diálogo (crear una capa a partir de un archivo de texto delimitado)
- Elegimos explorar, ir por el archivo donde se tiene guardado.

- Seleccionar el archivo.
- Posteriormente en abrir.
- Nota: Se recomienda tener guardado el archivo en disco local (c) de la computadora en una carpeta.

- Al agregar el archivo, Activamos Delimitadores Seleccionados.
- Elegimos el tipo de delimitador en nuestro caso sería **TABULADOR**. Luego en Ok.
4.- Seleccionar sistema de referencia de coordenadas.

![Imagen de elección de sistema de referencia](image1)

Figura A.44 Seleccionar SRC

5._Visualización del mapa de puntos en Qgis.

![Imagen de visualización de puntos](image2)

Figura A.45 Visualización de mapas de puntos
6. _Generar archivo Shape de ESRI._

Para modificar el archivo .TXT delimitado por tabulaciones nada más se tiene que guardar como. Y elegir el formato, elegiremos SHAPE DE ESRI. El cual usaremos para trabajar con el software QGIS.

> Click derecho sobre el nombre de la capa.
> Luego en guardar como.

Figura A.46 Guardar como archivo como Shape
7. Guardar archivo Shape.

Al guardar el archivo se asigna un nombre y la dirección de donde se guarda de preferencia en una carpeta del disco local (c) el nombre de la carpeta será el que usted decida.

Al agregar el archivo creado le asignamos el mismo sistema de referencia de coordenadas (SRC).

- Clic en explorar y asignarle el (SRC) WGS 84/UTM zone 14N.
- Luego en añadir archivo guardado al mapa.
- Para finalizar en OK.

Figura A.47 Guardar como archivo Shape
A.7 Mapa de prescripción en QGIS

1. _Agregar archivo Shape._

![Agregar archivo Shape](image1.png)

Figura A.48 Agregar archivo Shape

2. _Visualización de la capa Shape._

![Visualización de capa Shape](image2.png)

Figura A.49 Visualización de capa Shape
3. **Interpolación.**

Para generar la interpolación ir a la barra menú. ➢ De la barra de menú elegir Ráster y desglosarlo. ➢ Luego en interpolación.

Figura A.50 Interpolación

4. **Seleccionar los complementos de interpolación.**

en capa vectorial elegir archivo al que se le aplicara la interpolación.
➢ en atributo de interpolación elegimos altura.
➢ Luego añadir.
➢ en método de interpolación usaremos (IDW).
➢ en tamaño x y de celda se deja en uno, tanto para x como para y.
➢ Click en establecer la resolución actual y se guarda en archivo de salida.

Figura A.51 Complemento de interpolación
5. Guardar el archivo interpolado.

Figura A.52 Guardar la interpolación

6. Agregar el archivo raster a Qgis.

Figura A.53 Agregar archivo raster
7. Agregar sistema de referencia de coordenadas (SRC).

Figura A.54 Agregar SRC

8. Visualización de formato raster.

Figura A.55 Visualización de raster
9. Asignar formato seudocolor a la escala de grises.

Figura A.56 Cambiar las propiedades de color de la capa raster
10._ Visualización del mapa interpolado para conocer las alturas.

![Visualización del mapa interpolado para conocer las alturas](image1)

Figura A.57 Visualización de raster con diferencia de altura

11._ Generar lotes a partir de mapas de puntos.

![Generar lotes](image2)

Figura A.58 Generar lotes
12. Generar una cuadricula vectorial.

Figura A.59 Generar cuadricula

Figura A.60 Guardar cuadricula

Figura A.61 Agregar cuadricula a Qgis

15. Visualización de cuadricula Shape generada.

Figura A.62 Visualización de cuadricula
16. Quitar relleno solida a la capa cuadrícula.

Figura A.63 Quitar relleno solido
17. Generar lotes de la capa de puntos.

Figura A.64 Generar lotes
18. Guardar archivo Shape (lote).

Figura A.65 Guardar archivo Shape (lote)

19. Visualización de lote generado.

Figura A.66 Visualización de lote
20. Modificar las alturas en la tabla de atributos, utilizando valores aleatorios para cada lote (-10, 0, +10 m).

![Figura A.67 Modificar alturas](image)

21. Abrir tabla de atributos.

![Figura A.68 Abrir tabla de atributos](image)
22. Calculadora de campos para modificar las alturas.

Figura A.68 Calculadora de campos

23. Combinar archivo vectorial (lotes) en uno.

Figura A.69 Combinar Shape (lotes) en uno
24. _Combinar archivo Shape._

Figura A.70 Seleccionar capas

25. _Archivo modificado._

Figura A.71 Visualización de archivo final
26._ Copiar base de datos a Excel

Seleccionamos el archivo final y con clic derecho abrimos la tabla de atributos.

