UNIVERSIDAD AUTÓNOMA AGRARIA "ANTONIO NARRO" DIVISIÓN DE AGRONOMÍA

SELECCIÓN RECURRENTE DE LÍNEAS S₂ A TRAVÉS DE MESTIZOS I.

POR

HUGO OLAYO YAÑEZ

TESIS

Presentada como requisito Parcial para

Obtener el Título de:

Ingeniero Agrónomo Fitotecnista

Buenavista, Saltillo, Coahuila, México.

Marzo del 2000

UNIVERSIDAD AUTÓNOMA AGRARIA "ANTONIO NARRO"

DIVISIÓN DE AGRONOMÍA

DEPARTAMENTO DE FITOMEJORAMIENTO

SELECCIÓN RECURRENTE DE LÍNEAS S2 A TRAVÉS DE MESTIZOS I.

POR

HUGO OLAYO YAÑEZ

TESIS

QUE SE SOMETE A CONSIDERACIÓN DEL H. JURADO EXAMINADOR

COMO

REQUISITO PARCIAL PARA OBTENER EL TÍTULO DE:

INGENIERO AGRÓNOMO EN LA ESPECIALIDAD DE FITOTECNIA

APROBADA

PRESIDENTE DEL JURADO

M.C. ARNOLDO OYERVIDES GARCÍA

M.C. TOMÁS MANZANARES A. Dr. SERGIO RODRÍGUEZ H.

Primer sinodal Segundo sinodal

Lic. M.C. EMILIO PADRÓN CORRAL

Tercer sinodal

EL COORDINADOR DE LA DIVISIÓN DE AGRONOMÍA

M.C. REYNALDO ALONSO VELASCO

INDICE DE CONTENIDO

	Pág.
DEDICATORIAS	
AGRADECIMIENTOS	ii
INDICE DE CONTENIDO	iii
INDICE DE CUADROS	iiii
INTRODUCCIÓNObjetivoHipótesis	2
REVISIÓN DE LITERATURA Obtención de líneas puras Derivación directa de líneas Evaluación de líneas Probadores Hibridación y Heterosis	3
MATERIALES Y METODOS Descripción de áreas de estudio Evaluación de campo Análisis estadístico.	20 22
RESULTADOS Y DISCUSIÓN	31
CONCLUSIONES	64
RESUMEN	65
BIBLIOGRAFÍA	67
APENDICE	72

INDICE DE CUADROS

CUADRO	CONTENIDO	Pág.
3.1.	Origen de las líneas evaluadas en 1997 B	19
3.2.	Esquema del modelo estadístico individual	27
3.3.	Esquema del modelo estadístico combinado	29
4.1.	Concentración de cuadrados medios de las variables evaluadas	
	en la localidad de Ursulo Galván, Ver. 1998 B	.33
4.2.	Concentración de cuadrados medios de las variables evaluadas	
	en la localidad de Juan Rodríguez Clara, Ver. 1998 B	36
4.3.	Concentración de cuadrados medios a través de localidades	
	1998 B	39
4.4.	Concentración de medias y DMS del análisis individual de	
	grupos de la localidad Úrsulo Galván	40
4.5.	Concentración de los mejores cinco mestizos, el peor y el testigo),
	así como sus DMS, para cada una de las variables evaluadas	
	de cada grupo y el % de superioridad de la variable rendimiento	
	respecto a su testigo de Ursulo Galván	42

4.6.	Concentración de medias y DMS del análisis individual de	
	grupos de la localidad Juan Rodríguez Clara	.46
4.7.	Concentración de los mejores cinco mestizos, el peor y el testigo	,
	así como sus DMS, para cada una de las variables evaluadas	
	de cada grupo y el % de superioridad de la variable rendimiento	
	respecto a su testigo de Juan Rodríguez Clara	48
4.8.	Concentración de medias y DMS, general para cada uno de los	
	grupos, así como sus variables evaluadas	.52
4.9.	Concentración de medias y DMS, generales de las	
	características agronómicas evaluadas para cada una de las	
	localidades	53
4.10.	Concentración de los mejores cinco mestizos, el peor y el testigo	,
	así como sus DMS, de las variables agronómicas evaluadas de	
	cada grupo, y el % de superioridad de la variable rendimiento	
	respecto a su testigo a través de localidades	54
4.11.	Concentración de las mejores diez líneas de la localidad de	
	Ursulo Galván Veracruz	58
4.12.	Concentración de las mejores diez líneas de la localidad de	
	Juan Rodríguez Clara Veracruz	59
4.13.	Concentración de las mejores diez líneas a través de	
	localidades	.60
4.14.	Selección de los mejores tratamientos de cada grupo para cada	
	localidad, así como la no interacción entre localidades	63

DEDICATORIAS

A Dios, quien guía mi vida y me permite ser quien soy.

Con respeto y con mucho cariño a mis padres:

Sotero Olayo Pineda

Imelda Yañez Arenas

Dedicándolo con mucho cariño especialmente a ustedes, que son los seres más importante en mi vida, lo cual creo que no hay precio alguno con lo cual pueda yo pagarles, todo ese amor y cariño que siempre nos han dado, así también por la mejor herencia que me pudieran dar una " profesión ", ya que con sus consejos han sabido guiar por el camino del bien, esperando que con esto vean realizado un poco del mucho esfuerzo que han puesto en la formación de nosotros y pidiéndole a Dios que me los cuide y bendiga por mucho tiempo.

Con mucho cariño y orgullo a mis hermanos:

Yuni Mauricio

Sandra Eligia

Dulce Olivia

Agradecer con el más infinito cariño, por todas esas muestras de amor que siempre han tenido hacia a mí y por ser parte de esta linda familia, esperando que siempre siga siendo así, siendo una parte importante en mi formación profesional por todo su apoyo incondicional.

A mi tía:

Filomena Olayo

Con especial agradecimiento de todo corazón, por todo ese apoyo y esas muestras de cariño que ha tenido, así como por esos sabios consejos que siempre me ha dado, durante mi formación profesional

A mis abuelos:

Juan Olayo

Trinidad Pineda

y en memoria de mi abuelita Joaquina Arenas (🕆)

Por haberle dado la vida a los seres más importantes de mi vida, que son mis padres.

A mis tíos:

Dedicando a todos ellos sin hacer caso omiso de alguno de ellos, principalmente de aquellos que tenían una relación más cercana y que de cierto modo estaban ahí apoyándome.

A mis primos:

También para todos ellos sin omitir alguno, siendo parte de mi familia, que gracias a su apoyo, consejo o simplemente a las muestras de cariño y respeto que siempre nos hemos tenido y claro también para mi sobrino Daniel.

AGRADECIMIENTOS

Al M.C. Arnoldo Oyervides García

Por todo su apoyo en la elaboración de este trabajo, así como por sus sabios consejos y también por brindarme su amistad.

Al M.C. Tomas Manzanares Aguirre

Por dedicar de su tiempo en la revisión de este trabajo, así como su amistad brindada.

Al Dr. Sergio Rodríguez Herrera

Agradecerle de antemano por los consejos y la revisión de este trabajo y por la amistad brindada.

Al M.C. Emilio Padrón Corral

Por los consejos y el tiempo dedicado en la revisión de este trabajo

A mis amigos y compañeros de generación:

Luis Fernando, Hilario, Alfredo, Pedro, José Angel, Victoriano, Gerardo, Hugo Fredy, agradeciéndole por todo su apoyo incondicional y por brindarme su amistad, durante mi estancia en esta Universidad, recuerdo que siempre tendré presente de ustedes.

Agradecimiento tambien a la familia Magallanes Monreal, en especial para Alma y Anabel, por su linda amistad que me brindaron todo este tiempo.

A mi "Alma Terra Mater" por abrirme las puertas en la formación de mi profesión.

INTRODUCCIÓN

El mejoramiento genético ha demostrado ser una de las herramientas más efectiva para la obtención de genotipos con los que se logra incrementar el rendimiento de los cultivos, por unidad de superficie.

La eficiente extracción de líneas endogámicas, en un programa de hibridación, estará en función de la eficiencia de la metodología aplicada, y el criterio del fitomejorador.

Para el cultivo de Maíz existen dos grandes campos en el desarrollo histórico del mejoramiento, desde inicios del siglo XX basándose en la hibridación y hasta apenas hace unos 20 años basándose en la selección (Márquez, 1988). Para el primer caso, que es el que nos ocupa, es necesario desarrollar líneas y éstas pueden obtenerse a partir de variedades de polinización libre, híbridos, sintéticos y compuestos, después, es necesario hacer algún tipo de evaluación, para seleccionar las combinaciones superiores.

Dentro del programa de mejoramiento genético del Maíz, los fitomejoradores deben manejar técnicas cuidadosas y precisas de cruzamiento y selección, para tener éxito; donde el objetivo principal es obtener híbridos o variedades, que lleguen a responder en forma favorable a las condiciones ecológicas y edáficas de cada región.

.

OBJETIVO

Seleccionar líneas basándose en la cruza de mestizos con buenas características agronómicas que interactúen lo menos posibles en los ambientes bajo estudio.

HIPÓTESIS

Hipótesis nula:

Entre las líneas evaluadas a través de la cruza de mestizos, no existe variabilidad o diferencia alguna entre ellas.

Hipótesis alterna:

Al menos uno de los materiales evaluados difiere de todas las demás líneas.

REVISIÓN DE LITERATURA

OBTENCIÓN DE LÍNEAS PURAS

Para la obtención de líneas puras de maíz se ha utilizado casi exclusivamente la autofecundación. Las plantas que han de ser autofecundadas se seleccionan por su vigor, porte, resistencia a enfermedades y otros caracteres favorables.

Con la autofecundación continua, disminuye marcadamente el vigor y aumenta la uniformidad de las plantas dentro de cada línea.

Después de cinco o seis generaciones de autofecundación, dentro de cada línea las plantas son prácticamente iguales, pero las líneas difieren mucho entre sí.

El valor de una línea pura se basa en su comportamiento *per se*, así como en su capacidad para producir híbridos superiores, cuando se combina con otras líneas puras.

Allard (1980) definió línea pura como una raza homocigota en todos los loci obtenida generalmente por autofecundaciones sucesivas.

Sinnott (1970) dijo que línea pura se puede definir como la progenie de un solo individuo obtenida por autofecundaciones.

De la Loma (1979) definió a la línea pura como la descendencia de un solo organismo homocigote, obtenida exclusivamente por autofecundación.

Poehlman (1987), mencionó que la progenie descendiente únicamente por autofecundación de una planta individual homocigota, es considerada como línea pura.

Márquez (1988) indicó que las líneas puras, son líneas autofecundadas por muchas generaciones con la capacidad de reproducirse idénticas así mismas.

Robles (1990) mencionó que una línea pura son los individuos que contienen los mismos genes homocigotos para el o los caracteres que se desean establecer o mejorar. Obtenida por medio de autofecundaciones sucesivas empleando polinización controlada; siendo los individuos de una línea pura genotípicamente idénticos entre sí.

La modalidad de extrema endogamia conduce a la formación de un conjunto de genotipos homocigotes diferentes entre ellos y por el contrario son muy uniformes y constantes en transmitir sus caracteres a su progenie, pero su vigor es bastante reducido, tanto en sus caracteres morfológicos como en su capacidad productora de grano y forraje. Sin embargo, el vigor es restaurado mediante cruzamiento y dicho vigor, es superior a las variedades originales si se combinan líneas puras productivas correctamente seleccionadas, y con heterosis entre ellas. (Robles, 1990).

DERIVACIÓN DIRECTA DE LÍNEAS

El desarrollo de líneas puras superiores, no ha sido un procedimiento muy eficiente ya que los híbridos de maíz de producción comercial en todo el mundo, comprenden relativamente pocas líneas elite y son estas relativamente las sobresalientes de literalmente millones de polinizaciones (Jugenheimer, 1981).

Las ventajas de la autofecundación en el desarrollo de líneas mejoradas que son relativamente homocigotas son obvias, se requiere de tres generaciones de hermanos completos y seis generaciones de medios hermanos para tener el mismo nivel teórico de endocria u homocigocidad, que una generación de autofecundación (Reyes, 1985).

La selección basada en progenies endogámicas $(S_1 ildot S_2)$ teóricamente es más efectiva que la selección que incluyen cruzas de prueba, para cambiar la frecuencia de genes del tipo aditivo, por el contrario la selección de cruzas de prueba es de esperarse que sea efectivo para capitalizar los efectos no aditivos dependiendo del probador específico que se use.

Para un programa de mejoramiento aplicado en busca de líneas superiores para la producción de híbridos, la selección entre progenies S₂, parece ser una buena elección (Hallauer y Miranda, 1981).

En los primeros tiempos de la obtención de líneas puras, estas tenían que aislarse directamente de una fuente heterocigótica. La mejora de las líneas puras establecidas ha tenido generalmente uno o más de los siguientes objetivos:

1) aumentar la productividad de las mismas líneas para facilitar la producción de semilla híbrida; 2) fijar las líneas puras de modo que produzcan híbridos con mayor resistencia a enfermedades e insectos; resistencia al acame u otros caracteres específicos, y 3) aumentar la aptitud combinatoria de ciertas líneas puras para aumentar el rendimiento de sus híbridos.

El método utilizado para producir variedades híbridas de plantas alógamas comprende la selección de las plantas deseables a partir de una población heterocigótica, la autofecundación de las descendencias hasta llegar a la homocigosis y la utilización de las mejores líneas para producir los híbridos de una

u otra clase. Los primeros éxitos conseguidos en maíz por este método se obtuvieron con líneas puras aisladas directamente de variedades de polinización libre. A medida que se han ido desarrollando más programas para la obtención de híbridos de maíz, ha habido una tendencia cada vez mayor a dejar de lado las variedades de polinización libre como fuentes de líneas puras o consanguíneas, debido a la baja frecuencia con que este aislamiento directo produce líneas extraordinarias, cada vez ha adquirido más importancia la selección en generaciones segregantes procedentes de cruzamiento entre las mejores líneas (Allard, 1967).

