UNIVERSIDAD AUTÓNOMA AGRARIA ANTONIO NARRO

UNIDAD LAGUNA

DIVISIÓN DE CARRERAS AGRONÓMICAS

"COMPARACIÓN DE LA FERTILIZACIÓN TRADICIONAL CON LA FERTILIZACIÓN A BASE DE SILICIO EN LA PRODUCCIÓN DE MAÍZ"

PRESENTA: JOSE ANTONIO PUENTES GAMEZ

TESIS PROFESIONAL
PRESENTADA COMO REQUISITO PARCIAL PARA
OBTENER EL TÍTULO

DE:

INGENIERO AGRÓNOMO EN IRRIGACIÓN

UNIVERSIDAD AUTÓNOMA AGRARIA ANTONIO NARRO

UNIDAD LAGUNA DIVISIÓN DE CARRERAS AGRONÓMICAS

TESIS QUE PRESENTA: JOSE ANTONIO PUENTES GAMEZ

ELABORADA BAJO LA SUPERVISIÓN DEL COMITÉ DE ASESORÍA Y APROBADA COMO REQUISITO PARCIAL PARA OBTENER EL TÍTULO DE:

INGENIERO AGRÓNOMO EN IRRIGACIÓN

Aprobada por:

ASESOR PRINCIPAL:

M.C. CARLOS EFREN RAMÍREZ CONTRERAS

ASESOR:

DR. JORGE LUIS VILLALOBOS ROMERO

ASESOR:

M.C. JOSÉ GUADALUPE GONZALEZ QUIRINO

AUTONOMA

M.C.VICTOR MARTINEZ CUETO

M.C. EDGAR RAMIREZ HORTA

COORDINADOR DE LA DIVISIÓN DE CARRERAS AGRONÓMICAS

TORREÓN, COAHUILA, MÉXICO

ASESOR:

FEBRERO DE 2016

UNIVERSIDAD AUTÓNOMA AGRARIA ANTONIO NARRO

UNIDAD LAGUNA

DIVISIÓN DE CARRERAS AGRONÓMICAS

COMPARACIÓN DE LA FERTILIZACIÓN TRADICIONAL CON LA FERTILIZACIÓN A BASE DE SILICO EN LA PRODUCCIÓN DE MAIZ. TESIS QUE PRESENTA:

JOSÉ ANTONIO PUENTES GAMEZ

QUE SOMETE A CONSIDERACIÓN DEL H. JURADO EXAMINADOR PARA OBTENER EL TITULO DE:

INGENIERO AGRÓNOMO EN IRRIGACIÓN

PRESIDENTE:	E Alle
	M.C. CARLOS EFREN RAMÍREZ CONTRERAS
VOCAL:	
	DR.JORGE LUIS VILLALOBOS ROMERO
VOCAL:	M.C. JOSÉ GUADALUPE GONZALEZ QUIRINO
VOCAL SUPLENTE:	M.C. EDGAR RAMIREZ HORTA
	M.C. VICTOR MARTINEZ CLIETO

COORDINADOR DE LA DIVISIÓN DE CARRERAS AGRONÓMICAS

TORREÓN, COAHUILA, MÉXICO

FEBRERO DE 2016

DEDICATORIAS

A Dios por haberme acompañado, guiarme a lo largo de mí carreara, ser mi fortaleza en los momentos de debilidad, brindarme una vida llena de aprendizaje, experiencia y sobretodo felicidad, **a la vida** por permitirme lograr esta etapa en mi vida.

El presente trabajo, es esfuerzo de sacrificio constante, obstáculos que vencer, lo dedico, con amor, respeto y agradecimiento muy especial a:

A MIS PADRES: Sr. Juan Santiago Puentes Ruiz Y Sra. Manuela Gámez Castro.

Por darme lo más hermoso de este mundo que es la vida, su amor, paciencia, comprensión, enseñanza, y su apoyo incondicional para tener una formación profesional.

A MI FAMILIA: A mis hermanos Juan Manuel, Roció e Issabela por su apoyo incondicional, brindarme su cariño, estar siempre conmigo en los momentos bueno y malos de mi vida.

Gracias a todos son la mejor familia, lo más hermoso y preciado, estoy agradecido con ustedes, sin su ayuda no hubiese logrado mi formación profesional. En general a mis abuelos, tíos, tías, primos y primas, gracias por sus consejos, apoyo moral y sentimental que me han brindaron en esta etapa de mi vida.

A MI ESPOSA: María de Jesús Reyes Castro y a mi hija María Fernanda Puentes Reyes, por todo el apoyo y comprensión.

AGRADECIMIENTOS

A la Universidad Autónoma Agraria Antonio Narro, Unidad Laguna, por permitirme terminar mis estudios, darme una carrera que es una meta que tenía, gracias a mi alma terra mater.

Al M. C. Carlos Efrén Ramírez Contreras, por su amistad y sobre todo por ser quien me guio en esta etapa final de mi vida.

Al Dr. Jorge Luis Villalobos Romero, por su apoyo y colaboración en el proyecto de investigación, además de su honorable amistad

Al M.C. José Guadalupe González Quirino, por su apoyo y colaboración en la elaboración de mi tesis.

Al M.C. Edgar Ramírez Horta, por su apoyo y compartir sus conocimientos, amistad y colaboración en mi tesis.

Al Ing. Salvador Ordaz, encargado del área técnica de la empresa Beta Santa Mónica, por permitir llevar a cabo esta investigación en los campos agrícolas de la empresa, además de todo su apoyo para que se llevara a cabo.

A mis profesores que más que ser catedráticos son grandes amigos que en los momentos más difíciles de mi carrera me apoyaron para continuar: MC. Federico Vega Sotelo, M.C. Abel Román López, M.C. Braulio Duarte Moreno, M.C. Jose Isabel Márquez Mendoza, Ing. Ernesto Luna Davila.

A mis compañeros: Ivan Jiménez Espinoza, José Antonio Domínguez Chaparro, José Alfredo de la Torre Díaz, Héctor Mendoza Acosta, Ricardo Isidro Fabián, Edgar López Sierra, Jorge Alberto Calvo Lopez, que durante cuatro años y medio, compartimos momentos de alegría, tristeza, pero que de alguna manera seguimos adelante y logramos el objetivo que teníamos propuesto.