![Figura A.72 Tabla de atributos del archivo final](image1)

27._ En la tabla de atributos damos clic derecho, seleccionar todo y copiamos a Excel

![Figura A.73 Copiar tabla de atributos](image2)
28._ Ordenar los datos de manera ascendente como se muestra en la figura y guardarlo como .txt.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1794.55</td>
<td>MB N25:20:57.866 / W101:01:49.404</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-1.1602</td>
<td>-0.09</td>
<td>1794.553</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>-2.3514</td>
<td>0.109</td>
<td>1794.511</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>-3.9142</td>
<td>0.431</td>
<td>1794.523</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>-5.7696</td>
<td>0.906</td>
<td>1794.513</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>-7.8161</td>
<td>1.403</td>
<td>1794.453</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>-9.8619</td>
<td>1.677</td>
<td>1794.406</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>-11.8926</td>
<td>1.953</td>
<td>1794.368</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>-13.9481</td>
<td>2.578</td>
<td>1794.391</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>-16.0691</td>
<td>2.943</td>
<td>1794.394</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>-18.2911</td>
<td>3.284</td>
<td>1794.374</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>-20.0849</td>
<td>3.511</td>
<td>1794.4</td>
<td></td>
</tr>
</tbody>
</table>

Figura A.74 Ordenar datos
ANEXO B

MANUAL DE CONVERSOR DE COORDENADAS DECIMALES A UTM

B.1 Descripción de Conversor de coordenadas decimales a UTM

El conversor está diseñando para un sistema de cárdenas WGS84 son las siglas en inglés de World Geodetic System 84 (que significa Sistema Geodésico Mundial 1984), que nos permite localizar cualquier punto en la tierra.

Contiene un conjunto de fórmulas y números constantes para obtener las coordenadas UTM como se muestra a continuación:

\[M5 \cdot O5 \cdot (1 + P5/3) + 500000 \]

Donde:

\[M5 = \frac{1}{2} \cdot \ln \left(\frac{1 + L5}{1 - L5} \right) \]

\[L = 0.052335956 \]

\[\ln = \text{es una función que devuelve el logaritmo natural de un número.} \]

\[O5 = \frac{C11}{(1 + C10 \cdot \cos(H5))^2} \cdot 0.9996 \]

\[C11 = + (C5^2)/C6 \]

\[C5 = 6378137 \]

\[C6 = 6356752.31424518 \]

\[C10 = C9^2 \]

\[C9 = \text{RAIZ} \left(C5^2 - C6^2 \right)/C6 \]

\[H5 = E5 \cdot \pi (180) \]

\[E5 = \text{Coordenadas decimales a insertar.} \]

\[\pi = \text{valor de pi a 15 dígitos.} \]

\[P5 = (C5^2/2) \cdot M5^2 \cdot (\cos(H5))^2 \]
1.- Abrir el conversor en Excel

![Figura B.1 Abrir el conversor en Excel](image1)

2.- Pegar las coordenadas decimales

![Figura B.2 Pegar las coordenadas decimales en el conversor](image2)
3. _Copiar las coordenadas UTM generadas a una nueva hoja de cálculo de Excel_

Figura B.3 Copiar las coordenadas UTM a una nueva hoja de Excel
ANEXO C

MANUAL PARA EDICION EN MULTIPLANE

C.1 Edición en MultiPlane

1.- Abrir el software MultiPlane.

2.- Importar el archivo Multiplane.txt generado por la pantalla FmX, en el levantamiento topográfico.

![Figura C.1 Importar el archivo.](image)

3.- Buscar el archivo que se quiere importar.

- Seleccionar.
- Abrir.
Figura C.2 Abrir cuadro de import.

4.- Aparecerá la siguiente ventana y seleccionar OK.

Figura C.3 Entrar a ventana de import generic.

5.- En seguida generará las propiedades de los datos:

- Linear: Meters
- Clic en OK
Figura C.4 Cambiar unidades a metros

6.- Llenar la información de campo. Es importante proporcionar los mismos datos que se introdujeron en la pantalla FmX para hacer el levantamiento topográfico.

- Llenar campos
- Clic en OK

Figura C.5 Llenado de campo.

7.- Nombrar el archivo con la extensión.mp1 como se muestra en la figura C.6.

- Seleccionar la carpeta donde se guardará el archivo nuevo.
- Clic en aceptar.
8.- verificar que los datos asignados sean los correctos:

➢ Clic en OK

Figura C.6 Selección de carpeta de destino

Figura C.7 Confirmación de la información asignada.
9.- en la siguiente ventana se muestra el mapa en 2D.