La selección gamética, el retrocruzamiento y el mejoramiento convergente, pueden utilizarse para el mejoramiento de líneas puras establecidas.

Debe usarse una rígida selección para aislar las líneas puras de aptitud combinatoria superior y con fenotipos deseables que puedan propagarse rápidamente. Las líneas menos deseables deberán descartarse en las primeras fases del periodo de endocria. Las plantas pueden seleccionarse en base a rasgos deseados tales como vigor, rendimiento, resistencia al acame, madurez fisiológica, mazorca de poca altura, clorofila verde, buenas espigas, calidad del grano y resistencia a enfermedades e insectos.

La selección intrapoblacional maximiza el mejoramiento de una población per se y de líneas endogámicas derivadas a partir de ésta, mientras que la selección interpoblacional maximiza el mejoramiento en la cruza poblacional e híbridos entre líneas a partir de dos poblaciones diferentes para caracteres controladas por genes con alto nivel de dominancia (Sprague y Eberhart, 1977).

La selección recurrente, se diseñó para mejorar la población por medio del incremento de la frecuencia de genes deseables para las características bajo selección; mantener la variabilidad genética para permitir el mejoramiento continuo, dar la oportunidad de seleccionar genotipos superiores en cada ciclo y aumentar la probabilidad de encontrar híbridos superiores a partir de líneas derivadas de poblaciones mejoradas bajo este esquema (Suwantaradon y Eberhart, 1974; Moll et al, 1977).

EVALUACIÓN DE LÍNEAS

Calixto (1990) mencionó que Jenkins (1935) propuso las pruebas tempranas al analizar el rendimiento de líneas en distintas generaciones de autofecundación, demostrando que una línea en las primeras generaciones de endocria, mantiene su comportamiento en generaciones sucesivas, o sea, que cuando una línea tiene buena aptitud combinatoria (AC) en generaciones tempranas de autofecundación lo será también en generaciones posteriores, ya que es un carácter heredable.

Chávez y López (1987) citados por Noriega (1993) mencionan que entre los métodos más comunes utilizados para la evaluación de líneas se encuentran:

- a. Evaluación per se el cual se puede considerar como el método más práctico y económico, sin embargo la apariencia fenotípica de las líneas no indican su valor genético, ya que algunas líneas de mala apariencia han resultado de gran valor cuando se les combina con otras líneas, dando cruzas sobresalientes; también puede suceder lo contrario.
- b. Cruzas posibles (dialélicos); teóricamente este método es el mejor para evaluar líneas; pero muchas veces esto puede ser imposible cuando se trata de muchas líneas, debido al alto número de cruzamientos.
- c. Pruebas de habilidad combinatoria general y especifica, estos métodos simples
 e indirectos que permiten evaluar y detectar las líneas prometedoras.

Briseño (1990) evaluó líneas de maíz S₂ yS₃ derivadas del Sintético Trópico Seco, con el objeto de seleccionar las mejores y más sobresalientes, basándose en su comportamiento agronómico y utilizando el probador SSE-255-18-19xAN7, en comparación con 16 testigos comerciales y experimentales, las cruzas de prueba fueron evaluadas en tres localidades, donde en los análisis de varianza tanto individual como combinados la fuente de variación tratamientos mostró diferencias estadísticas en la mayoría de las características evaluadas concluyendo que las líneas de la población Sintético Trópico Seco mostraron una

amplia variabilidad genética, lo cual permitió seleccionar a 12 líneas con buenas características agronómicas.

Latournerie (1990) al evaluar 35 líneas de maíz S_2 en cruzas de prueba con tres probadores con la finalidad de seleccionar líneas en etapas tempranas, recomienda se utilice más de un probador para que haya una mejor discriminación de genotipos superiores.

Calixto (1990) evaluó líneas de maíz S₂ derivadas de la población V524 en cruzas de prueba con tres probadores de estrecha base genética (líneas), en comparación con 21 testigos comerciales y experimentales. De acuerdo a la gran variabilidad genética encontrada pudo concluir que el método utilizado para selección de líneas en pruebas tempranas fue efectivo a través de probadores ya que permitió seleccionar 15 líneas de buen comportamiento agronómico así como de aptitud combinatoria observando con esto que las líneas endogámicas utilizadas como probadores presentaron un comportamiento similar debido a que son materiales específicos para estos ambientes.

Tzul (1989) citado por Murillo (1994) evalúo 150 líneas S₂ obtenidas de V524, en cruzas de prueba con dos probadores, en la localidad de Celaya, Gto. 1988, con el objetivo de seleccionar las mejores líneas S₂, de acuerdo al comportamiento agronómico de las progenies en las cruzas de prueba y evaluar la habilidad combinatoria de las líneas para continuar con el proceso de endogamia. Obteniendo como resultado la selección de 25 líneas con buen comportamiento

agronómico y alta habilidad combinatoria, y recomienda que los materiales seleccionados deberán evaluarse en un número mayor de ambientes para conocer su comportamiento agronómico y seleccionar con mayor eficiencia.

Vergara (1992) mencionó que Falconer (1970) a señalado que la prueba de líneas *per se* consiste en probar a las líneas como tales, sin necesidad de formar mestizos; con esta prueba se evalúa directamente la dotación génica aditiva de las líneas si estas son homocigotas.

Madrigal (1990) evaluó 351 líneas S_2 derivadas de las poblaciones 85,86,87 y 88. Las líneas de las diferentes poblaciones presentaron amplia variabilidad genética respecto a sus características evaluadas, lo que permitió tener un amplio margen de selección. La evaluación de líneas S_2 a través del método *per se* fue efectiva, permitió la selección de 32 líneas.

Matzinger (1953) mencionó que la evaluación de líneas mediante la prueba per se no proporciona una adecuada medida de sus valores en combinaciones híbridas.

Luna et al. (1973) citados por Vergara (1992) mencionan que existen tres métodos de evaluación de líneas, clásico, prueba de mestizos y prueba de líneas per se.

El método clásico se obtiene líneas altamente homocigotas que se evalúan tomando como medida ACG de cada línea el comportamiento promedio de sus cruzas con otras líneas.

La prueba de mestizos, se basa en la evaluación indirecta de ACG de líneas mediante la prueba de sus mestizos, o sea cruzas de líneas por variedad.

La prueba de líneas *per se* consiste en probar a las líneas como tales, con ello se prueban directamente su dotación genética aditiva.

Galarza et al. (1973) realizaron un trabajo con 92 líneas S₁ derivadas de cuatro poblaciones diferentes, para evaluar su ACG por medio de los métodos de prueba de líneas *per se* y la prueba de mestizos y determinar cual es el más efectivo. Los resultados indicaron que en las condiciones de estudio el método *per se* resultó ser más eficiente, rápido y económico para evaluar ACG de líneas S₁ que la prueba temprana de mestizos.

PROBADORES

Probador. Es cualquier material genético (línea, variedad, híbrido, etc.) que permite medir la aptitud combinatoria de un grupo de líneas autofecundadas con el cual se cruza.

Mestizo (Top-Cross) cuando el probador usado es un material de amplia base genética como poblaciones heterocigotas, sintéticos y cruzas dobles.

Cruza de prueba (Test-cross) cuando el probador usado es un material de reducida base genética como una línea, o una cruza simple.

Línea probadora. Es la línea que sirve para probar las características hereditarias de otras, su constitución genética debe ser tal que no encubra los caracteres de prueba (Chávez y López, 1987)

López (1986) concluye que el mejor probador debe ser una línea no emparentada con las líneas bajo selección.

La proposición y uso de cruzamientos línea-variedad (mestizos) para la evaluación de líneas para su aptitud combinatoria se derivó de los trabajos de Jones (1922), Davis (1927) y Lindstrom (1931). Tal proposición surgió como una manera práctica de resolver el problema de evaluar las líneas en forma visual, o en combinaciones simples o dobles posibles.

HIBRIDACIÓN Y HETEROSIS

El desarrollo de híbridos para uso comercial, es un objetivo principal de la mayoría de los programas de mejoramiento de Maíz (<u>Zea may L</u>.) varios métodos de mejoramiento se emplean para desarrollar líneas endocriadas con aptitud combinatoria superior. La selección recurrente ha sido una metodología eficiente para mejorar las poblaciones originales dando la oportunidad al mejorador de acumular los mejores individuos, que al ser recombinados ofrecen la ventaja de

derivar nuevas líneas endocriadas con las cuales se forman nuevos híbridos que vengan a romper los techos a que se ha llegado en el mejoramiento poblacional (Sprague y Eberhart, 1977).

Poehlman (1976) informó que basándose en el reporte hechos por Shull, East, Collins y Jones a principios de este siglo, los mejoradores de maíz dieron un gran impulso a la formación de líneas endogámicas y sus combinaciones híbridas, durante las dos primeras décadas de este siglo.

Los trabajos de Shull (1908, 1909, 19910) y East (1908) dieron origen al inicio de la utilización y producción de híbridos de cruza simple en los Estados Unidos; posteriormente vino el uso de híbridos de cruzas dobles sugerido por Jones (1918) como una medida para enfrentar la baja producción de semilla de las líneas y el alto costo de producción de semilla de híbridos simples (Smith, 1967). La prueba de mestizos propuesto por Davis en 1927 y la predicción de cruzamientos dobles de Jenkins en 1935 y Sprague en 1946, completaron la secuencia del mejoramiento genético del maíz por hibridación, seguida por la experiencia de la mayoría de los fitomejoradores que trabajan en la formación de híbridos (Hallauer y Miranda, 1981).

Robles (1981) afirmó que un híbrido, en términos generales, es la primera generación que resulta del cruzamiento entre dos progenitores, cuyas características principales son: la manifestación óptima de la heterosis y la uniformidad de sus caracteres agronómicos; sobre todo, si los progenitores son

líneas puras homocigóticas contrastantes en sus genotipos; resulta así, una población F₁ heterocigótica y homogénea altamente vigorosa y productiva. Jones (1917) citado por Jugenheimer (1981) mencionó que un híbrido es más vigoroso que sus progenitores porque tiene más factores dominantes que recesivos.

Un híbrido desciende de progenitores homocigóticos que difieren en uno o más genes (Gardner, 1979).

Chávez y López (1990) definieron a la hibridación como el acto de fecundar los gametos femeninos de un individuo con gametos masculinos de otros individuos, y que la hibridación es el mejoramiento de plantas alógama se realizo bajo los siguientes objetivos:

- 1- Explota el vigor híbrido (heterosis).
- 2- Formación de idiotipos (arquetipos) específicos para determinados ambientes.
- 3- Provoca variabilidad y selección de nuevos materiales.
- 4- Seleccionar los materiales que van a intervenir como progenitores en cruzas.
- 5- Selecciona la cruza adecuada y deseable de acuerdo a las exigencias del consumidor.

Gowen (1952) y Márquez (1988) están de acuerdo en que por primera vez fue Shull en 1908 en utilizar el término de heterosis basado en el concepto de

heterocigosis el que nada tiene que ver con las leyes mendelianas y fue propuesto hasta en 1914 definiéndolo como el incremento en vigor, tamaño, fructificación, velocidad de desarrollo, resistencia a enfermedades y a plagas, o a regiones climáticas de cualquier clase, manifestado por los organismos cruzados al compararse con los organismos endogámicos correspondientes, como resultado de la disimilitud en la constitución de los gametos paternales.

Márquez (1988) mencionó que la heterosis es el resultado de la diferencia entre la media de la población F_1 y la media de la población del mejor padre.

Poehlman (1986) indicó que un maíz híbrido es la primera generación de una cruza entre líneas autofecundadas, afirmado por Chávez y López (1990) y que además también puede ser una cruza entre una línea por una cruza simple o la cruza entre dos híbridos simples.

El vigor híbrido o heterosis puede ser considerado el fenómeno inverso de la degradación que acompaña a la consanguinidad, y puede manifestarse en muchos otros caracteres, como son: número de nudos, número de hojas, velocidad de crecimiento, mayor precocidad, mayor resistencia a enfermedades e insectos, aumento de tolerancia a los rigores del clima y otras diversas manifestaciones de la mejor adaptación (Allard, 1967 y Jugenheimer, 1981).

Gámez et al. (1990) establecieron que la heterosis es mayor conforme la cruza involucra líneas de mayor homocigosis, lo que se debe a la mayor depresión

endogámica de dichas líneas y la falta de expresión en rendimiento de la F₁ seguramente es debido a este fenómeno.

Morfin (1990) dijo que la hibridación es un método que permite obtener los rendimientos altos al formar cruzamientos simples o dobles, que tienen amplia adaptación e interactúan poco con el medio ambiente.

MATERIALES Y MÉTODOS

El presente trabajo de tesis es parte estructural de los programas de mejoramiento de maíz del Instituto Mexicano del Maíz (IMM) "Dr. Mario E. Castro Gil" con sede en la Universidad Autónoma Agraria Antonio Narro.

Las líneas evaluadas en este trabajo son (S₂) derivadas de una población de CIMMYT, llamada población 22 resistente a sequía que fue cruzada por una variedad sintética VAN 543 generada por él IMM.

Los experimentos se establecieron en el estado de Veracruz, en los municipios de Ursulo Galván y Juan Rodríguez Clara, en terrenos de los Centros de Bachilleratos Tecnológicos Agropecuarios No. 17 y 84 respectivamente.

Cuadro 3.1. Origen de las líneas evaluadas a través de localidades en 1997 A.