INDICE

RESUMEN	1
INTRODUCCIÓN	2
OBJETIVO GENERAL	3
OBJETIVOS ESPECÍFICOS	3
HIPÓTESIS	3
REVISION DE LITERATURA	4
Concepto	4
Densidades de población	5
Fechas de siembra	5
Fertilización del Maíz Forrajero	5
Fertilización a base de silicio.	6
Beneficios de la fertilización a base de silicio (Si)	7
Clasificación Taxonómica del Maíz	8
MATERIALES	9
Localización del área de estudios	9
Características climáticas, edáficas e hidrológicas del área de estudios	9
METODOS.	11
Preparación del terreno	11
Siembra.	11
Riegos	11
Muestreo de datos.	12
Análisis estadístico	13
RESULTADOS Y DISCUSIÓN	14
Rendimiento	14

Comparación de medias	15
Análisis de regresión	16
Biblografia.	20
Apéndices	22
INDICE DE CUADRO.	
CUADRO 1. CALENDARIO DE RIEGO.	11
CUADRO 2. SIMBOLOGÍA DE LOS TRATAMIENTOS.	12
CUADRO 3. ACOMODO DEL DISEÑO EXPERIMENTAL BLOQUES AL AZAR.	12
CUADRO 4. RENDIMIENTOS OBTENIDOS POR TRATAMIENTO.	14
CUADRO 5. COEFICIENTE DE VARIACIÓN.	15
CUADRO 6. COMPARACIÓN DE MEDIAS	15
CUADRO 7. DETALLES DE LA SERIE DE FOURIER.	16
CUADRO 8. PARÁMETROS DEL MODELO.	17
CUADRO 9. RESULTADO DE DATOS OBTENIDOS CON EL MODELO.	17
INDICE DE GRAFICAS.	
GRAFICA 1. RENDIMIENTO DE MAIZ FORRAJE VERDE.	14
GRAFICA 2. DATOS REALES DE EXPERIMENTO.	16
GRADICA 3. RESULTADOS DE PENDIMIENTO CON EL MODELO	17

RESUMEN

La fertilización en el cultivo de maíz es de suma importancia para lograr la mayor productividad que satisfaga las necesidades de forraje para la alimentación del ganado lechero, esto puede llegar a ser costoso, por lo cual se debe de obtener un balance entre la fertilización y rendimiento para no exceder el costo de producción de maíz forrajero. El objetivo de la presente investigación es sugerir la aplicación de un modelo utilizado para el cálculo de la dosis adecuada de fertilización obteniendo el mayor de los rendimientos. Él trabajó de campo se realizó de la misma manera que se realiza la labranza tradicional en las empresas de producción de forraje, que consisten en rastra, arrope, bordeo, nivelación de precisión en base a diseño del riego por superficie y corrugación. Para la obtención de datos se llevó acabo el siguiente procedimiento, de cada unidad experimental se tomaron los dos surcos centrales y se midieron tres metros lineales, se cortaron las plantas con machete a una altura de 10 - 15 cm simulando el corte de la maquina ensiladora, se contó el número de plantas, se pesó por separado: tallo, hojas, mazorca y espiga para poder obtener el peso por planta, con la densidad de plantas y el peso por planta se obtuvo rendimiento de forraje verde de maíz. Se obtuvo el mayor rendimiento de forraje verde de maíz con 400 kg de fertilizante a base de silicio.

Palabras clave: Fertilización, Maíz, Silicio, Forraje, Rendimiento.

INTRODUCCIÓN

La Comarca Lagunera es la principal cuenca lechera del país, con una producción cercana a los dos millones de toneladas de leche, esta situación implica una gran demanda de forraje, la alfalfa, maíz, avena forrajera, sorgo forrajero son los cultivos mayormente utilizados para cubrir esta demanda de forraje. El maíz es un componente importante en las raciones que son suministradas al ganado lechero, por lo cual, se demanda un incremento en la productividad de este cultivo.

La fertilización en el cultivo de maíz es de suma importancia para lograr la mayor productividad que satisfaga las necesidades de forraje para la alimentación del ganado lechero, esto puede llegar a ser costoso, por lo cual se debe de obtener un balance entre la fertilización y rendimiento para no exceder el costo de producción de maíz forrajero.

En la empresa Beta Santa Mónica, la superficie de siembra varía en cada ciclo según los derechos de agua de rio que se logren acumular, la demanda anual de forraje es de 42 toneladas por hectárea de forraje verde de maíz para la alimentación de 27 000 cabezas de ganado lechero.

El desarrollo de tecnología para incrementar el rendimiento de forraje, permite aumentar la proporción de ensilaje de maíz utilizado en las raciones del ganado. De tal manera que una de las alternativas de solución para la empresa es incrementar el rendimiento en la producción de forraje de maíz, mediante la evaluación de diferentes productos para la fertilización, así como también diferentes dosis de fertilización.

La demanda de forraje de maíz que tiene la empresa, justifican el establecimiento de la presente investigación consistente en la cual se presentan resultados y recomendaciones que permite a la empresa obtener el mayor rendimiento de maíz forrajero y su dosis optima de fertilización.

OBJETIVO GENERAL.

Evaluar el efecto de la fertilización a base de silicio sobre el rendimiento de forraje verde en el cultivo de Maíz.

OBJETIVOS ESPECÍFICOS.

Establecer la dosis de fertilización, que permita obtener el mayor rendimiento en cultivo de maíz.

Obtener un modelo de cálculo, para las dosis de fertilización a base de silicio relacionada con el rendimiento.

HIPÓTESIS

La fertilización a base de silicio dará mayores rendimientos que la fertilización tradicional.

REVISION DE LITERATURA.

Importancia del Maíz.

El maíz (Zea mays L.) es uno de los cereales más utilizados para consumo humano y animal, en términos de ingresos es el tercer cultivo más importante en el mundo, sembrándose cerca de 129 millones de hectáreas, con rendimientos en grano de 6.7 t/ha. En México anualmente se establecen 8 millones de hectáreas de para grano y alrededor de 500,000 de maíz forrajero (*Sánchez et al, 2011*).

La superficie de siembra en la Comarca Lagunera es de 89,813 ha de cultivos forrajeros anualmente. El maíz forrajero ocupa el segundo lugar de importancia superado únicamente por la alfalfa, uno de los principales problemas de este cultivo es la baja producción de aproximadamente 49.4 ton ha de forraje verde y su alto consumo de agua (*Rivera et al, 2013*).

La producción de dos millones de toneladas de leche de bovino en la Comarca Lagunera implica una gran demanda de forraje de calidad, por su alto contenido energético, el ensilaje de maíz es un componente importante en las raciones que se suministran al ganado lechero, por lo cual, la región lagunera demanda un incremento en el rendimiento del maíz forrajero sin disminuir su calidad (*Reta et al, 2007*).