![Mapa en 2D](image)

Figura C.8 Mapa en 2D

10.- Después que aparece el mapa.

- Ir al menú Design.
- Clic en Best Fit.

![Comando Best Fit](image)

Figura C.9 Comando Best Fit

11.- Aparecerá una ventana de nombre Best Fit Design.

- Pulsar OK.
12.- Aparecera la siguiente ventana, donde muestra dos mapas en 2D, una de diseño y la otra de existente.

13.- Ir al menú Options.
 - Clic en Units
 - Seleccionar Metric
14.- Guardar la edición con la extensión .GPS

- Clic en File
- Pulsar: Save Control Data

14.1.- Posteriormente aparecerá un cuadro donde se le asignará un nombre al archivo con la extensión (.GPS)

- Asignar un nombre al archivo con la extensión (.GPS)
- Doble clic en el archivo original.
- Buscar y dar doble clic en la carpeta de Multiplane Design; donde se guardara el archivo.
15.- Posteriormente aparecerá un cuadro de Save Control Data.

- Clic en OK.

Figura C.15 Fin del a edición
ANEXO D

SUBIR ARCHIVO A LA PANTALLA FMX

1._ Borrar los datos del levantamiento original

➢ Abrir archivo de datos
➢ Abrir
➢ Seleccionar el levantamiento original y eliminar.

![Eliminar archivo del levantamiento topográfico original](image1.png)

Figura D.1 Eliminar archivo del levantamiento topográfico original

2._Abrimos configuración, y configuramos la aplicación FIELD LEVEL

![Cambiar el diseño de nivelación GPS a diseño MultiPlane](image2.png)

Figura D.2 Cambiar el diseño de nivelación GPS a diseño MultiPlane
3. Una vez que se haya configurado el diseño GPS a diseño MultiPlane, aparecerá una ventana donde se insertará la altura de la antena, la altura de la antena receptora se mide tomando como referencia el suelo. Y pulsar ok como se muestra a continuación:

![Figura D.3 Configurar la altura de la antena](image)

Figura D.3 Configurar la altura de la antena

4. Ingresar al área de trabajo para abrir nuestro archivo y proseguir con las pruebas:

- Ingresar al campo de trabajo
- Aparecerá una ventana llamada CONFIGURATION SELECTION ahí no se edita nada y pulsar OK.
- En el cuadro de FIELD SELECTION en la ventana de CLIENT buscar la carpeta de interés (CARPETA DE TRABAJO), las demás ventanas aparecen por default. Dar OK.

Nota: en la ventana de evento puede haber más de una opción elegir la carpeta de interés.

- Posicionar el tractor en la parte neutra del terreno de acuerdo al mapa y leyenda de cortes/rellenos.

- Pulsamos en la ventana de FIELDLEVEL II
- Posicionarse en el MBP y presionar Fijar altura de referencia.
Figura D.4 Fijar el MBP

- Esperar 30 segundos para que el sistema promedie la ubicación del MBP.
- Situarse en el lote a realizar el laboreo.

- Pulsar e iniciar los recorridos.
ANEXO E

METODOLOGÍA PARA ANALIZAR DATOS

Metodología para analizar datos que respectan a las pruebas estáticas recomendadas por el software MultiPlane

Para determinar las profundidades de laboreo, nos regimos en la siguiente metodología.

La Ecuación 4.1 muestra cómo se calcula el desplazamiento real del equipo de labranza inteligente, la cual solo se requieres saber la variable que es el voltaje final y este se puede saber con la gráfica obtenida por el módulo de adquisición de datos. La distancia está dada en milímetros (Cuervo, 2014).

\[
280.4 V_{mm}^{-1} \quad \text{Ecuación (4.1)}
\]

Dónde:

\[
\text{mm= desplazamiento o profundidad de laboreo}
\]

\[
\text{v= voltaje final; dato arrojado por el software Daq View al momento de realizar la prueba en el campo.}
\]

A continuación se describen los pasos para obtener profundidad de laboreo y tiempos de respuesta

1.- Para obtener las gráficas de corte, relleno y neutro se multiplicó el voltaje por la constante que es igual a 280.4

2.- Para obtener la profundidad máxima de laboreo fue necesario sacar un promedio en la parte final de la gráfica; el promedio se calculó en la zona donde se observó más linealidad con un rango de 50 datos.

3.- Para obtener el tiempo de respuesta se utilizó la fórmula:

\[
\text{Tiempo de respuesta} = \frac{\text{punto final-punto inicial}}{\text{frecuencia de adquisición de datos}} \quad \text{Tr=} \frac{(Pf-Pi)}{F}
\]