URSULO GALVAN VERACRUZ 1997 A.						
G (1) I	П	Ш	IV	V	VI	VII
			(2)			
1404	1523	1703	1809	1925	2111	2304
1405	1524	1704	1810	2002	2112	2305
1408	1601	1706	1811	2003	2113	2307
1410	1602	1707	1813	2004	2115	2311
1413	1604	1708	1814	2005	2116	2312
1416	1605	1709	1815	2006	2117	2317
1418	1606	1710	1817	2007	2119	2319
1419	1607	1711	1821	2008	2203	2320
1422	1608	1712	1824	2009	2205	2324
1423	1609	1714	1825	2010	2207	2325
1501	1611	1715	1903	2011	2212	2405
1502	1612	1716	1904	2012	2219	2408
1503	1614	1719	1905	2013	2224	2410
1504	1615	1720	1910	2017	2302	2412
1505	1616	1724	1911	2019	2303	2415
1506	1617	1725	1912	2020		2417
1511	1618	1801	1913	2021		2420
1512	1620	1803	1918	2023		2421
1513	1621	1804	1919	2024		2422
1516	1622	1806	1920	2025		
1517	1623	1808	1921	2101	(3) D-8	
1518	1624		1922	2102	(4) VA	N 543
1520			1923	2107		
1521				2109		

- (1) Grupo de experimentos establecidos en esta investigación
- (2) Origen del material experimental producido en Ursulo Galván, ciclo agrícola1997 A.
- (3) Testigo utilizado en cada experimento.
- (4) Variedad Antonio Narro 543 (Variedad Sintética) probador macho de todas las líneas bajo estudio.

Descripción de áreas de estudio

El municipio de Ursulo Galván está situado en la zona central costera del estado, donde limita con los municipios de Actopán. Puente Nacional, José Cardel, La Antigua y con el Golfo de México; contando con una extensión de 149.70 kilómetros cuadrados.

Geográficamente se encuentra en las coordenadas 19° 24' 17" Latitud Norte, 102° 46' 28" Longitud Este y a 8 msnm. Su temperatura media anual es de 25.8° C, teniendo una precipitación anual de 1017.7 mm. Un verano con abundantes lluvias y extendiéndose a principios de otoño.

El municipio de Juan Rodríguez Clara limita con los municipios de Tesechoacan, Playa Vicente, Hueyapan de Ocampo y San Juan Evangelista. Contando este municipio con una extensión de 934.20 kilómetros cuadrados.

Geográficamente se localiza entre las coordenadas 17° 59' 00" de Latitud Norte y 103° 43' 08" de Longitud Este y se encuentra a 9 msnm. Es de un clima cálido húmedo, con una temperatura media anual de 24.8° C, con una precipitación abundante en verano y extendiéndose a principios de otoño, teniendo una precipitación media anual de 1266 mm.

Material Genético

El material genético empleado en este trabajo involucra a 148 líneas cruzadas con una variedad sintética, mestizos que se probaron en un diseño bloques al azar. Los mestizos se dividieron en siete grupos con un testigo en común en cada experimento. La evaluación de los genotipos se desarrollo en dos ambientes diferentes representativas del trópico húmedo, Villa Ursulo Galván y Juan Rodríguez Clara, Ver, durante el ciclo de 1997.

La preparación del terreno se barbecho, rastreo y se surcó. La siembra se realizó manualmente con ayuda de hilo y estacas para un mejor trazo del lote experimental. El cultivo fue conducido bajo temporal en las dos localidades y a las condiciones climáticas que presentan cada localidad.

El arreglo en el campo fue formando la parcela útil, por dos surcos de 4.18 m de largo, 92 cm entre ellos, de 22 cm de distancia entre plantas y de 21 planta por surco. La fertilización se lleva a cabo en dos aplicaciones; en la primera se aplico el 50% de nitrógeno y el 100% de fósforo y potasio, en la segunda fertilización aplica el nitrógeno faltante, utilizando la formulación de 130-100-20.

Evaluación de Campo

Durante la evaluación se estimaron las siguientes características agronómicas:

Días a floración

Es el intervalo de días transcurridos entre la siembra y la fecha en que el 50% de las plantas de cada parcela presentaron anteras dehiscentes (floración masculina) y estigmas receptivos (floración femenina).

Altura de planta

Es la distancia en centímetros entre la base de la planta y la hoja bandera, tomando el promedio de 10 plantas al azar por parcela.

Altura de mazorca

Es la distancia en centímetros desde la base hasta el nudo de inserción de la mazorca más alta, tomando el promedio de 10 plantas al azar por parcela.

Acame de raíz

Se considera él numero de plantas por parcela útil que presenten una inclinación con un ángulo mayor a 30° con respecto a la vertical, expresado en porcentaje.

Acame de tallo

Es él numero de plantas por parcela útil que presenten tallos quebrados por debajo de la mazorca principal y se expresa en porcentaje.

Mazorcas podridas

Se cuentan las mazorcas que presenten más del 10% de grano afectado con relación al total de la mazorca, expresándola en porcentaje del total de mazorcas cosechadas por hectárea.

Daños por Fusarium spp

Se cuantifico el daño a mazorcas cosechadas presentando un porcentaje basándose en el total de mazorcas cosechadas respectivamente.

Mazorcas por 100 plantas

Este dato es un indicador de la prolificidad de los materiales bajo la evaluación y se calculó dividiendo él numero de mazorcas entre él numero de plantas de cada parcela, multiplicado por 100.

Mala cobertura

Se determina él numero de mazorcas de cada parcela que antes de la cosecha se encontraban descubiertas parcialmente por el totomoxtle, expresado en por ciento, respecto al total de mazorcas por parcela útil.

Uniformidad de mazorca

Se consideró de acuerdo a la estructura, conformación, llenado, tipo de grano y altura de mazorca basándose en el total de mazorcas cosechadas, tomando la escala de 1-5. Dándole el valor de 1 a lo más uniforme y 5 a lo más variable.

Rendimiento en mazorca en toneladas por ha

Se pesa el total de mazorcas por tratamiento, se toma una muestra de aproximadamente 250 gr y se determina el por ciento de humedad mediante un aparato llamado Steinlite, de esta forma se obtiene la materia seca con la cual se transforma a rendimiento en toneladas por hectárea en mazorca al 15.5% de humedad al multiplicar el peso seco por el siguiente factor de conversión:

$$F.C = \frac{10,000}{APU * 0.845 * 1000}$$

Donde:

F.C = Factor de conversión a ton/ha en mazorca, al 15.5% de humedad

10,000 = Constante para obtener el rendimiento por ha.

APU = Área de parcela útil derivada de la distancia entre surcos por la distancia entre plantas y por el numero perfecto de plantas por

densidad.

0.845 = Constante para obtener el 15.5% de humedad.

1000 = Valor de una tonelada en kilogramos

ANÁLISIS ESTADÍSTICO

Por la variabilidad que se presentó en él número de plantas cosechadas, realizamos un análisis de covarianza para poder ajustar el peso de campo a un número de plantas promedio. Para ajustar, el peso de campo se utilizó la ecuación de regresión lineal siguiente:

$$Yi = yi - byx(x-x)$$

Donde:

Yi = Promedio ajustado de cada tratamiento

yi = Promedio de cada tratamiento

byx = Coeficiente de regresión

 $x = \Pr{omedio del n\'umero de plantas por tratamiento}$

 \bar{x} = Promedio general del número de plantas

Análisis de varianza individual

Para la realización del presente trabajo se utilizó un análisis de varianza por cada localidad, así como para cada una de las características agronómicas evaluadas, utilizando un diseño Bloques al Azar, con dos repeticiones y con tratamientos variables de acuerdo al grupo o experimento.

$$Y_{ijk} = \mu + \tau_i/\delta_k + \beta_i + \delta_k + \epsilon_{ijk}$$

Donde:

Y_{ijk} = Es la observación correspondiente al tratamiento en la repetición del grupo.

 μ = Efecto de la media general del experimento.

 τ_i/δ_k = Efecto de tratamiento dentro de grupo

 β_j = Efecto de la repetición

 $_{\delta k}$ = Efecto de grupos

 ε_{ijk} = Error experimental

i = Tratamientos

i = Repeticiones

k = Grupo

₁ = Localidad

Cuadro 3.2. Esquema del modelo estadístico individual

F.V. GL SC CM Fc

Repeticiones r-1 $\frac{\sum\limits_{j=1}^{r}Y_{.j.}^{2}}{tg}-FC$ $\frac{SCr}{GLr}$ $\frac{CMr}{CMEE}$

 $\text{Total} \hspace{1cm} \text{(rtG-1)} \hspace{0.5cm} \sum_{i=1}^{t} \sum_{j=1}^{r} \sum_{k=1}^{g} Y_{ijk}^{\hspace{0.5cm} 2} - \text{FC} \hspace{1cm} \frac{\text{SCT}}{\text{GLT}} \hspace{0.5cm} \frac{\text{CMT}}{\text{CMEE}}$

Error (r-1)(tG-1) SCT-SCt-SCr-SCg

 $FC = \frac{Y...^2}{trg}$

El modelo lineal estadístico del análisis de varianza combinado, para una distribución bloques al azar, es el siguiente:

$$Y_{ijkl} = \mu + \alpha_l + \delta_k + \tau_i/\delta_k + \beta_j/\alpha I + (\delta\alpha)_{kl} + \alpha_l(\tau_i/\delta_k) + \epsilon_{ijkl}$$

Donde:

Y_{ijkl} = Observación correspondiente al tratamiento en la repetición del grupo de la localidad

 μ = Efecto de la media general

 α_{l} = Efecto de localidades

 δk = Efecto de grupos

 τ_i/δ_k = Efecto de tratamientos dentro de grupos

 β_i/α_i = Efecto de repeticiones en localidades

 $(\delta \alpha)_{kl}$ = Efecto de grupos por localidades

 $\alpha_{l}(\tau_{i}/\delta_{k})$ = Efecto de localidades por tratamientos dentro de grupos.

 ε_{iikl} = Error experimental

Cuadro 3.3. Esquema del modelo estadístico combinado

fc

CMl

CMEE

CMg

CMEE

SCt/g*1

GLt/g*1

CMr/1

CMEE

CMg/1

CMEE

CMt/g*1

CMEE

SCr/1

GLr/1

También se calculó el coeficiente de variación para los análisis individuales y el combinado.

$$C.V = \frac{\sqrt{CME}}{\overline{X}} \times 100$$

Donde:

C.V = coeficiente de variación

CME = cuadrado medio del error

 $\overline{X} = media \, general$

 $100 = \text{factor para transformar a } \% \rightarrow$

También se calculó la DMS para cada variable en análisis individual y combinado.

$$DMS \ trat. = t\alpha \ g.l \sqrt{\frac{2(CMEE)}{rg}}$$

Donde:

DMS = Diferencia mínima significativa

 $t\alpha g.l.$ = Dato de tabla de t de doble cola.

CMEE = Cuadrado medio del error experimental

r = Repeticiones.

g = Grupos

RESULTADOS Y DISCUSIÓN

Enseguida se muestran los resultados estadísticos obtenidos en el presente estudio, realizado en Ursulo Galván y Juan Rodríguez Clara, Veracruz. Tanto los análisis individuales como el combinado, de cada variable.

La concentración de cuadrados medios para cada una de las fuentes de variación en las diferentes características agronómicas evaluadas, y sus significancias para la localidad de Ursulo Galván, Veracruz. Se muestran en el Cuadro 4.1. las cuales se discuten por fuente de variación.

Se puede observar que la fuente de variación grupos, en algunas características muestran algún tipo de significancia, como son días a flor femenina, altura de planta, mazorcas podridas, <u>Fusarium</u>, y rendimiento, mientras que las demás características no mostraron ningún tipo de significancia; la heterogeneidad que existió entre cada uno de los grupos, se debió a que el mejor o mejores grupos, quedaran conformados aunque al azar por un grupo de mestizos que en promedio aportan la mejor expresión de las características bajo estudio.

En repeticiones o bloques, éstas muestran diferencias estadísticas solamente en días a flor femenina, altura en plantas, acame en tallo, y las demás características, no mostraron ningún tipo de significancia, las diferencias encontradas pudieron ser debidas a una variación en el manejo de cada una de las repeticiones, con respecto a control de plagas, malezas, fertilización, o bien a la heterogeneidad propia del suelo. Dichas diferencias justifican el uso del diseño experimental de bloques al azar utilizado en esta investigación.

En la fuente de tratamientos dentro de grupos se presentó algún tipo de significancia en días a floración femenina, altura en planta, acame de raíz y tallo y rendimiento, lo cual refleja la gran variabilidad del material evaluado y por lo tanto existe posibilidades de seleccionar los mejores genotipos para éste ambiente.

Los valores de los coeficientes de variación están considerados como aceptables para las características agronómicas, que tuviera una distribución normal, aun para aquellas variables que presentaron los mas altos coeficientes, también da un grado de confiablilidad, porque están dentro del rango encontrado en otras investigaciones, donde se midió variables que presentan altos c.v. Citados en los trabajos de Hernández (1994), Cadenas (1992) y Barreto (1999).

Cuadro 4.1. Concentración de cuadrados medios de las variables evaluadas en la localidad de Ursulo Galván, Ver. 1998 B.

FV	DAM	DAF	AP	AM	AR	AT	MP	FSR
Grupo	871.57NS	6.024**	1052.43**	4260.63NS	0.047NS	0.467NS	0.124**	0.508**
Rep.	842.32NS	0.390*	2469.75**	682.58NS	0.083NS	0.965*	0.039NS	0.097NS
T/(G)	838.71NS	4.059**	656.33**	6587.80NS	0.132**	0.531**	0.036NS	0.147NS
E. Exp.	2.598	0.098	296.38	839.07	0.075	0.270	0.033	0.127
C.V.	2.84	0.538	7.623	8.200	20.35	27.75	10.181	27.35
Rango	54 - 60	56 - 63	112 - 262	87 - 142	1 - 2.1	1 - 3.5	1.5 - 2.5	1 - 2.4
X	56.7	58.2	226.2	115.1	1.33	1.87	1.8	1.30
DMS	0.25	0.049	2.73	4.59	0.043	0.082	0.029	0.056

^{**} Altamente significativo al 1%
* Significativo al 5%

NS No Significativo

La concentración de cuadrados medios y sus respectivas significancias para la localidad de Rodríguez Clara, Veracruz. Se aprecian en el Cuadro 4.2.