Maíz Forrajero.

Concepto.

El término "maíz forrajero" abarca conceptos básicos para la nutrición animal y no solo rendimiento de forraje verde: rendimiento de materia seca y calidad nutritiva, que incluya proteína, energía, fibra detergente neutra y acida, principalmente. Parámetros que son determinados por los componentes morfológicos de la planta: hoja, tallo y elote, en combinación con su madurez; y otras características importantes como acame, incidencia de enfermedades, altura de la planta, numero, ancho y largo de la hoja, numero de elotes, apetencia para rumiantes, entre otros. Estos aspectos tendrán incidencia en el rendimiento de materia seca, calidad nutritiva y aceptación de forraje por el animal. (Paliwal, 2001).

Densidades de población.

La densidad optima en maíz para rendimiento de grano y forraje depende del genotipo fertilidad y manejo agronómico del cultivo, existen evaluaciones realizadas en maíces forrajeros a una densidad de siembra de 85 mil plantas/ha, se obtuvieron rendimientos de forraje verde de 52.5 a 85.6 t/ha (Sánchez et al, 2011).

La producción de materia seca por hectárea de maíz para forraje aumenta con la densidad de plantas manteniendo un comportamiento asintótico, al aumentar la densidad de platas aumenta la competencia entre ellas afectando la emergencia de estigmas, la polinización, la formación de numero de granos e incrementa las mazorcas estériles (Gonzales et al, 2006).

Fechas de siembra.

La producción de maíz forrajero se encuentra altamente influenciada por las densidades de siembra, esto debido a la relación que existe entre el cultivo y el clima, algunas resultan ser un beneficio para el cultivo por ejemplo días más largos promueven la fotosíntesis de las plantas, otro ejemplo de esta relación pero no beneficioso son las altas temperaturas durante la noche estas reducen la producción de forraje (Gonzales et al, 2006)

Es de suma importancia la elección adecuada de la fecha de siembra para el cultivo ya que este se ve influenciada por las condiciones climáticas, la germinación optima se obtiene a temperaturas 18 a 21°c, con temperaturas menores a 13°c disminuye significativamente por lo tanto el periodo adecuado de siembra se encuentra a principios de abril y hasta mediados de octubre (*Jurado et al, 2014*).

Fertilización del Maíz Forrajero.

El uso de fertilizantes químicos en México se inició a principios del siglo pasado y la producción de los mismos en 1915. Los fertilizantes que mayormente son utilizados son los sólidos; los líquidos y gases son utilizados en zonas mayor tecnificadas como el Bajío-Guanajuato, valle de Sinaloa y valle del Yaqui-Sonora. En México el uso de fertilizantes no es uniforme a lo largo del territorio nacional

dedicado a la agricultura y se ha concentrado en zonas donde se desarrolla una agricultura intensiva (*Peña et al, 2001*).

El uso de variedades con mayor potencial de rendimiento y calidad nutricional, genera una mayor extracción de nutrientes del suelo, el cultivo de maíz para ensilaje extrae en promedio 14 kg ha de nitrógeno (N) por cada tonelada de materia seca cosechada. Es importante tomar en cuenta la eficiencia del uso del fertilizante es decir, obtener la relación que existe entre el nutrimento extraído por el cultivo y la cantidad del nutrimento aplicado, teniendo en cuenta esta relación debemos aumentar esta eficiencia del uso de los fertilizantes obteniendo beneficios como la reducción en los costos de producción además de reducir los riesgos por contaminación (Faz et al, 2006).

El maíz requiere de una cantidad suficiente de nutrientes adecuados para satisfacer sus necesidades. Misma cantidad que es absorbida del suelo, la cual varía en tiempo y por fertilidad natural del mismo. Los principales nutrientes que demanda el cultivo forrajero se presentan con regularidad deficiente en el suelo, los cuales pueden ser aportados aplicando diferentes fertilizantes ya sea, químicos, estiércoles y residuos de cosecha. (Salazar et al, 2003).

Crear un programa de fertilización incluyendo la aplicación N, P y S, es esencial para optimizar el rendimiento del cultivo, incrementar la rentabilidad y mejorar la eficiencia del uso de nutrientes. La adopción de las mejoras prácticas de manejo para el uso de los fertilizantes es necesaria para incrementar y estabilizar los rendimientos y promover la sustentabilidad de la producción agropecuaria (Ciampitti et al, 2006).

Fertilización a base de silicio.

El silicio (Si), es un elemento químico metaloide es el segundo elemento más abundante en la corteza terrestre, por lo cual, es un elemento no considerado como esencial en el desarrollo sustentable de los organismos fotosintéticos (Quero, 2009).

Aun cuando el Silicio no es considerado como elemento esencial, en especies gramíneas y algunas especies no gramíneas, el desarrollo de las plantas, su crecimiento y producción han aumentado cuando se hacen aplicaciones de

fertilizante a base de silicio, además de la reducción de algunas enfermedades, en cultivo como el arroz, existen numerosas investigaciones donde se ha encontrado que el silicio también ayuda a aliviar los efectos por tensiones abióticas incluyendo la tensión por salinidad, toxicidad por metales, tensión por sequía, daños producidos por la radiación, el desequilibrio de nutrientes altas y bajas temperaturas. Se dice, que los mecanismos de resistencia a las enfermedades, es por el aumento de acumulación del silicio absorbido en el tejido epidérmico. El silicio llega a formar complejos con los compuestos orgánicos en las membranas celulares de células epidérmicas aumentando así su resistencia a la degradación por las enzimas liberadas por los hongos (*Piedrahita*, 2008).

El silicio es absorbido por las plantas en un rango de pH de 2 hasta 9 en forma energéticamente pasiva, es tomado por las raíces en la solución como ácido monosilícico para ser acumulado en las células epidérmicas impregnándolas con una capa fina, al tener asociaciones con pectinas y polifenoles en la pared celular, crea barreras efectivas contra la pérdida de agua y transpiración cuticular. El silicio puede estimular el crecimiento y la productividad ya que aumenta la disponibilidad de elementos como P, Ca, Mg, K y B (Borda et al, 2007).

Beneficios de la fertilización a base de silicio (Si)

En condiciones óptimas los beneficios del silicio en el crecimiento y desarrollo de las plantas son mínimo, sin embargo, en situaciones de estrés la planta se ve beneficiada, debido a que el silicio se deposita en las paredes celulares de los vasos de xilema y previene que este se comprima en condiciones de transpiración excesiva causada por la sequía a estrés térmico. Además la membrana de siliciocelulosa en el tejido epidérmico de las hojas protege los tejidos vegetales contra la perdida de agua por transpiración (Quero, 2009).