En la fuente de variación grupos, observamos que existió en la mayoría de las características agronómicas evaluadas, algún tipo de significancia, mientras que para la variable altura de mazorca no hay significancia, la heterogeneidad que existió entre cada uno de los grupo, se debió a que el o mejores grupos, quedarán conformados al azar por un grupo de mestizos que en promedio aportarán la mejor expresión de las características bajo estudio.

Para la fuente de variación repeticiones, en ninguna de las variables existieron significancia alguna, lo cual indica que se llevó un buen control ambiental de una repetición a otra, en este caso se asume que da lo mismo analizar las variables tanto en un diseño completamente al azar como bloques al azar.

En lo que respecta a tratamientos dentro de grupos se observa que en la mayoría de las características presentaron variación, lo cual indica que en éste ambiente los materiales evaluados tienen un comportamiento diferente en cada una de las variables, por lo cual es un reflejo de la variabilidad que presentan las cruzas, pudiéndose aplicar alguna presión de selección.

Los valores de los coeficientes de variación están considerados como aceptables para las características agronómicas evaluadas, que tenían una distribución normal, aun para aquellas variables que presentaron los más altos coeficientes de variación, también da un grado de confiabilidad, porque están dentro del rango encontrado en otras investigaciones donde se midió variables que presentan altos c.v. Citados en los trabajos de Hernández (1994), Cadenas (1992) y Barreto (1999).

La concentración de los cuadrados medios de rendimiento, su nivel de significancia del análisis combinado de las variables evaluadas a través de localidades, se presentan en el Cuadro 4.3.

En la fuente de variación localidades todos los caracteres presentan algún tipo de significancia, esto refleja el contrastante de las localidades bajo estudio, ya que las condiciones ambientales son diferentes en cada una de estas, afectando de manera directa el comportamiento de los materiales. Justificando el porqué evaluar en diferentes condiciones ambientales.

En repeticiones dentro de localidades observamos que en la mayoría de las características evaluadas, no mostraron diferencia alguna, solamente en dos de ellas que son días a flor femenina y altura en planta, esto debido a la uniformidad del manejo agronómico para cada una de las repeticiones.

Cuadro 4.2. Concentración de cuadrados medios de las variables evaluadas en la localidad de Juan Rodríguez Clara, Ver. 1998 B.

FV	DAM	DAF	AP	AM	AR	AT	MP	FSR
Grupo	89.51**	47.96**	1469.33*	357.95NS	0.430*	1.853**	0.165*	2.87**
Rep.	0.030NS	0.051NS	163.30NS	111.60NS	0.128NS	0.021NS	0.002NS	0.000001NS
T/(G)	27.25**	18.55**	769.90NS	383.038**	0.254NS	0.955**	0.142**	0.57**
E. Exp.	0.0064	0.045	739.96	256.054	0.209	0.5702	0.080	0.263
C.V.	0.160	0.387	15.68	18.93	32.20	26.85	21.60	25.98
Rango	44 - 60	49 - 63	135 - 332	57 - 118	1 - 3.1	1.4 - 5	1 - 2.4	1 - 3.8
- X	50.0	54.8	173.3	84.5	1.41	2.8	1.3	1.9
DMS	0.012	0.033	4.31	2.54	0.072	0.12	0.044	0.081

^{**} Altamente significativo 1%

- Significativo 5%
- NS No Significativo

La fuente de grupos, presenta que hubo una significancia en siete de las características agronómicas y para días a flor masculina, altura de planta y altura en mazorca no presentaron significancia alguna, lo que indica que para la selección deberá hacerse en la superioridad que estas tengan sobre su testigo en común de cada uno de los grupos.

En la fuente de variación localidades por grupo, se presentan en la mayoría de los caracteres algún tipo de significancia, lo cual da el efecto ambiental que este ejerce para cada uno de los grupos.

Para la fuente de variación tratamientos dentro de grupos existieron significancias en días flor femenina, altura en planta, acame de raíz y tallo, mazorcas podridas, *Fusarium* y rendimiento, el cual se pone de manifiesto la variabilidad que los genotipos tienen en cada grupo, pudiendo seleccionar materiales tardío o precoz, en días a floración, en plantas no altas, evitando acame y pudrición de mazorca, así como también de la selección de los mejores rendimientos.

En la fuente de localidad por tratamientos dentro de grupo, pueden observarse significancias en la mayoría de los caracteres; días a flor femenina, acame de raíz y tallo, mazorcas podridas, <u>Fusarium</u> y rendimiento presentaron significancias al 0.05 y 0.01 de probabilidad, lo que indica que el material bajo estudio se comporta de diferente manera, en cada localidad debido a la interacción genotipo ambiente, dicha interacción ocurre donde quiera que los genotipos tengan que crecer y desarrollarse en una serie de condiciones ambientales diversas en tiempo y espacio. Por ello la dificultad de obtener materiales con un amplio rango de adaptabilidad.

Los valores de los coeficientes de variación están considerados como aceptables para las características agronómicas, que tuviera una distribución normal, aun para aquellas variables que presentaron los mas altos coeficientes, también da un grado de confiabilidad, porque están dentro del rango encontrado en otras investigaciones, donde se midió variables que presentan altos c.v. Citados en los trabajos de Hernández (1994), Cadenas (1992) y Barreto (1999).

Cuadro 4.3. Concentración de cuadrados medios a través de localidades 1998 B.

F.V	DAM	DAF	AP	AM	AR	AT	MP	FSR
1 . V	DAM	טאו	ΛI	/\IVI	AIX	A I	IVII	1 010
Loc.	10545.56**	1727.78**	426326.71**	20942.31**	0.868	141.60**	37.411**	68.97**
R(L.)	421.16NS	0.22*	1316.53*	397.09NS	0.11NS	0.493NS	0.020NS	0.05NS
Grupo.	579.89NS	29.08**	587.34NS	2516.12NS	0.284*	1.21**	0.151*	1.738**
L*G	381.19NS	24.90**	1934.42**	2102.47NS	0.22NS	1.11*	0.137*	1.64**
T(G)	431.62NS	12.25**	918.03**	3547.99NS	0.201*	0.89**	0.095**	0.414**
L*T(G)	434.34NS	10.35**	508.20NS	3422.85NS	0.184*	0.58**	0.083**	0.307**
E. Exp.	7.321	0.071	518.17	3547.56	0.142	0.418	0.0569	0.1956
C.V	5.07	0.473	11.404	7.893	27.262	27.733	15.332	26.951
Rango	49 - 59	52 - 61	168 - 275	72 - 129	1 – 2.1	1.4 - 3.9	1.3 - 1.9	1 – 2.7
- X	53.4	56.5	199.8	102.8	1.37	2.33	1.55	1.64
DMS	0.43	0.042	3.61	9.45	0.059	0.10	0.037	0.070

NS No

La concentración de medias de las características agronómicas evaluadas y DMS de grupos de Ursulo Galván, Veracruz. Se muestran en el Cuadro 4.4. El rendimiento es de 7.9 a 6.6 ton/ha con una media de 7.29, la superación de solo un grupo respecto a su testigo fue de 0.3 toneladas, mientras que los demás grupo fueron superados en rendimiento por su testigo.

De acuerdo a la DMS estos se dividen en dos grupos estadísticos, en el primero ubicamos a tres de ellos como son el 1,2 y 3, que en el segundo grupo ubicamos a cuatro de ellos el 4, 5, 6 y 7. Justificando el hecho de formar grupos.

Cuadro 4.4. Concentración de medias y DMS del análisis individual de grupos de la localidad Ursulo Galván Veracruz.

G	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROLF	REND
1	56	58	226	117	1.3	1.8	1.7	1.2	103	7.9 A
Testigo	55	57	187	92	1.6	1.0	1.7	1.3	94	8.0
2	56	57	224	114	1.3	1.8	1.8	1.3	110	7.8 A
Testigo	55	57	195	102	1.4	1.4	1.7	1.5	98	9.5
3	56	58	228	113	1.3	1.8	1.8	1.2	104	7.5 A
Testigo	55	57	170	87	1.2	1.4	1.8	1.5	92	7.2
4	57	58	221	112	1.4	1.7	1.7	1.4	103	6.7 B
Testigo	55	57	197	102	1.2	1.6	2.0	1.5	86	7.9
5	57	58	220	112	1.3	1.8	1.8	1.2	106	6.6 B
Testigo	55	57	190	87	1.4	1.2	1.8	1.2	96	8.9
6	57	58	233	118	1.3	1.9	1.8	1.1	104	7.0 B
Testigo	54	56	190	90	1.2	1.0	1.7	1.2	102	8.2
7	55	57	232	120	1.3	2.0	1.8	1.5	111	7.3 B
Testigo	54	56	188	98	1.3	1.2	1.7	1.3	94	8.2
DMS	0.67	0.13	7.23	12.1	0.11	0.21	0.07	0.15	7.994	0.586

En esta localidad de Ursulo Galván fueron comparados 155 tratamientos, 148 son cruzas de prueba y 7 son testigos experimentales, lo cual encontramos rendimientos de 11 a 2.8 ton/ha, con una media de 7.29 ton/ha, que es superada por 81 tratamientos de los cuales 76 corresponden a mestizos y 5 son testigos; de acuerdo a la DMS (diferencia mínima significativa) los tratamientos se clasifican en 8 grupos estadísticos, conformado el primero por 4 mestizos, el segundo por 22 mestizo y 2 testigos, el tercero por 35 mestizos y 3 testigos, mientras que el 4 con 40 mestizos y un testigo, el 5 con 27 mestizos, el 6 son 18 mestizos y un testigo, y los dos últimos grupos con un mestizo cada uno, con estos resultados obtenidos marca la pauta para seleccionar genotipo superiores en rendimiento y características favorables.

En la concentración de los cinco mejores mestizos, el peor y el testigo para cada uno de los grupos, así como sus DMS, de la localidad de Ursulo Galván se presentan en el Cuadro 4.5.

Las mejores cruzas fueron las **1503**, **1413** y **1704** con un rendimiento de 11 ton/ha respectivamente cada una de ellas, mientras que la peor es **1803**, con un rendimiento de 2.8 ton/ha, encontrada en el grupo 3, lo que respecta a los testigos estos se mantuvieron por arriba de la media general que es de 7.29 ton/ha.

Cuadro 4.5. Concentración de los mejores cinco mestizos, el peor y el testigo, así como sus DMS, para cada una de las variables evaluadas de cada grupo, y el % de superioridad de la variable rendimiento respecto a su testigo de Ursulo Galván Veracruz.

G	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROLF	REND	%
(1) 1503	54	56	210	112	1.0	1.8	1.9	1.0	114	11.0	37.5%
1413	56	59	222	107	1.2	1.3	1.7	1.5	114	11.0	37.5%
1502	56	57	232	142	1.2	2.8	1.7	1.8	113	9.7	21.2%
1416	55	57	205	102	1.9	1.8	1.5	1.2	106	9.2	15.0%
1511	57	57	217	100	1.2	2.0	1.8	1.3	97	9.1	13.7%
1518	60	62	262	127	1.7	1.8	2.0	1.3	95	5.2	- 35.0%
D-880	55	57	187	125	1.6	1.0	1.7	1.3	94	8.0	
(2) 1606	55	57	195	92	1.7	1.8	1.8	1.0	125	9.3	- 2.1%
1604	55	58	230	112	1.9	2.3	1.8	1.3	107	9.3	- 2.1%
1608	54	56	222	115	1.4	2.4	1.8	1.3	103	9.2	- 3.1%
1612	55	57	220	107	1.2	1.5	2.5	1.0	112	9.1	- 4.2%
1623	58	58	230	120	1.2	2.2	1.8	1.3	157	9.0	- 5.2%
1618	57	57	237	107	1.2	1.4	1.8	1.5	105	4.8	-49.4%
D-880	55	57	195	102	1.4	1.4	1.7	1.5	98	9.5	
(3)											
1704	58	58	235	125	1.4	2.1	2.1	1.0	102	11.0	52.7%
1703	56	58	240	127	1.6	1.6	1.8	1.2	100	10.0	38.8%
1712	58	60	232	120	1.4	1.4	1.8	1.2	99	9.5	31.9%
1806	57	59	232	132	1.2	1.9	1.7	1.2	118	8.9	23.6%
1710 1803	56 59	58 58	247	120 110	1.2	1.7 1.2	1.8 1.8	1.2 1.3	105 100	8.7 2.8	20.8%
D-880	55 55	56 57	230170	87	1.0 1.2	1.4	1.8	1.5	92	7.2	-61.1%
	33	31	170	07	1.2	1.4	1.0	1.5	92	1.2	
(4)	5 0	60	242	117	1.0	1 5	1 0	1 0	102	0.0	12.00/
1810 1921	58 56	60 58	242237	117 110	1.0 1.6	1.5 2.0	1.8 1.8	1.2 1.5	103 95	9.0 8.7	13.9% 10.1%
1814	56	58	232	105	1.4	1.5	1.8	1.5	104	8.1	2.5%
1904	57	58	225	122	1.2	3.5	1.7	1.6	118	7.9	0.0%
1919	57	58	237	117	1.4	1.5	1.7	1.3	92	7.8	-1.2%
1817	55	57	247	135	1.2	1.2	1.7	1.5	108	4.2	-46.8%
D-880	55	57	197	102	1.2	1.6	2.0	1.5	86	7.9	

(5) 2006	60	62	235	122	1.7	2.1	1.7	1.2	108	9.8	10.1%
2010 2019	55	57 50	232	130	1.2	1.7	1.9	1.2	109	8.7	-2.2%
2019	58 57	59 59	225 215	110 102	1.6 1.4	2.6 1.7	2.0 2.1	1.8 1.0	105 96	8.2 8.1	-7.8%
2003	57 57	59	230	125	1.4	2.8	1.7	1.3	114	7.7	-8.9% -13.4%
1925	60	60			1.0		1.7		72		
D-880	55	57	245	122 87		2.3 1.2		1.2	96	4.4	-50.5%
	33	57	190	07	1.4	1.2	1.8	1.2	90	8.9	
(6) 2212	58	59	247	140	1.2	1.2	1.7	1.5	92	9.8	19.5%
2303	55	59 57	232	112	1.2	2.5	1.7	1.0	103	8.3	1.2%
2203	55	57 57	232	120	1.4	2.2	1.8	1.0	98	8.1	-1.2%
2207	57	57 57	235	112	1.7	2.4	2.0	1.0	95	7.8	-4.8%
2113	60	61	242	122	1.7	2.3	1.7	1.3	141	7.6	-7.3%
2224	60	61	225	110	1.7	1.2	1.7	1.2	108	5.1	-37.8%
D-880	54	56	190	90	1.2	1.0	1.7	1.2	103	8.2	-37.070
(7)	J -1	30	190	90	1.2	1.0	1.7	1.2	102	0.2	
2325	54	56	242	122	1.4	2.0	1.8	1.5	99	9.7	18.3%
2421	54	57	217	112	1.0	2.2	1.8	1.2	133	9.2	12.2%
2304	56	58	250	130	1.7	1.9	1.8	2.0	99	9.2	12.2%
2422	55	57	235	112	1.2	2.0	1.8	1.7	115	8.8	7.3%
2405	56	58	230	132	1.4	2.4	1.8	1.4	121	8.4	2.4%
2320	60	61	225	110	1.4	1.7	2.0	1.2	117	4.8	-41.4%
D-880	54	56	188	98	1.3	1.2	1.7	1.3	94	8.2	71.7/0
D-000	J -1	50	100	30	1.0	1.4	1.7	1.0	J-1	0.2	
DMS	1.19	0.23	12.8	21.5	0.2	0.4	0.13	0.3	14.1	1.04	

La concentración de los mejores 10 mestizos, respecto a la superioridad que estos presentan a su testigo, de la variable rendimiento. Como primera línea seleccionada fue la **1704** mostrando su mestizo una superioridad de 52.7% respecto a su testigo, que rindió 7.2 toneladas del grupo tres.

La segunda línea seleccionada es la **1703** cuyo mestizo dio un rendimiento de 10 toneladas, superando con esto en un 38.8% a su testigo del grupo tres.

El tercer y cuarto material seleccionado son el **1503** y **1413**, en los cuales sus mestizos promediaron los mas altos rendimiento que fue de 11 ton/ha, superando así al testigo en un 37.5% respectivamente, también se observa una mayor prolificidad, encontrados en el grupo uno.

La quinta línea seleccionada es la **1712**, el cual su mestizo supera en un 31.9% de rendimiento con respecto a su testigo, así como también para la variable altura de planta, encontrada en el grupo tres.

La sexta línea fue la **1806**, en la cual su mestizo rindió 8.9 ton/ha superando a su testigo en un 23.6% que tubo un rendimiento de 7.2 toneladas, del grupo tres.

El séptimo material seleccionado fue la línea **1502**, cuyo mestizo mostró una superioridad en rendimiento, prolificidad, altura de planta y mazorca respecto a su testigo, del grupo uno.

La octava línea es la **1710**, cuyo mestizo tubo una superioridad de 20.8%, de rendimiento y prolificidad respecto a su testigo del grupo tres.

La novena línea seleccionada fue la **2212**, con una superioridad de su mestizo de 19.5%, respecto a su testigo que rindió en promedio 8.2 ton/ha, del grupo seis.

Como décima línea seleccionada es la **2325**, el cual su rendimiento promedio fue de 9.7 ton/ha, mientras que su testigo tubo un rendimiento de 8.2 ton/ha, superándolo en un 18.3%, del grupo siete.

La comparación de mestizos con el híbrido, utilizado como testigo resulto ser factible, ya que es un punto de referencia para seleccionar las mejores cruzas, el encontrar mestizos superiores al testigo D-880, indica que el material genético como lo es la población 22 del CIMMYT, ofrece la posibilidad de generar líneas que en el futuro participen como progenitores de híbridos experimentales que sean muy superiores al testigo regional.

También el haber obtenido un mestizo muy superior al testigo D-880 permite utilizarlo comercialmente. Lo que es importante de esta información de los mestizos superiores es que sean respaldados con más evaluaciones.

En el cuadro 4.6 se muestran las medias y DMS de grupos, del análisis individual de las variables evaluadas, en la localidad de Juan Rodríguez Clara Veracruz.

Observamos que en la mayoría de las variables evaluadas no existen altas diferencias entre un grupo y otro, donde vemos una diferencia marcada es en prolificidad y rendimiento con respecto a su testigo y solamente el grupo 2 y 3 superan a su testigo con 0.4 y 0.7 toneladas.

De acuerdo a la DMS, se dividen en 2 grupos estadísticamente en el primero encontramos tres de ellos el 2,3 y 4, el segundo lo ocupan cuatro de ellos el 1, 5, 6 y 7. Justificando el hecho de formar grupos.

Cuadro 4.6. Concentración de medias y DMS del análisis individual de grupos de la localidad Juan Rodríguez Clara Veracruz.

G	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROLF	REND
1	52	56	168	82	1.5	2.5	1.3	1.6	101	4.9 B
Testigo	50	55	152	60	1.0	2.6	1.4	2.7	124	5.5
2	49	55	168	81	1.6	3.1	1.2	1.8	93	5.6 A
Testigo	45	50	157	62	1.8	2.9	1.2	2.0	134	5.2
3	51	56	172	82	1.3	2.6	1.2	1.8	88	5.4 A
Testigo	48	54	147	65	1.4	2.5	1.2	3.8	112	4.7
4	49	54	179	88	1.4	2.8	1.4	2.2	93	5.3 A
Testigo	45	50	145	57	1.4	2.8	1.2	3.0	113	5.5
5	49	54	181	86	1.4	3.0	1.3	2.0	81	5.0 B
Testigo	48	53	150	57	1.5	3.2	1.2	2.4	87	5.0
6	50	54	176	87	1.3	2.8	1.3	2.3	85	4.5 B
Testigo	48	55	147	60	1.7	4.0	1.0	3.5	84	5.1
7	48	53	167	81	1.4	2.7	1.2	2.0	90	4.9 B
Testigo	47	53	149	60	1.4	3	1.2	2.9	105	5.1
DMS	0.03	0.09	11.4	6.72	0.19	0.31	0.12	0.21	10.87	0.527

En esta localidad de Juan Rodríguez Clara se compararon 155 tratamientos, de los cuales 148, fueron cruzas de prueba y 7 son testigos experimentales; del cual encontramos rendimientos de 7.4 a 2.9 ton/ha con una media de 5.10 ton/ha, que de acuerdo a la DMS (diferencia mínima significativa) en esta localidad, se clasifican en cinco grupos estadísticos, el primero se encuentran 15 mestizos, el segundo 34 mestizos y dos testigos, el tercer grupo con 55 mestizos y 5 testigos, mientras que el cuarto encontramos 34 mestizos, él ultimo de ellos con 10 cruzas de prueba.

En la concentración de los cinco mejores mestizos, el peor y el testigo para cada uno de los grupos, así como sus DMS, de la localidad de Juan Rodríguez Clara se presentan en el Cuadro 4.7.

Las mejores cruzas fueron la **1621** y **1918** con rendimientos de 7.4 ton/ha, mientras que las peores son, **1419**, **1903** y **2022**, con rendimientos de 2.9 ton/ha, los testigos por su parte en tres grupos quedaron por arriba de la media, dos con la misma media y dos más por bajo de la media general de la localidad que es de 5.1 ton/ha.

Cuadro 4.7. Concentración de los mejores 5 mestizos, el peor y el testigo de grupo, así como sus DMS, y el % de superioridad de la variable rendimiento respecto a su testigo de Juan Rodríguez Clara Veracruz.

G	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROL	REND	%
(1)											
1501	46	51	195	87	1.6	1.7	1.0	1.0	95	7.3	32.7%
1518	58	60	167	87	1.4	3.5	1.0	1.0	111	6.9	25.4%
1503	50	55	165	82	1.0	2.9	1.4	1.0	97	6.9	25.4%
1410	55	57	192	90	1.9	2.1	1.7	2.0	98	6.4	16.3%
1413	58	60	167	75	2.1	2.9	1.0	1.7	90	6.0	9.0%
1419	45	50	145	77	1.5	2.0	1.0	1.0	107	2.9	-47.2%
D-880	50	55	152	60	1.0	2.6	1.4	2.7	104	5.5	
(2)											
1621	48	53	190	92	1.2	3.1	1.0	1.7	92	7.4	42.3%
1604	48	53	167	67	1.9	4.1	1.5	1.6	106	7.0	34.6%
1609	53	55	185	85	2.8	4.5	2.0	2.2	100	7.0	34.6%
1618	55	59	162	65	1.4	2.6	1.5	2.2	101	7.0	34.6%
1614	48	53	197	118	1.2	3.6	1.2	2.2	123	6.6	26.9%
1524	49	54	187	103	1.7	4.6	1.2	1.6	70	3.7	-28.8%
D880	45	50	157	62	1.8	2.9	1.2	2.0	134	5.2	
(3)	50	50	400	440	4.4	0.0	4.0	4.0	00	7.0	40.00/
1724	56	59	182	110	1.4	2.2	1.2	1.0	89	7.0	48.9%
1804	47	53	185	77	1.2	2.2	1.7	2.5	93	6.2	32.0%
1725	48	54	192	100	1.6	3.3	1.4	1.7	90	6.2	32.0%
1706 1808	55 47	59 53	152 167	75 70	1.2 1.9	2.5 1.7	1.0 1.2	1.8 2.2	102 86	6.1 6.1	29.7% 29.7%
1803	57	60	185	80	1.9	2.1	1.2	1.9	62	3.5	-25.5%
D-880	48	54	147	65	1.4	2.5	1.2	3.8	112	4.7	-23.370
(4)	70	57	177	00	1.4	2.0	1.2	0.0	112	7.7	
1918	50	55	213	118	1.8	3.2	1.6	2.5	100	7.4	34.5%
1923	48	52	185	90	1.7	3.1	1.7	1.2	85	7.0	27.2%
1817	47	53	202	113	2.2	3.0	1.2	2.0	88	6.7	21.8%
1910	47	53	210	103	1.2	2.6	1.6	2.9	110	6.6	20.0%
1809	47	53	220	97	1.4	1.9	1.4	2.0	104	6.2	12.7%
1903	48	53	147	85	1.2	2.6	1.2	2.2	95	2.9	-47.2%
D-880	45	50	145	57	1.4	2.8	1.2	3.0	113	5.5	

(5) 2003 2101 2009 2025 2011 2002 D-880	55 46 49 49 45 49	58 51 54 54 50 54 53	182 175 170 167 187 182 150	77 100 80 60 92 100 57	1.6 1.0 1.6 1.2 1.5 1.0	5.0 3.1 2.6 3.4 2.9 2.3 3.2	1.7 1.2 1.8 1.2 1.2 1.2	2.7 2.8 2.3 2.0 1.0 1.9 2.4	87 85 60 65 104 83 87	6.1 5.9 5.8 5.6 5.5 2.9 5.0	22% 18% 16% 12% 10% -42%
(6) 2212 2113 2219 2116 2303 2115 D-880	49 48 45 45 50 49 48	53 55 50 50 56 54 55	192 177 180 177 177 182 147	118 70 90 87 85 100 60	2.0 1.9 1.5 1.0 1.0 1.0	3.2 2.7 3.4 2.4 3.6 2.0 4.0	1.5 1.2 1.4 1.4 1.6 1.0	1.6 2.5 2.4 2.8 3.4 2.3 3.5	87 101 92 100 79 83 84	5.9 5.5 5.1 4.8 4.8 3.3 5.1	15.6% 7.8% 0.0% -5.8% -5.8% -35.3%
(7) 2324 2421 2307 2319 2317 2408 D-880	48 46 51 58 48 49 47	53 51 56 63 54 56 53	148 178 175 150 168 135 149	75 88 85 83 80 73 60	1.3 1.5 1.2 1.2 1.9 1.0 1.4	1.8 2.9 2.2 2.7 4.0 2.1 3.0	1.0 1.0 1.0 1.2 1.2 1.2 1.2	1.8 1.8 2.0 1.5 3.1 1.7 2.9	93 87 111 80 104 76 105	7.1 6.0 5.9 5.9 5.7 3.6 5.1	39.2% 17.6% 15.6% 15.6% 11.7% -29.4%

La concentración de los mejores 10 mestizos, respecto a la superioridad que estos presentan a su testigo, de la variable rendimiento. El cual la primera línea seleccionada es la **1724** en la cual su mestizo rindió 7.0 ton/ha teniendo así una superioridad de 48.9% respecto a su testigo que rindió 4.7 toneladas, del grupo tres.

La línea dos seleccionada es la **1621**, con un rendimiento de 7.4 toneladas por parte de su mestizo, superando así a su testigo en rendimiento en un 42.3%, del grupo dos.

Como línea numero tres fue la **2324**, cuyo mestizo rindió 7.1 toneladas superando en un 39.2% a su testigo que rindió 5.1 toneladas, del grupo siete.

La cuarta, quinta y sexta líneas seleccionadas fueron las **1604**, **1609** y 1618 con un rendimiento promedio de sus mestizos de 7.0 toneladas cada una de ellas, superando a su testigo en común en un 34.6%, encontradas en el grupo dos.

La séptima línea seleccionada fue la **1918**, cuyo mestizo rindió 7.4 ton/ha teniendo con esto una superioridad de 34.6%, respecto a su testigo, del grupo cuatro.