Borda et al 2007 menciona que en avena forrajera el aporte de silicio a las plantas evidencia variantes en la respuesta de crecimiento y ganancia de materia seca provocando elongación celular, mayor turgencia y conversión eficiente de asimilados observándose en el incremento de altura y diámetro de tallo.

Clasificación Taxonómica del Maíz.

De acuerdo con el autor Robles 1978 la clasificación taxonómica del maíz es la siguiente:

Reino..... Vegetal

División..... Tracheophyta

Subdivisión..... Pteropsidae

Clase..... Angiospermae

Subclase..... Monocotiledónea

Grupo...... Glumiflora

Orden...... Graminales

Familia..... Gramineae

Tribu..... Maydeae

Genero...... Zea

Especie..... mayz

MATERIALES

Localización del área de estudios.

La región Lagunera se localiza en la parte suroeste del estado de Coahuila, se ubica entre las coordenadas geográficas 103° 26´33´´ de longitud oeste con relación al meridiano de Greenwich y 25° 32´40´´ de latitud norte, con una altura de 1120 msnm (INEGI, 2006).

El presente trabajo fue desarrollado en el predio agrícola PP San Ignacio de la empresa BETA SANTA MÓNICA S.P.R DE R.L DE C.V. Esta área se ubica entre los paralelos 25° 47' 53" y 25° 48' 11" N y los meridianos 103' 14' 37" y 104° 47' 43", con una altitud de 1110 msnm.

Características climáticas, edáficas e hidrológicas del área de estudios.

Las condiciones geográficas de la región dan origen a un clima-semiárido, con fuertes variaciones estacionales y precipitaciones escasas las cuales se concentran en los meses de julio, agosto y septiembre, con variaciones desde los 200mm. anuales en la parte baja de la cuenca, en la cual se localiza la mayor parte de la zona agrícola, hasta los 600 en la parte alta de la cuenca, que es donde ocurren las precipitaciones más significativas las cuales generan escurrimientos superficiales que se utilizan para el riego en región lagunera (Cervantes et al, 2010).

En la región lagunera el tipo de suelo predominante es entre arcilloso y migajón arenoso, este tipo de suelo ocupa la parte central del área cultivada y por sus características fisicoquímicas se localizan los cultivos más importantes. Son ricos en fosforo, potasio, magnesio, calcio, pero normalmente pobres en nitrógeno, además de contar con materia orgánica en bajas proporciones (Sagarpa, 2002).

Debido a la intensa actividad agropecuaria e industrian en la región lagunera, la presión sobre los recursos hídricos es creciente, esto es ocasionado también por las condiciones geográficas y climatológicas propias de la región. Los ríos principales son el Nazas y el Agua naval, la cuenca con mayor captación en la región es la del Rio Nazas, que aporta en 79.7 % del escurrimiento medio anual de

la Región Hidrológica, con un volumen de 2,508 millones de m3, a lo largo de su cauce se encuentran las presas Lázaro Cárdenas y Francisco Zarco (Lozano, 2012).

METODOS.

Preparación del terreno

La preparación del terreno se llevó a cabo de la misma manera que se realiza la labranza tradicional en las empresas de producción de forraje, que consisten en rastreo, arrope, bordeo, nivelación de precisión en base a diseño del riego por superficie y corrugación.

Siembra.

La siembra se llevó a cabo en el ciclo agrícola primavera-verano del año 2015 con fecha específica del 08 de Abril con siembra en seco, el cultivo se estableció en un sistema de producción tradicional con una distancia entre surcos de 75 cm y 12.5 cm entre plantas con una densidad de población de 100 mil semillas por hectárea. La variedad utilizada para el experimento fue el hibrido HT 9019.

Riegos

La aplicación de los riegos se realizó de acuerdo al siguiente calendario que se observa en el cuadro 1.

Cuadro 1. Calendario de riego.

	DÍAS DESPUÉS DE	FASE FENOLÓGICA
RIEGO	LA SIEMBRA	DEL CULTIVO
		Diferenciación de órganos
1er. Aux.	38	reproductivos
		Inicio de crecimiento de
2do. Aux.	64	mazorca
3er. Aux.	76	Grano lechoso

Tratamientos

Para el experimento se utilizaron seis tratamientos los cuales se presentan a continuación el cuadro 2.

Cuadro 2. Simbología de los tratamientos.

T1 S-F	Tratamiento 1 Sin fertilizante
T2 T-BSM	Tratamiento 2 Fertilización tradicional Beta Santa Mónica
T3 100F	Tratamiento 3 100 (kg/ha) Fertilizante Fosfosilidol
T4 200F	Tratamiento 4 200 (kg/ha) Fertilizante Fosfosilidol
T5 300F	Tratamiento 5 300 (kg/ha) Fertilizante Fosfosilidol
T6 400F	Tratamiento 6 400 (kg/ha) Fertilizante Fosfosilidol

Se estableció un diseño experimental en bloques al azar con seis tratamientos y cuatro repeticiones. En el cuadro 3 se presenta el acomodo de los tratamientos.

Cuadro 3. Acomodo del diseño experimental bloques al azar.

T5 300F	T2 T-BSM	T1 S-F	T6 400F
T6 400F	T3 100F	T2 T-BSM	T1 S-F
T1 S-F	T4 200F	T3 100F	T2 T-BSM
T2 T-BSM	T5 300F	T4 200F	T3 100F
T3 100F	T6 400F	T5 300F	T4 200F
T4 200F	T1 S-F	T6 400F	T5 300F

Muestreo de datos.

La lectura de datos del experimento se llevó a cabo con el siguiente procedimiento, de cada unidad experimental se tomaron los dos surcos centrales y se midieron tres metros lineales, se cortaron las plantas con machete a una altura de 10 – 15 cm simulando el corte de la maquina ensiladora, se contó el número de plantas, se pesó por separado: tallo, hojas, mazorca y espiga para poder obtener el peso por planta, con la densidad de plantas y el peso por planta se obtuvo

rendimiento de forraje verde de maíz. Toda esta información se presenta en el anexo A.

Análisis estadístico

Los tratamientos en el campo fueron establecidos en un diseño en bloques al azar con cuatro repeticiones.

El modelo del diseño de bloques al azar es:

$$Yij = \mu + Ti + \beta j + \xi ij$$

Donde:

Yij = Es la observación del tratamiento i en el bloque j.

 μ = Es el efecto verdadero de la media general.