La octava línea fue la **1501**, cuyo rendimiento promedio de su mestizo fue de 7.3 toneladas, superando a su testigo en un 32.7%, encontrando en esta línea también una mayor resistencia al <u>Fusarium</u>, del grupo uno.

Como novena y décima línea seleccionada fueron la **1804** y **1725**, en la que encontramos rendimientos de 6.2 toneladas en cada uno de sus mestizos, mostrando una superioridad de 32% respecto a su testigo que rindió 4.7 toneladas, del grupo tres.

La comparación de mestizos con el híbrido, utilizado como testigo resulto ser factible, ya que es un punto de referencia para seleccionar las mejores cruzas, el encontrar mestizos superiores al testigo D-880, indica que el material genético como lo es la población 22 del CIMMYT, ofrece la posibilidad de generar líneas que en el futuro participen como progenitores de híbridos experimentales que sean muy superiores al testigo regional.

La concentración de medias y DMS del análisis combinado para grupos a través de localidades se presentan en el Cuadro 4.8.

Así se puede observar rendimientos de 6.7 a 5.7 ton/ha y tiene una media general de 6.2 ton/ha, la que es estimada de 310 tratamientos, de los cuales podemos seleccionar desde materiales tardíos, precoz, de porte alto y bajo, resistentes o muy susceptibles a plagas y enfermedades.

De acuerdo a la DMS, si existieron diferencias estadísticamente entre grupos, dividido en tres grupos, estadísticos hecho que justifica la formación de los grupos.

Cuadro 4.8. Concentración de medias y DMS, general para cada uno de los grupos así como sus variables evaluadas.

G	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROLF	REND
1	54	57	197	99	1.4	2.2	1.5	1.4	102	6.4 A
Testigo	52	56	170	76	1.3	1.8	1.6	2	134	6.7
2	52	56	196	107	1.4	2.4	1.5	1.5	102	6.7 A
Testigo	50	53	176	82	1.6	2.1	1.5	1.8	116	7.3
3	59	57	200	97	1.3	2.2	1.5	1.5	96	6.4 A
Testigo	51	55	158	76	1.3	2	1.5	2.7	102	5.9
4	53	56	200	111	1.3	2.2	1.5	1.8	98	6.0 B
Testigo	50	53	171	80	1.3	2.2	1.6	2.2	99	6.7
5	53	56	200	99	1.3	2.4	1.6	1.6	94	5.8 B
Testigo	51	55	170	72	1.4	2.2	1.5	1.8	91	6.9
6	53	56	204	102	1.3	2.4	1.6	1.7	94.	5.7 C
Testigo	51	55	168	75	1.5	2.5	1.4	2.3	93	6.6
7	51	55	199	100	1.3	2.4	1.5	1.7	101	6.1 B
Testigo	50	54	168	76	1.4	2.1	1.5	2.1	101	6.6
DMS	0.8	0.08	6.76	17.7	0.12	0.19	0.07	0.13	6.75	0.39

La concentración de medias de rendimiento y DMS de las variables evaluadas en forma combinada para cada localidad se presentan en el cuadro 4.9.

En el cual observamos que en la mayoría de variables evaluadas la mejor localidad fue la de Ursulo Galván, la cual supera a la media general, en el que se presentan los materiales más tardíos, mas altos, menos acame en tallo y raíz, un mayor numero de mazorcas podridas, menor resistencia al <u>Fusarium</u>, así como una mayor prolificidad y la localidad con mejor rendimiento es la de Ursulo Galván

superando en 2.2 toneladas a la media de Juan Rodríguez Clara, así también el testigo la supero en 1.4 toneladas. La DMS muestra que estadísticamente son diferente una localidad de la otra.

Cuadro 4.9. Concentración de medias y DMS, generales de las características agronómicas evaluadas para cada una de las localidades.

LOC	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROLF	REND
1	58.3	58.2	225.8	121.3	1.3	1.8	1.8	1.3	106.3	7.3
2	50.1	54.8	173.3	84.5	1.4	2.8	1.3	1.9	90.9	5.1
Testigo	51.4	55	174.4	80.7	1.3	2.1	1.5	2	100.3	6.5
DMS	0.43	0.04	3.6	9.4	0.06	0.102	0.04	0.07	3.6	0.21

En la concentración de los cinco mejores mestizos, el peor y el testigo para cada uno de los grupos a través de localidades se presentan en el Cuadro 4.10.

La cual el mejor mestizo es el **1503** con un rendimiento de 8.7 ton/ha, encontrado en el grupo uno, mientras que el mestizo más malo es el **1803** con rendimientos de 3.1 ton/ha encontrado en el grupo tres, el comportamiento del testigo se mantuvo por arriba de la media general en 6 grupos.

Cuadro 4.10. Concentración de los mejores 5 mestizos, el peor y el testigo, así como sus DMS de las variables agronómicas evaluadas de cada uno de los grupos, y el % de superioridad de la variable rendimiento respecto a su testigo.

G	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROLF	REND	%
(1)											
1503	51	55	187	97	1.0	2.4	1.7	1.0	106	8.7	29.8%
1413	57	59	195	91	1.6	2.1	1.4	1.6	102	8.2	22.3%
1501	52	54	216	98	1.5	1.8	1.5	1.2	100	8.0	19.4%
1410	55	57	222	109	1.7	2.5	1.7	1.7	101	7.3	8.9%
1502	55	58	208	120	1.5	2.6	1.7	2.6	129	7.1	5.9%
1419	51	55	175	91	1.3	1.5	1.3	1.3	107	4.8	-28.3%
D-880	52	56	170	76	1.3	1.8	1.6	2.0	109	6.7	
(2)											
1604	51	55	198	90	1.9	3.2	1.7	1.5	106	8.1	11.0%
1621	53	55	197	104	1.1	2.3	1.4	1.5	97	8.0	9.5%
1609	54	56	196	93	2.0	3.6	1.9	1.6	95	7.7	5.4%
1614	52	56	207	116	1.5	3.4	1.5	1.9	112	7.6	4.1%
1623	53	56	197	108	1.4	2.7	1.6	1.8	127	7.4	1.3%
1601	53	59	176	76	1.4	2.7	1.5	1.6	59	4.7	-35.6%
D-880	50	53	176	82	1.6	2.1	1.5	1.8	116	7.3	
(3)											
1704	57	59	208	116	1.3	2.1	1.6	1.0	94	7.9	33.9%
1703	55	58	202	108	1.5	1.9	1.5	1.1	93	7.7	30.5%
1724	56	59	213	115	1.5	2.4	1.5	1.3	99	7.6	28.8%
1806	56	59	192	106	1.1	2.9	1.4	1.7	121	7.3	23.7%
1725	51	55	216	103	1.6	2.8	1.6	1.5	92	7.3	23.7%
1803	58	58	207	95	1.1	1.7	1.5	1.6	81	3.1	-47.4%
D-880	51	55	158	76	1.3	2.0	1.5	2.7	102	5.9	

Continuación..... Cuadro 4.10.

(1)											
(4)											
1810	54	57	215	104	1.1	2.2	1.7	1.4	94	7.1	5.9%
1814	55	58	208	100	1.2	2.0	1.5	1.7	107	6.7	0.0%
1923	52	55	208	96	1.7	2.2	1.8	1.2	82	6.7	0.0%
1910	52	56	227	106	1.1	2.1	1.6	2.2	113	6.6	-1.5%
1922	50	54	198	93	1.4	2.0	1.6	1.4	105	6.4	-4.4%
1905	52	55	188	104	1.3	2.4	1.6	2.3	104	4.5	-32.8%
D-880	50	53	171	80	1.3	2.2	1.6	2.2	99	6.7	
(5)											
2006	57	59	210	111	1.4	2.6	1.5	1.4	90	7.1	2.9%
2003	56	58	206	101	1.6	3.9	1.7	2.0	100	6.9	0.0%
2011	51	54	201	97	1.5	2.3	1.7	1.0	100	6.8	-1.4%
2010	51	55	211	110	1.5	2.5	1.7	1.5	89	6.8	-1.4%
2019	53	56	198	103	1.6	3.2	1.7	2.2	101	6.6	-4.3%
2004	52	56	216	93	1.6	2.1	2.1	1.6	79	4.5	-34.7%
D-880	51	55	170	72	1.4	2.2	1.5	1.8	91	6.9	0 1.1 70
(6)	0	00	170	, 2			1.0	1.0	01	0.0	
2212	53	56	220	129	1.6	2.2	1.6	1.6	89	7.8	18.2%
2113	54	58	210	96	1.8	2.5	1.5	1.9	121	6.6	0.0%
2303	52	56	205	98	1.1	3.1	1.6	2.2	91	6.5	-1.5%
2219	51	53	201	101	1.5	2.5	1.7	1.7	100	6.0	-9.0%
2203	51	55	206	101	1.2	2.5	1.4	1.4	85	6.0	-9.0%
2111	55	57	190	90	1.2	2.2	1.5	1.7	86	4.7	-28.8%
D-880	51	55	168	75	1.5	2.5	1.4	2.3	93	6.6	-20.0 /0
	51	55	100	75	1.5	2.5	1.4	2.3	93	0.0	
(7) 2421	50	54	197	100	1.3	2.6	1.4	1.5	110	7.6	15.1%
2324	52	54 56	197	100	1.3	1.6	1.4	1.5	86	7.6	10.6%
2317	51	55 54	196	104	1.8	3.4	1.5	2.3	110	6.8	3.0%
2304	50	54	207	110	1.8	2.1	1.5	1.9	89	6.8	3.0%
2422	50	54	196	97	1.4	2.4	1.8	1.9	101	6.7	1.5%
2410	51	54	206	106	1.0	2.1	1.5	2.0	98	4.6	-30.3%
D-880	50	54	168	76	1.4	2.1	1.5	2.1	101	6.6	
DIVIO	4 40	0.44	44.6	0.4.4	0.0	0.0	0.40	0.00	44.0	0 -	
DMS	1.43	0.14	11.9	31.4	0.2	0.3	0.12	0.23	11.9	0.7	

La concentración de los mejores 10 mestizos, respecto a la superioridad que estos presentan a su testigo, de la variable rendimiento a través de localidades se enumeran enseguida.

La primera línea seleccionada fue la **1704**, que en promedio de su mestizo rindió 7.9 toneladas, superando asu testigo en un 33.9%, así también para la variable de altura de planta, del grupo tres.

La segunda línea fue la **1703**, cuyo mestizo rindió 7.7 toneladas superando en un 30.5% a su testigo, del grupo tres.

La tercera línea seleccionada es la **1503**, cuyo mestizo promedio 8.7 ton/ha, alcanzando los más altos rendimientos con respectos a los otros, el cual supera ampliamente en un 29.8% a su testigo, del grupo uno.

La cuarta línea fue la **1724**, que en promedio de su mestizo es de 7.6 toneladas superando en un 28.8% a su testigo que promedio un rendimiento de 5.9 ton/ha, del grupo tres.

La quinta y sexta línea seleccionada fueron la **1806** y **1725**, en la cual sus mestizos promediaron un rendimiento de 7.3 toneladas cada uno de ellos, superando en un 23.7% a su testigo, del grupo tres.

La séptima línea fue la **1413**, promediando su mestizo un rendimiento de 8.2 toneladas, superando en un 22.3% a su testigo, del grupo uno.

La octava línea seleccionada es la **1501**, del cual su rendimiento del mestizo fue de 8.0 ton/ha, superando al testigo en un 19.4%, del grupo uno.

Como novena línea tenemos a la 2212, el cual su mì¥Á□I□□

 $\square bjbj^{2323}\square\square\square\square\square\square\square\square\square\square\square\square\square\square\square\square$

	>.	\. ~		_	
$\Box \Box fh$			1		
- $ J$ P					- $ -$

a aaa aaaaaa aaaaaaaaaaaaaaaaaaaaaaaa T aaaaaaaa	
aa`aaaaa`aaaaaa`aaaaaa`aaaaa`aaaaa`aaa	

 $\square bjbj^{2323}\square\square\square\square\square\square\square\square\square\square\square\square\square\square\square\square$

$a = f \Rightarrow a \Rightarrow b \Rightarrow b$	
---	--

and an analysis and a selection are las mejores cruzas, el encontrar mestizos superiores al testigo D-880, indica que el material genético como lo es la población 22 del CIMMYT, ofrece la posibilidad de generar líneas que en el futuro participen como progenitores de híbridos experimentales que sean muy superiores al testigo regional.

En el Cuadro 4.11. se encuentran las mejores diez líneas, basándose en su rendimiento promedio que estas mostraron, para la localidad de Ursulo Galván Veracruz. Al formar una población sintética con estos materiales da un rendimiento promedio predicho de 10.08 ton/ha la cual supera en 2.79 toneladas a la media general de esta localidad, con una ganancia genética predicha de 38.3% de superioridad.

Cuadro 4.11. Concentración de las mejores diez líneas de la localidad de Ursulo Galván Veracruz.

LINEA RENDIMIENTO

1503 1413 1704	11 11 11
1703	10
2006 2212	9.8 9.8
2325 1502	9.7 9.7
1712 1606	9.5 9.3
MEDIA	10.08 ton/ha
MEDIA GENERAL	7.29 ton/ha

En el Cuadro 4.12. se concentran las mejores diez líneas, basándose en su rendimiento promedio que mostraron en la localidad de Juan Rodríguez Clara Veracruz. Al formar una población sintética con estos materiales da un rendimiento promedio predicho de 7.11 toneladas, la cual supera en 2.01 toneladas a la media general de esta localidad, con una ganancia genética predicha de 39.4%.

Cuadro 4.12. Concentración de las mejores diez líneas de la localidad de Juan Rodríguez Clara Veracruz.