Ti = Es el efecto del i - esimo tratamiento.

 $\beta j = Es$ el efecto de j – esimo bloque.

 ξ ij = Es el error Experimental

RESULTADOS Y DISCUSIÓN.

A continuación se presentan los datos de los resultados obtenidos, durante la cosecha para lo cual se utilizo el programa estadístico Diseños experimentales FAUANL Versión 2.5.

Rendimiento.

La obtención de datos se llevó a cabo con el siguiente procedimiento, se contó el número de plantas para obtener la densidad de población por hectárea, se pesó por separado el tallo, mazorca, hojas y espigas para tener el peso por planta. Con la densidad de población y el peso por planta se obtuvieron los datos de rendimiento que se presentan en el cuadro 4.

Cuadro 4. Rendimientos obtenidos por tratamiento.

Tratamiento	Rendimiento (Ton-ha)
1	36.77
2	36.70
3	35.37
4	42.62
5	44.67
6	48.91

El cuadro 4 y la gráfica 1 nos muestran que el mayor rendimiento se dio en el tratamiento No. 6, en una proporción de 8.7%.

Grafica 1. Rendimiento de maiz forraje verde.

Cuadro 5. Coeficiente de variación.

FV	GL	SC	CM	Fc	F(Tablas)
Tratamientos	5	586.855469	117.371094	2.4581	0.081
Bloques	3	35.394531	11.798177	0.2471	0.863
Error	15	716.230469	47.748699		
Total	23	1338.480469			

C.V. = 16.92%

VARIABLE: Rendimiento

NUMERO DE TRATAMIENTOS = 6

NUMERO DE REPETICIONES = 4

CUADRADO MEDIO DEL ERROR = 47.7486

GRADOS DE LIBERTAD DEL ERROR = 15

En cuadro 5 del coeficiente de variación en el resultado de la Fc y F de tablas nos indica que existe diferencia significativa por lo cual podemos hacer la comparación de medias.

Comparación de medias.

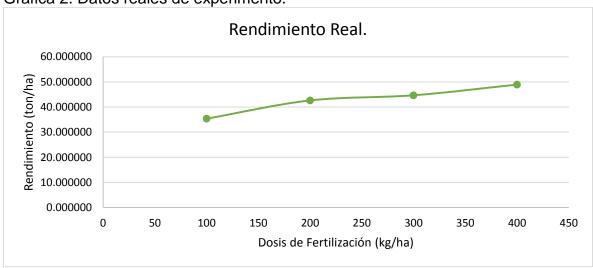
Estadísticamente refiere al promedio de los rendimientos de forraje verde en cada uno de los tratamientos.

Cuadro 6. Comparación de medias.

Cuadro 6. Comparación de mer	Dosis de fertilización a	
TRATAMIENTO	base de silicio	MEDIA
	(kg/ha)	
6	400	48.9124 A
5	300	44.6675 AB
4	200	42.6225 AB
1	S-F	36.7724 B
2	T-BSM*	36.7024 B
3	100	35.3573 C

^{*}T-BSM: Fertilización tradicional Beta Santa Mónica.

^{**} S-F: Sin Fertilizante.


NIVEL DE SIGNIFICANCIA = 0.05

DMS = 10.4124

En el cuadro 6 comparación de medias se puede observar que el mejor rendimiento está en tratamiento No.6 al cual se le aplicó la mayor dosis de fertilizante a base de silicio. Así mismo, el cuadro 6 nos muestra que el tratamiento No.1 al cual no se le aplicó fertilizante muestra un rendimiento medio mayor que el obtenido en el tratamiento No. 3 al cual se la aplicó la menor dosis de fertilizante a base de silicio.

Análisis de regresión.

Con los datos de los rendimientos se aplicó el programa computacional Curve Expert Professional Version 2.2.0 para buscar el modelo en relación a la tendencia de los datos reales que se muestran en grafica 2.

Grafica 2. Datos reales de experimento.

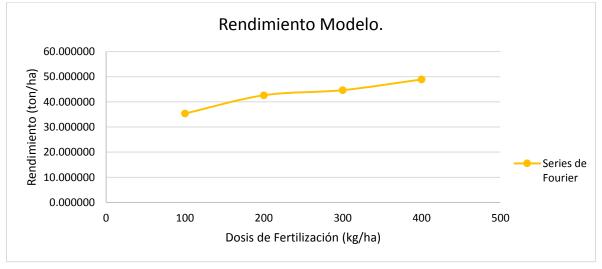
El programa computacional nos dice que el modelo en relación a la tendencia de los datos reales es una Serie de Fourier truncada cuadro 7.

Cuadro 7. Detalles de la Serie de Fourier.

Ecuación	Y=a*cos(x+d)+b*cos(2*x+d)+c*cos(3*x+d)
Error estandar	0
Coeficiente de correlación (r)	1.00
Coeficiente de determinación (r2)	1.00

En el cuadro 8 se muestran los parámetros de la series de Fourier Truncada.

Cuadro 8. Parámetros del modelo.


		Valor	
	a	52.852161	
	b	-6.45836	
	С	8.861584	
	d	7.719552	

Con los valores que se presentan en el cuadro 9 y con las dosis de fertilización aplicadas se sustituye los valores en la ecuación del modelo para obtener resultados del rendimiento, los cuales se muestran en el cuadro 9 y en la gráfica 3.

Cuadro 9. Resultado de datos obtenidos con el modelo.

Oddaro J. Nesariado de dati	53 obternaes cerr et modele.	
Dosis fertilizante (kg	(ha) Rendimiento modelo.	
100	35.37	
200	42.62	
300	44.66	
400	48.91	

Grafica 3. Resultados de rendimiento con el modelo.

En la gráfica 3 se muestran los datos obtenidos con el modelo Series de Fourier en el cual se observar que muestra una tendencia idéntica a los datos reales obtenidos en el experimento grafica 2. Como lo indican los coeficientes de correlación y determinación presentados en el cuadro 7.

De acuerdo a los resultados que arroja el análisis estadístico el mayor rendimiento de forraje verde en maíz, se obtuvo con el tratamiento No.6 al cual se le aplicó la mayor dosis de fertilizante a base de silicio. Obteniéndose también que el tratamiento No. 3 al cual se la aplicó la menor dosis de fertilizante, no respondió a dicha fertilización, ya que el tratamiento al cual no se le aplicó fertilizante produjo un rendimiento mayor que el tratamiento No. 3.