LINEA	RENDIMIENTO
1621	7.4
1918	7.4
1501	7.3
2324	7.1
1604	7.0
1609	7.0
1618	7.0
1724	7.0

1923	7.0
1518	6.9
MEDIA	7.11 ton/ha
MEDIA GENERAL	5.1 ton/ha

En el cuadro 4.13. se concentran las mejores diez líneas basándose en su rendimiento promedio que mostraron atraves de localidades. Que al formar una población sintética con estos materiales da un rendimiento promedio predicho de 7.97 ton/ha, superando en 1.77 toneladas a la media general, con una ganancia genética predicha de 28.5% de superioridad.

Cuadro 4.13. Concentración de las mejores diez líneas atraves de localidades.

LINEA	DENIBURUENTO
LINEA	RENDIMIENTO
1503	8.7
1413	8.2
1604	8.1
1501	8.0
1621	8.0
1704	7.9
2212	7.8
1609	7.7
1703	7.7
1724	7.6
MEDIA	7.97 ton/ha
MEDIA GENERAL	6.2 ton/ha

Al hacer la concentración de las mejores líneas dentro de cada localidad, como lo muestran los Cuadros 4.11, 4.12 y 4.13, lleva a pensar en la formación de nuevas poblaciones, donde podamos incrementar las características favorables, y con esto que la población sea mejor que la anterior, formando así un nuevo ciclo de selección.

La ganancia genética expresada en porciento, en relación con la población original(C_0) con respecto al ciclo cuatro (C_4), en la población Pool 24 a través de hermanos completos con pedigrí, es de 4.79 %. (Mendoza 1996).

Mientras que la ganancia genética a través de selección recurrente de líneas S_1 *per se*, en la población 73, despues de tres ciclos de selección es de 5.5 por ciento y de 4.7 por ciento en cuatro ciclos en rendimiento, citado en el trabajo de (Aguiluz 1994).

Tanner y Smith (1987) en un estudio de ocho ciclos, evaluaron familias de medios hermanos y líneas S_1 . Para los ciclos cero y cuatro, resultaron tener una ganancia genética de 6.9 por ciento cuando utilizo las líneas S_1 y cuando uso SRMH se obtuvo 2.2 por ciento, en los ciclos del cuatro al ocho se manifestaron con un menos 0.8 y 5.5 por ciento respectivamente.

Ceballos <u>et al</u>. (1994) evaluaron cinco poblaciones de maíz tropical del CIMMYT mejoradas para tolerancia a suelos ácidos, mediante la selección

recurrente de hermanos completos en tres ciclos de selección, cuya ganancia a través de poblaciones fue de 4.72 por ciclo.

Las ganancias genéticas obtenidas por ciclo de selección de la población Lucio Blanco Mejorado *per se*, a través de la metodología selección recurrente de hermanos completos con pedigrí fue de 0.336 por ciento, además con la misma población se evaluaron las cruzas de prueba con una ganancia de 0.075 por ciento en rendimiento obtenidas por (Fernández 1994).

La ganancia genética derivada de la Pool. 19 y Pool. 20, por medio de la metodología selección reciproca recurrente, en familias de medios hermanos a partir de dos complejos germoplámicos de maíz, dentado y cristalino fueron de 20.3 por ciento para el complejo cristalino y de 46.1 por ciento para el complejo dentado, encontrado por (Almaguer 1994).

La ganancia genética de dos ciclos de selección expresada en por ciento en líneas S_1 y Selección Reciproca Recurrente en las poblaciones VS201 y compuesto norteño, no se obtuvo ganancia alguna por ninguna de las dos metodología citado en el trabajo (De la Rosa 1993).

Al encontrar diferencias significativas en la interacción de localidades por mestizo dentro de grupos, llevó a analizar las medias de cada tratamiento en cada una de las localidades en las variables bajo estudio, información encontrada en los Cuadros A1 y A2 del Apéndice. De las cuales se desprende el Cuadro 4.14 en

donde se consignan los mejores tratamientos de cada grupo en cada localidad así como los tratamientos que no interaccionan con las localidades.

Los tratamientos **1413**, **1608**, **1704**, **1921**, **2010**, **2303** y **2325**, con rendimientos de 11.0, 9.2, 11.0, 8.7, 8.7, 8.3 y 9.7 ton/ha respectivamente, son los sobresalientes en la localidad de Ursulo Galván.

Los tratamientos **1518**, **1618**, **1724**, **1918**, **2101**, **2219** y **2307**, con rendimientos de 6.9, 7.0, 7.0, 7.4, 5.9, 5.1 y 5.9 ton/ha respectivamente de la localidad de Juan Rodríguez Clara.

Mientras que los tratamientos que no interaccionaron en ambas localidades son **1503**, **1604**, **1725**, **1923**, **2006**, **2212** y **2421**, con rendimientos promedios de 8.9, 8.1, 7.3, 6.7, 7.1, 7.8 y 7.6 ton/ha respectivamente.

Cuadro 4.14. Selección de los mejores tratamientos de cada grupo para cada localidad, así como el de ausencia de interacción entre localidades.

GRUPO 1 1	LINEA 1413	DAM 56	DAF 59	AR 1.2	AT 1.3	MP 1.7	FSR 1.5	REND. 11.0
2	1518	58	60	1.4	3.5	1.0	1.0	6.9
3	1503	51	55	1.0	2.4	1.7	1.0	8.7
GRUPO 2								-
1	1608	54	56	1.4	2.4	1.8	1.3	9.2
2	1618	55	59	1.4	2.6	1.5	2.2	7.0
3	1604	51	55	1.9	3.2	1.7	1.5	8.1
GRUPO 3								
1	1704	58	58	1.4	2.1	2.1	1.0	11.0
2	1724	56	59	1.4	2.2	1.2	1.0	7.0
3	1725	51	55	1.6	2.8	1.6	1.5	7.3
GRUPO 4								
1	1921	56	58	1.6	2.0	1.8	1.5	8.7
2	1918	50	55	1.8	3.2	1.6	2.5	7.4
3	1923	52	55	1.7	2.2	1.8	1.2	6.7
GRUPO 5	0040			4.0	4 -	4.0	4.0	
1	2010	55	57	1.2	1.7	1.9	1.2	8.7
2	2101	46	51	1.0	3.1	1.2	2.8	5.9
3	2006	57	59	1.4	2.6	1.5	1.4	7.1
GRUPO 6	0000			4.0	0.5	4.0	4.0	0.0
1	2303	55	57	1.2	2.5	1.8	1.0	8.3
2 3	2219	45	50	1.5	3.4	1.4	2.4	5.1
GRUPO 7	2212	53	56	1.6	2.2	1.6	1.6	7.8
1	2325	54	56	1.4	2.0	1.8	1.5	9.7
2	2325	54 51	56	1.4	2.0	1.0	2.0	9.7 5.9
3	2421	50	54	1.2	2.6	1.4	1.5	7.6
J	2421	50	54	1.3	2.0	1.4	1.0	7.0

^{1.-} Mestizo con interacción especifica para Ursulo Galvan

3.- Mestizo sin interacción

^{2.-} Mestizo con interacción especifica para Juan Rodríguez Clara

CONCLUSIONES

La evaluación de las líneas S_2 (derivadas de la población 22 generada por el CIMMYT), en cruza de mestizos con la variedad sintética VAN 543 del IMM, como probador, llevó a la siguiente conclusión.

Se logró seleccionar las mejores líneas basándose en buenas características agronómicas y rendimiento de estas en los ambientes de prueba. Esto fue debido a la gran variabilidad que presentaron los genotipos a través de las localidades de prueba.

Las líneas seleccionados para Ursulo Galván fueron las 1413, 1608, 1704, 1921, 2010, 2303 y 2325, encontrando los mejores rendimientos. Mientras que las líneas seleccionadas para Juan Rodríguez Clara fueron las 1518, 1618, 1724, 1918, 2101, 2219 y 2307.

Las líneas seleccionadas que no tuvieron una interacción a través de localidades fueron las 1503, 1604, 1725, 1923, 2006, 2212 y 2421.

Mientras que la ganancia genética predicha por esta metodología por ciclo de selección a través de localidades fue de 28.5 por ciento.

RESÚMEN

En todo programa de mejoramiento genético de maíz, es importante y necesario llevar a cabo la mejora de poblaciones, con amplia variabilidad genética.

Para la fase de hibridación es necesario la formación y evaluación de líneas mediante la utilización de probadores que hagan una eficiente discriminación e identificación de líneas superiores entre un gran número de ellas.

Por lo anterior la Universidad Autónoma Agraria Antonio Narro, a través del Instituto Mexicano del Maíz "Dr. M. Castro Gil" que por medio de sus maestros investigadores están realizando investigaciones en diversas partes del territorio nacional para obtener materiales superiores a los ya existentes.

En la presente investigación se evaluaron líneas S_2 derivadas de la población 22 de CIMMYT, en cruza de mestizos con un probador de amplia base genética, llamada población 543 generada por el Instituto Mexicano del Maíz (IMM), participando 148 líneas y un testigo que fue el D-880.

La evaluación se realizó en dos localidades del estado de Veracruz, Ursulo Galván y Juan Rodríguez Clara, en el año de 1998 utilizando un diseño

estadístico, bloques al azar (desbalanceado) con dos repeticiones por localidad, para cada una de las características evaluadas incluyendo rendimiento, realizándose un análisis de varianza individual para cada localidad y un análisis combinado.

Basándose en los resultados obtenidos se concluye lo siguiente:

El programa de evaluación al que han sido sometidas las líneas derivadas de la población 22 ha resultado eficiente; puesto que se observó que se cuenta con líneas que muestran sus cruzas, una respuesta agronómica muy favorable a través de los ambientes de prueba, ya que se logró identificar las mejores líneas basándose en su cruza de mestizos, con buenas características agronómicas y adaptabilidad de las líneas, esto debido a su gran variabilidad e interacción que presentaron los genotipos en los ambientes de prueba, además de que los mejores rendimientos se obtuvieron en Ursulo Galván, Veracruz, superando en 2.19 ton/ha, a la localidad de Juan Rodríguez Clara.

En lo que respecta al probador, se concluyó que en general, realizó una buena discriminación de los genotipos bajo estudio.

La ganancia genética predicha por esta metodología por ciclo de selección a través de localidades fue de 28.5 por ciento.

BIBLIOGRAFÍA

- Allard, R. W. 1967. Principios de la mejora genética de plantas. Traducido por José L. Montoya. Primera edición. Ediciones Omega, S. A. Barcelona, España.
- Brauer, H. O. 1985. Fitogenética aplicada. Segunda edición. Editorial Limusa México, D. F.
- Briseño B. J. 1990. Evaluación de cruzas de prueba en líneas de maíz (<u>Zea mays</u>

 <u>L.</u>) derivadas de STS por diferentes metodología de selección recurrente.

 Tesis Licenciatura U.A.A.A.N. Buenavista, Saltillo, Coahuila, México.
- Carlone, M. R. and W. A. Russell. 1989. Evaluation of S_2 maize lines reproduced fo several generations by random mating within lines. Comparison for testcross performance of original and advanced S_2 and S_8 lines. Crop Sci 29: 899 904.
- Calixto, V. V. 1990. Evaluación de líneas S_2 de maíz (\underline{Zea} \underline{mays} \underline{L} .) en cruza con tres probadores de estrecha base genética para el trópico seco mexicano. Tesis de Licenciatura. U.A.A.A.N. Buenavista, Saltillo, Coah.
- Chávez A. J. L. y E. López. 1987. Apuntes de mejoramiento de plantas.

 Universidad Autónoma Agraria " Antonio Narro ". Buenavista, Saltillo, Coah.

 Pag. 158.

- Davis, R.L. 1927. Report of the plant breeder. P.R. Agric. Exp. Sth. Ann. Rep. 1927. Pag. 14-25.
- De la Loma, J. L. 1979. Genética general y aplicada. Primera edición. Editorial UTEHA, S. A. México.
- Falconer, D.S. 1970. Introducción a la genética cuantitativa. Ed. CECSA. México, D.F. 430 Pag.
- Galarza, S. M.; H. Angeles A. y J. Molina G. 1973. Estudio comparativo entre la prueba de líneas *per se* y la prueba de mestizos para evaluar aptitud combinatoria general de líneas S₁ de maíz (Zea mays L.). Rama de genética, C. P. Chapingo, México. Pag. 127.
- Gámez V. A. J. 1990. Heterosis en Precocidad y rendimiento de cruzas simples en maíz en condiciones de tensión hídrica. Memoria XIII. Congreso Nacional de Fitogenetica. ESAHE. Cd Juárez, Chih. Pag 65.
- Hallauer, A.R. and E. López P. 1979. Comparison among tester for evaluation lines of corn. Proc. 43th. Ann. Corn and sorghum research conf. 56-57. Jugenheimer, W. R. 1986. Maíz variedades mejoradas, métodos de cultivo y producción de semillas. Editorial Limusa, S. A. México, D. F. Pag. 217.
- Hallauer, A. R. and J.B. Miranda. 1981. Métodos de mejoramiento. Trad. Por Cortez. M.H. 1982. INIA-SARH-CIAGON.
- Horner, E.S. 1973. Effect of recurrent selection for combining ability with a single-cross tester in maíz. Crop. Sci. 16: 5-18.

- Jenkins, M. T. 1935. The effect in breeding and of selection within inbred lines of maize upon the hibrids made affter successive generations of selfing. Iowa State Coll. Jour. Sci 3: 429-450.
- Jones, D.F. 1939. The effect of inbreding and cross breeding upon development.

 Connecticut Agric. Exp. Sth. Bul. 209.
- Jugenheimer, R. W. 1936. Comparison of certain inbreed lines of maize in top, threeway, and double crosses. Iowa State col. M. S. Thesis.
- Jugenheimer, R. W. 1981. Maíz, variedades mejoradas, métodos de cultivo y producción de semilla. Ed. Limusa. México, D. F.
- Latournerie M., L. 1990. Comportamiento de 35 líneas S_2 de maíz (Zea mays L.) derivadas del sintético ideotipo trópico seco en un estudio de aptitud combinatoria con tres probadores. Tesis Licenciatura U.A.A.A.N. Buenavista, Saltillo, Coahuila. México.
- Márquez S. F. 1988. Genotecnia vegetal, métodos, teoría y resultados. Tomo II.