Así mismo, se concluye que la dosis de fertilización acostumbrada a aplicar por la empresa, se mostró con rendimientos menores a los obtenidos en los tratamientos No. 6, 5 y 4, además de no mostrar diferencia significativa con el rendimiento obtenido en el tratamiento en el cual no se le aplicó fertilizante; ya que existe entre ellos una diferencia de solo 48 kg/ha menos que donde no se aplicó fertilizante.

Dichos resultados nos propusieron utilizar un estadístico para obtener un modelo que nos acercara a la dosis de fertilización que tendiera a considerar un gasto menor económicamente hablando, sin sacrificar significativamente el rendimiento de forraje verde por hectárea de maíz; tomando en cuenta que al concluir que el modelo nos muestra una dosis de fertilización menor que la utilizada en el mejor tratamiento, esto refiere que, a menor fertilizante aplicado menor gasto.

CONCLUSIÓN.

Se sugiere la aplicación del modelo utilizado para el cálculo de la dosis adecuada de fertilización en el mayor de los rendimientos. Así mismo, es conveniente continuar con esta investigación ya que se desconoce la cantidad de nutrientes en el suelo antes de la aplicación de los fertilizantes utilizados en la presente investigación, esto último en referencia al tratamiento sin aplicación de fertilizante obtiene mejores rendimientos que en los tratamientos de fertilización tradicional y el de menor dosis.

Biblografia.

- Borda O.A., Barón F.H., Gómez M.L. 2008, El silicio como elemento benefico en avena forrajera (avena sativa L): respuesta fisiológica crecimiento y manejo. Agronomia Colombiana.
- Cervantes M.C., Franco A.M. 2010, Diagnostico ambiental en la Comarca Lagunera. Colegio de Geografia. Facultad de filosofía y letras. UNAM. México.
- Ciampitti I.A., Boxler M., Garcia F.O. 2006 Nutrición de maíz requerimientos y absorción de nutrientes. Informaciones Agronomicas. Buenos Aires, Argentina.
- Faz R., Figueroa U., Jasso R., Maciel L.H. 2006. Maiz forrajero de alto rendimiento y calidad nutricional. Capitulo IV. Fertilización y riego. INIFAP. Libro científico No.3.
- Gonzales F., Nuñez G., Peña A., Reta D.G., Faz R., Zavala J. 2006. Maiz forrajero de alto rendimiento y calidad. Capitulo III. Fecha de siembra, densidad de plantas y estado de madurez del maíz forrajero. INIFAP. Libro científico No.3.
- Jurado P., Lara C.R., Saucedo R.A. 2014. Paquete tecnológico para la producción de maíz forrajero en Chihuahua. INIFAP. Sitio experimental la campana. Folleto técnico num. 53. ISBN:978-607-37-0276-8
- Lozano J.L. 2012. Analisis multiobjetivo de la distibucion de agua en el sector agrícola de la Comarca Lagunera. Colegio de Postgraduados. Mexioco.
- Paliwal R.L. 2001. El maíz en los trópico: mejoramiento y produccion. FAO. Departamento de agricultura. Roma.
- Peña J.J., Cabrera O.A., Vera J.A. 2001. Manejo de los fertilizantes nitrogenados en México: uso de las técnicas isotópicas. Terra.
- Piedrahita O. 2008. El silicio como fertilizante. Magnesios Heliconia.

- Quero E., 2009. Nutrición con silicio y sus aplicaciones a cultivos a cielo abierto y en agricultura protegida: Un recorrido por la naturaleza. Simposio interacional de nutrición vegetal. Guadalajara, Jal.
- Reta D.G., Cueto J.A., Santamaria J. 2007. Rendimiento y extracción de nitrógeno, fosforo y potasio de maíz forrajero en surcos estrechos. Agricultura técnica en México. Vol 33. Num 2
- Rivera M., Rodriguez M.P., Anaya A., Reyes A., Martinez J. 2013. Función de produccion hídrica para maíz forrajero(zea mayz) en riego por goteo superficial. Agrofaz.
- Robles S. R., 1979, Producción de granos y forrajes. Cuarta edición. Editorial LIMUSA. México, DF.
- SAGARPA. 2002. [En línea]. Plan rector del sistema producto algodón.
- Salazar E., Beltran A., Fortis M., Leos J.A., Cueto J.A., Vazquez C., Peña J.J. 2003. Mineralización de nitrógeno en el suelo y produccion de maíz forrajero con tres sistemas de labranza. Terra Latinoamerica. Vol 21, num 24. Sociedad Mexicana de la ciencia del suelo.
- Sanchez M.A., Aguilar C.U., Jimenez N.V., Sanchez M.C., Jimenez M.C., Villanueva C. 2011. Densidad de siembra y crecimiento de maíces forrajeros. Agronomia mesoamericana. ISSN:1021-7444.

Apéndices.

		Parce	ela 40				
No. Plantas	Ноја	Tallo-sc	Mazorca	elote	espiga	hoja elote	peso de planta
	3580	2440	3470	3970	363		
94	4180	1830	3180	3037			
	2563	4177	4358	4280			
		2585	3770	3198			
		4045	3200	2275			
		4575	3486				
		2904					
Total	10080	22070	20978	16355	282		53410
Peso/planta	107.234043	234.787234	223.170213	173.989362	3	49.1808511	568.1914894
						44.51	78333.33

PARCELA 39										
					Total	peso/planta				
No. Plantas	Ноја	2371	1750		3959	101.5128205				
	Tallo	3558	3428	2210	8953	229.5641026				
	Mazorca	3271	3882	1282	8273	212.1282051				
39	Elote	3910	2875		6623	169.8205128				
39	Espiga	309			228	5.846153846				
	Hoja elote				1650	42.30769231				
	peso planta				21413	549.0512821				
					47.5844444	86667				

	PARCELA 38									
					Total	peso/planta				
No. Plantas	Hoja	2892	1333		4063	119.5				
	Tallo	2435	3098	4430	9720	285.8823529				
	Mazorca	4140	1355		5333	156.8529412				
34	Elote	4030			3949	116.1470588				
34	Espiga	286			205	6.029411765				
	Hoja elote				1384	40.70588235				
	peso planta				19321	568.2647059				
					42.9355556	75556				

PARCELA 37									
						Total	peso/planta		
No. Plantas	Ноја	2660	1854			4352	120.8888889		
	Tallo	4866	4660			9364	260.1111111		
	Mazorca	4847	4500			9185	255.1388889		
36	Elote	4818	2680			7336	203.7777778		
30	Espiga	240				159	4.416666667		
	Hoja elote					1849	51.36111111		
	peso planta					23060	640.555556		
						51.2444444	80000		

	PARCELA 36									
					Total	peso/planta				
No. Plantas	Ноја	2493	971		3302	91.7222222				
	Tallo	4080	4000		7918	219.9444444				
	Mazorca	3844	3710		7392	205.3333333				
36	Elote	2766	3324		5928	164.6666667				
30	Espiga	212			131	3.638888889				
	Hoja elote				1464	40.66666667				
	peso planta				18743	520.6388889				
					41.6511111	80000				

PARCELA 35									
						Total	peso/planta		
No. Plantas	Ноја	3330	945			4113	102.825		
	Tallo	4905	3902			8645	216.125		
	Mazorca	4755	3664			8257	206.425		
40	Elote	4180	2870			6888	172.2		
40	Espiga	236				155	3.875		
	Hoja elote					1369	34.225		
	peso planta					21170	529.25		
						47.044444	88889		

PARCELA 34									
						Total	peso/planta		
No. Plantas	Ноја	3485	812			4135	137.8333333		
	Tallo	3685	4750			8273	275.7666667		
	Mazorca	3750	4420			8008	266.9333333		
20	Elote	2960	3450			6248	208.2666667		
30	Espiga	214				133	4.433333333		
	Hoja elote					1760	58.6666667		
	peso planta					20549	684.9666667		
						45.6644444	66667		

			PAR	CELA 33		
					Total	peso/planta
No. Plantas	Ноја	2288	1240		3366	102
	Tallo	4170	3040		7210	218.4848485
	Mazorca	4100	2580		6518	197.5151515
33	Elote	4350	1652		5840	176.969697
33	Espiga	230			149	4.515151515
-	Hoja elote				678	20.54545455
	peso planta				17243	522.5151515
					38.3177778	73333

	PARCELA 32									
						Total	peso/planta			
No. Plantas	Ноја	1950	1980			3768	101.8378378			
	Tallo	4470	3350			7820	211.3513514			
	Mazorca	4420	3500			7758	209.6756757			
37	Elote	4020	2340			6198	167.5135135			
37	Espiga	230				149	4.027027027			
	Hoja elote					1560	42.16216216			
	peso planta					19495	526.8918919			
						43.3222222	82222			

			PAR	CELA 31		
					Total	peso/planta
No. Plantas	Ноја	2190	2021		4049	103.8205128
	Tallo	3800	3245		7045	180.6410256
	Mazorca	4249	4109		8196	210.1538462
39	Elote	3136	2453		5427	139.1538462
39	Espiga	250			169	4.333333333
	Hoja elote				2769	71
	peso planta				19459	498.9487179
					43.2422222	86667

	PARCELA 30									
					Total	peso/planta				
No. Plantas	Ноја	3042	956		3836	119.875				
	Tallo	4600	4180		8780	274.375				
	Mazorca	3764	3340		6942	216.9375				
32	Elote	4672			4591	143.46875				
52	Espiga	230			149	4.65625				
-	Hoja elote				2351	73.46875				
	peso planta				19707	615.84375				
					43.7933333	71111				

	PARCELA 29										
						Total	peso/planta				
No. Plantas	Ноја	2820	530			3188	96.60606061				
	Tallo	3833	2496			6329	191.7878788				
	Mazorca	3852				3771	114.2727273				
33	Elote	3520				3439	104.2121212				
33	Espiga	236				155	4.696969697				
	Hoja elote					332	10.06060606				
	peso planta					13443	407.3636364				
						29.8733333	73333				

	PARCELA 28									
						Total	peso/planta			
No. Plantas	Ноја	2781	1133			3752	107.2			
	Tallo	3738	4440			8178	233.6571429			
	Mazorca	4103	2580			6521	186.3142857			
35	Elote	3810	1230			4878	139.3714286			
33	Espiga	250				169	4.828571429			
	Hoja elote					1643	46.94285714			
	peso planta					18620	532			
						41.3777778	77778			

	PARCELA 27									
					Total	peso/planta				
No. Plantas	Ноја	1906	1670		341	4 110.1290323				
	Tallo	3849	4110		795	9 256.7419355				
	Mazorca	4020			393	9 127.0645161				
31	Elote	3345			326	105.2903226				
31	Espiga	197			11	6 3.741935484				
	Hoja elote				67	5 21.77419355				
	peso planta				1542	8 497.6774194				
					34.284444	4 68889				

	PARCELA 26									
					Total	peso/planta				
No. Plantas	Ноја	2000	1643		3481	116.0333333				
	Tallo	4436	3556		7992	266.4				
	Mazorca	3875			3794	126.466667				
30	Elote	3410			3329	110.9666667				
30	Espiga	276			195	6.5				
	Hoja elote				465	15.5				
	peso planta				15462	515.4				
					34.36	66667				

	PARCELA 25									
					Total	peso/planta				
No. Plantas	Ноја	2452	1256		354	110.8125				
	Tallo	4100	3810		791	247.1875				
	Mazorca	4004			392	122.59375				
32	Elote	3828			374	7 117.09375				
32	Espiga	237			15	4.875				
	Hoja elote				17	5.5				
	peso planta				1553	5 485.46875				
					34.5	71111.11				

	PARCELA 24								
					Total	peso/planta			
No. Plantas	Ноја	2189			2108	117.1111111			
	Tallo	4667			4667	259.2777778			
Mazorca	3700			3619	201.0555556				
10	18 Elote Espiga	3120			3039	168.8333333			
10		180			99	5.5			
	Hoja elote				580	32.2222222			
	peso planta				10493	582.9444444			
					23.32	40000.00			

	PARCELA 23									
					Total	peso/planta				
No. Plantas	Ноја	2452	1256		3546	110.8125				
	Tallo	4100	3810		7910	247.1875				
	Mazorca	4004			3923	122.59375				
32	Elote	3828			3747	117.09375				
32	Espiga	237			156	4.875				
	Hoja elote				176	5.5				
	peso planta				15535	485.46875				
					34.52	71111.11				

	PARCELA 22									
						Total	peso/planta			
No. Plantas	Ноја	3302				3221	89.47222222			
	Tallo	4320	422			4742	131.7222222			
	Mazorca	3455				3374	93.7222222			
36	Elote	3373				3292	91.44444444			
30	Espiga	247				166	4.611111111			
	Hoja elote					820	22.77777778			
	peso planta					11503	319.5277778			
						25.56	80000.00			

PARCELA 21									
						Total	peso/planta		
No. Plantas	Ноја	3757				3676	99.35135135		
	Tallo	4092	4436	1436		9964	269.2972973		
	Mazorca	4920	4584			9342	252.486486		
37	Elote	4575	2930			7343	198.459459		
3/	Espiga	232				151	4.081081083		
	Hoja elote					1999	54.02702703		
	peso planta					23133	625.2162162		
						51.41	82222.22		

	PARCELA 20									
					Total	peso/planta				
No. Plantas	Ноја	2000	1820		3658	104.5142857				
	Tallo	4520	3521	1728	9769	279.1142857				
	Mazorca	4928	4602		9368	267.6571429				
35	Elote	4739	2837		7414	211.8285714				
33	Espiga	236			155	4.428571429				
	Hoja elote				1954	55.82857143				
	peso planta				22950	655.7142857				
					51.00	77777.78				

	PARCELA 19									
					Total	peso/planta				
No. Plantas	Ноја	2260	1096		3194	99.8125				
	Tallo	3950	4701	723	9374	292.9375				
	Mazorca	4680	3610		8128	254				
32	Elote	2885	3577		6300	196.875				
32	Espiga	230			149	4.65625				
	Hoja elote				1828	57.125				
	peso planta				20845	651.40625				
					46.32	71111.11				

	PARCELA 18									
					Total	peso/planta				
No. Plantas	Ноја	1854	758		2450	81.66666667				
	Tallo	3464	4452	723	8639	287.9666667				
	Mazorca	3404	3984		7226	240.8666667				
30	Elote	4160	1533		5531	184.3666667				
30	Espiga	240			159	5.3				
Hoj	Hoja elote				1695	56.5				
	peso planta				18474	615.8				
					41.05	66666.67				

	PARCELA 17									
					Total	peso/planta				
No. Plantas	Ноја	3401			3320	87.36842105				
	Tallo	3648	4803	677	9128	240.2105263				
	Mazorca	3694	3377		6909	181.8157895				
38	Elote	3850	2527		6215	163.5526316				
30	Espiga	224			143	3.763157895				
	Hoja elote				694	18.26315789				
	peso planta				19500	513.1578947				
					43.33	84444.44				

	PARCELA 16							
					Total	peso/planta		
No. Plantas	Ноја	3000			2919	97		
Tallo	Tallo	4315	4845		9160	305		
	Mazorca	3260	2160	3500	8677	289		
30	Elote	3325	3550		6713	224		
50	Espiga	200			119	4		
	Hoja elote				1964	65		
	peso planta				20875	696		
					46.39	66666.67		

Anexo A.

Rendimiento					
Tratamiento	R1	R2	R3	R4	
1	34.52	42.9355556	46.32	23.32	36.77
2	29.8733333	41.05	34.52	41.3777778	36.71
3	38.3177778	25.56	34.2844444	43.3222222	35.37
4	51.2444444	34.36	43.2422222	41.6511111	42.62
5	43.33	43.7933333	47.044444	44.51	44.67
6	51.41	45.6644444	47.5844444	51.00	48.91
	41.45	38.89	42.17	40.86	40.84

Densidad								
Tratamiento	R1		R2		R3		R4	
1		71111.11		75556		71111.11	40000.00	64444.44
2		73333		66666.67		71111.11	77777.78	72222.22
3		73333		80000.00		68889	82222	76111.11
4		80000		66667		86667	80000	78333.33
5		84444.44		71111		88889	78333.33	80694.44
6		82222.22		66667		86667	77777.78	78333.33
		77407.41		71111.11		78888.89	72685.19	

Peso/planta					
Tratamiento	R1	R2	R3	R4	
1	485.46875	568.264706	651.40625	582.944444	572.021038
2	407.363636	615.8	485.46875	532	510.158097
3	522.515152	319.527778	497.677419	526.891892	466.65306
4	640.555556	515.4	498.948718	520.638889	543.885791
5	513.16	615.84375	529.25	568.191489	556.610784
6	625.216216	684.966667	549.051282	655.714286	628.737113
	532.379534	553.300483	535.300403	564.396833	

Mazorca					
Tratamiento	R1	R2	R3	R4	
1	122.59375	156.852941	254	201.055556	183.625562
2	114.272727	240.866667	122.59375	186.314286	166.011857
3	197.515152	93.722222	127.064516	209.675676	156.994391
4	255.138889	126.466667	210.153846	205.333333	199.273184
5	181.815789	216.9375	206.425	223.170213	207.087126
6	252.486486	266.933333	212.128205	267.657143	249.801292
	187.303799	183.629888	188.727553	215.534368	

Elote					
Tratamiento	R1	R2	R3	R4	
1	117.09375	116.147059	196.875	168.833333	149.737286
2	104.212121	184.366667	117.09375	139.371429	136.260992
3	176.969697	91.444444	105.290323	167.513514	135.304494
4	203.777778	110.966667	139.153846	164.666667	154.641239
5	163.552632	143.46875	172.2	173.989362	163.302686
6	198.459459	208.266667	169.820513	211.828571	197.093803
	160.677573	142.443376	150.072239	171.033813	

Espiga					
Tratamiento	R1	R2	R3	R4	
1	4.875	6.02941176	4.65625	5.5	5.26516544
2	4.6969697	5.3	4.875	4.82857143	4.92513528
3	4.51515152	4.61111111	3.74193548	4.02702703	4.22380628
4	4.41666667	6.5	4.33333333	3.63888889	4.7222222
5	3.76315789	4.65625	3.875	3	3.82360197
6	4.08108108	4.43333333	5.84615385	4.42857143	4.69728492
	4.39133781	5.2550177	4.55461211	4.23717646	

Hoja elote					
Tratamiento	R1	R2	R3	R4	
1	5.5	40.7058824	57.125	32.222222	33.8882761
2	10.0606061	56.5	5.5	46.9428571	29.7508658
3	20.5454545	22.7777778	21.7741935	42.1621622	26.814897
4	51.3611111	15.5	71	40.6666667	44.6319444
5	18.2631579	73.46875	34.225	49.1808511	43.7844397
6	54.027027	58.6666667	42.3076923	55.8285714	52.7074894
	26.6262261	44.6031795	38.6553143	44.5005551	

Ноја					
Tratamiento	R1	R2	R3	R4	
1	110.8125	107.2	99.8125	117.111111	108.734028
2	96.6060606	81.6666667	110.8125	107.2	99.0713068
3	102	89.4722222	110.129032	101.837838	100.859773
4	120.888889	116.033333	103.820513	91.7222222	108.116239
5	87.3684211	119.875	102.825	107.234043	104.325616
6	99.3513514	137.833333	101.512821	104.514286	110.802948
	102.83787	108.680093	104.818728	104.936583	