 AGT Editorial S. A. México, D. F.
- Lindstron, E.W. 1931. B. Prepotency of inbrì¥Á□I□□

|--|

aĐÙ a ĐÙ a AÃ a a a a a a a a a a a a a a a a a
aaÿÿaaa _a aaaaaaÿÿaaaaaaaaaaaaaaaa]aaaaa aaaaaaa
000 000000 0000000000000000000000 T 000000
nnnn'nnnnnn'nnnnnn'nnnnnnn'nnn~nnnønnntnì¥ÁnInn

Dbjbj ²³²³

$\Box \Box f$ þ $\Box \Box ar{f U}$ $\Box \Box ar{f A}$ $\Box \Box \Box$	□□□ÿÿ

- □□t□. Comparación de métodos para evaluar aptitud combinatoria general de líneas de maíz (Zea mays L.) con relación al tamaño de muestra del probador. Tesis de Maestría. Rama de Genética. Colegio de posgraduados Chapingo México, 68 Pag.
- Márquez, S.F. 1974. El problema de la interacción genético ambiental en genotecnia vegetal. Editorial Patena A. C. Chapingo, México. Pag. 113.
- Matzinger D. F. 1953. Comparison of three types of testers for evaluation of imbred lines of corn. Agron. Jour. 45: 493-495.
- Morfin V., A. 1990. Cruzas simples tropicales de maíz bajo condiciones de temporal. Memoria del XIII Congreso Nacional de fitogenetica. ESAHE. Cd. Juárez, Chih. Pag. 276.Reyes C. P. 1985. Fitogenotecnia básica y aplicada. Primera edición AGT editor. México. PP. 121-449.
- Poehlman, J. M. 1976. Mejoramiento genético de las cosechas. Ed. Limusa México, D. F. 453 pag.
- Poehlman, J. M. 1979. Mejoramiento genético de las cosechas. Ed. Limusa. México, D. F. 453 pag.
- Poehlman, J. M. 1980. Mejoramiento genético de las cosechas. Ed. Limusa. México, D. F. 453 pag.
- Reyes, M. C. A. 1979. Variedades de bajo y alto rendimiento como probadores de la aptitud combinatoria general de líneas autofecundadas de maíz. Tesis de maestría. Rama de genética. Colegio de Postgrado. Chapingo México.

- Robles S., R. 1990. Terminología Genética y Fitogenetica. Cuarta edición. Editorial Trillas. México. P.P. 16, 71, 87.
- Sinnott, E. W. 1970 Principios de genética. Cuarta edición. Ediciones Omega, S. A. Barcelona, España. Pag. 38.
- Smith, O. S. 1989. Covariance between line per-se and test cross performance Crop Sci. 26: 540-543.
- Shull, G.H. 1909. A pure line method of corn breeding. Am breeders. Assoc. Rep.
- Sprague, G. F. And S, A. Eberhart. 1977. Corn breeding, corn and corn Improvement G.F. Sprague Am. Soc. Agron. Madison, Wisconsin. pp. 305-362.
- Suwantaradon, K. and S. A. Eberhart. 1974. Developing hibrids from two improved maize populations. Theoretical and Applied Genet. 44: 206-210.
- Tzul L., G. 1989. Evaluación de cruzas de prueba de líneas S₂ de maíz (Zea mays
 L.) para Trópico Seco Mexicano. Tesis de Licenciatura. U.A.A.A.N.
 Buenavista, Saltillo, Coah. México.

A P E N D I C E

Cuadro A1. Concentración de medias de las características agronómicas evaluadas y su DMS para la variable rendimiento, para la localidad de Ursulo Galván, Veracruz.

GRUPO 1 UG 97 A 1503 1413 1502 1416 1511 1418 1520	DAM (M) 54 56 56 55 57 56 55	DAF (H) 56 59 57 57 57 58 57	AP (Cm) 210 222 232 205 217 215 217	AM (Cm) 112 107 142 102 100 115 115	AR % 1.0 1.2 1.2 1.9 1.2 2.0	AT % 1.8 1.3 2.8 1.8 2.0 1.5 1.2	MP % 1.9 1.7 1.7 1.5 1.8 1.7 1.5	FSR % 1.0 1.5 1.8 1.2 1.3 1.2	PROLF % 114 113 106 97 118 103	REND. (Ton/ha) 11.0 11.0 9.7 9.2 9.1 9.0 9.0
1516	55	57	230	120	1.4	2.5	1.7	1.2	101	8.9
1501 1404	58 55	58 57	237 245	110 127	1.4 1.0	1.9 1.8	2.0	1.4 1.2	105 102	8.8 8.3
1410	56	58	252	127	1.4	2.9	1.7	1.4	102	8.3
1405	55	57	235	102	1.0	1.8	1.7	1.2	104	8.1
1517	60	63	242	112	1.2	1.7	1.5	1.0	104	8.0
1513	55	57	227	120	1.2	2.0	1.5	1.7	105	8.0
D-880	55	57	187	92	1.6	1.0	1.7	1.3	94	8.0
1408	53	56	205	107	1.6	2.6	1.8	1.2	89	7.5
1512	57	57	237	122	1.2	1.2	1.7	1.0	95	7.3
1506	58	60	232	122	1.2	2.2	1.8	1.4	110	7.2
1423	57	59	217	120	1.9	1.7	1.5	1.0	92	7.2
1419	58	61	205	105	1.0	1.0	1.5	1.5	108	6.8
1505	60	60	247	130	1.0	1.3	1.5	1.3	129	6.5
1521	58	58	225	165	1.6	2.3	1.7	1.0	93	6.0
1422	55	57	220	95	1.6	1.0	1.5	1.0	82	6.0
1504	56	56	215	115	1.4	2.3	1.7	1.0	109	5.8
1518	60	62	262	127	1.7	1.8	2.0	1.3	95	5.2

Cuadro A1..... Continuación

GRUPO 2	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROLF	REND.
UG 97 A	(M)	(H)	(m)	(Cm)	%	%	%	%	%	(Ton/ha)
D-880	55	57	195	102	1.4	1.4	1.7	1.5	98	9.5
1606	55	57	195	92	1.7	1.8	1.8	1.0	125	9.3
1604	55	58	230	112	1.9	2.3	1.8	1.3	107	9.3
1608	54	56	222	115	1.4	2.4	1.8	1.3	103	9.2
1612	55	57	220	107	1.2	1.5	2.5	1.0	112	9.1
1623	58	58	230	120	1.2	2.2	1.8	1.3	157	9.0
1622	58	58	237	115	1.2	1.3	1.7	1.2	113	8.9
1614	57	59	217	115	1.7	3.1	1.8	1.5	101	8.7
1621	58	58	205	115	1.0	1.5	1.7	1.3	101	8.7

1620	55	57	195	105	1.2	1.4	1.9	1.7	98	8.7
1611	54	56	212	105	1.6	1.3	1.8	1.5	115	8.3
1607	57	58	237	130	1.0	1.5	1.7	1.0	102	8.3
1609	55	58	207	102	1.2	2.7	1.8	1.0	91	8.3
1624	58	58	240	125	1.6	1.5	1.7	2.4	120	8.1
1616	56	58	242	130	1.2	1.7	1.8	1.8	104	8.1
1617	56	58	250	125	1.0	1.4	1.8	1.0	121	7.4
1524	58	60	225	115	1.4	1.9	1.8	1.0	101	7.2
1615	56	58	245	137	1.6	2.2	1.8	1.8	124	6.7
1605	56	58	237	115	1.2	2.3	1.8	1.5	119	5.7
1602	58	58	215	107	2.1	1.9	1.7	1.0	95	5.6
1523	60	62	235	125	1.0	1.2	1.5	1.0	139	5.3
1601	57	59	212	97	1.4	1.8	1.7	1.0	86	5.1
1618	57	57	237	107	1.2	1.4	1.8	1.5	105	4.8

Cuadro A1 Continuación

GRUPO 3	DAM	DAF	AP	AM	AR	ΑT	MP	FSR	PROLF	REND.
UG 97 A	(M)	(H)	(Cm)	(Cm)	%	%	%	%	%	(Ton/ha)
1704	58	58	235	125	1.4	2.1	2.1	1.0	102	11.0
1703	56	58	240	127	1.6	1.6	1.8	1.2	100	10.0
1712	58	60	232	120	1.4	1.4	1.8	1.2	99	9.5
1806	57	59	232	132	1.2	1.9	1.7	1.2	118	8.9
1710	56	58	247	120	1.2	1.7	1.8	1.2	105	8.7
1711	56	58	222	95	1.4	2.3	1.7	1.0	104	8.7
1725	55	57	240	105	1.6	2.3	1.7	1.3	95	8.5
1724	57	59	245	120	1.6	2.5	1.7	1.5	108	8.2
1801	56	58	227	120	1.0	1.3	2.0	1.3	98	7.8
1808	58	58	212	112	1.7	1.2	1.8	1.2	95	7.8
1719	56	58	207	102	1.2	2.3	1.8	1.0	91	7.5
1709	58	59	225	107	1.2	1.7	1.7	1.3	118	7.2
D-880	55	57	170	87	1.2	1.4	1.8	1.5	92	7.2
1707	58	58	237	115	1.2	1.5	1.7	1.0	109	6.9
1804	57	59	245	132	1.2	1.5	2.0	1.2	103	6.9
1720	56	58	237	135	1.2	1.7	1.7	1.2	86	6.8
1716	56	58	205	95	1.2	1.7	1.8	1.5	97	6.5
1714	56	58	217	100	1.4	2.8	1.8	1.3	143	6.3
1715	56	58	245	110	1.4	2.2	1.8	1.5	130	6.1
1706	57	58	235	115	1.0	1.2	1.5	1.0	107	5.8
1708	58	60	225	92	1.7	1.3	1.7	1.0	90	5.7
1803	59	58	230	110	1.0	1.2	1.8	1.3	100	2.8

GRUPO 4	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROLF	REND.
UG 97 A	(M)	(H)	(Cm)	(Cm)	%	%	%	%	%	(Ton/ha)
1810	58	60	242	117	1.0	1.5	1.8	1.2	103	9.0
1921	56	58	237	110	1.6	2.0	1.8	1.5	95	8.7
1814	56	58	232	105	1.4	1.5	1.8	1.2	104	8.1
1904	57	58	225	122	1.2	3.5	1.7	1.6	118	7.9
D-880	55	57	197	102	1.2	1.6	2.0	1.5	86	7.9
1919	57	58	237	117	1.4	1.5	1.7	1.3	92	7.8
1911	55	57	205	105	1.7	1.7	1.7	1.3	112	7.7
1922	55	57	227	115	1.4	1.8	1.8	1.0	114	7.5
1824	58	58	197	95	1.0	1.2	1.8	1.4	124	7.1
1912	57	57	217	100	1.6	1.9	1.8	1.3	101	7.1
1920	59	61	220	107	1.6	1.8	1.7	1.3	98	7.1
1913	56	58	225	107	1.9	2.2	1.7	1.5	97	6.8
1811	57	58	252	125	1.9	1.0	1.7	1.0	94	6.8
1910	58	59	245	110	1.0	1.5	1.7	1.5	117	6.7
1821	58	59	212	115	1.4	1.8	1.8	1.2	100	6.6
1923	56	58	232	102	1.7	1.3	1.8	1.2	80	6.4
1903	58	60	232	112	1.2	2.0	1.8	1.0	91	6.3
1809	57	58	235	122	1.9	1.2	1.7	1.0	105	6.2
1815	55	57	220	112	1.0	1.8	1.7	2.0	104	6.1
1813	60	62	210	105	1.4	1.8	1.7	1.3	114	5.7
1918	60	62	250	135	1.2	1.7	1.7	1.5	100	5.3
41825	57	58	112	107	1.4	1.5	1.7	1.7	116	5.0
1905	57	58	195	110	1.4	2.1	1.7	1.4	94	4.6
1817	55	57	247	135	1.2	1.2	1.7	1.5	108	4.2
Cuad	ro A1		Contin	uación						
GRUPO 5	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROLF	REND.
110 07 4	/ N // N	71.15	(0)	(0)	0/	0/	07	0/	0/	/T /l \

GRUPO 5	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROLF	REND.
UG 97 A	(M)	(H)	(Cm)	(Cm)	%	%	%	%	%	(Ton/ha)
2006	60	62	235	122	1.7	2.1	1.7	1.2	108	9.8
D-880	55	57	190	87	1.4	1.2	1.8	1.2	96	8.9
2010	55	57	232	130	1.2	1.7	1.9	1.2	109	8.7
2019	58	59	225	110	1.6	2.6	2.0	1.8	105	8.2
2011	57	59	215	102	1.4	1.7	2.1	1.0	96	8.1
2003	57	59	230	125	1.6	2.8	1.7	1.3	114	7.7
2012	58	58	225	112	2.0	2.0	1.9	1.2	111	7.6
2008	57	57	222	95	1.2	1.2	2.0	1.0	102	7.5
2017	57	58	222	135	1.2	1.9	1.8	1.0	94	7.3
2009	57	58	205	105	1.6	1.8	2.0	1.0	107	7.2
2107	57	57	207	97	1.0	1.7	1.7	1.0	85	7.2
2007	57	58	220	112	1.6	1.3	1.8	1.7	133	6.8
2002	56	58	225	112	1.2	1.5	1.8	1.2	102	6.7
2024	57	59	230	122	1.5	1.3	1.8	1.0	112	6.4

2102 2023	57 55	59 57	220 197	110 97	1.4 1.9	1.4 2.2	1.7 1.7	1.2 1.0	131 95	5.9 5.9
2021	57	57	217	120	1.0	2.5	1.7	1.3	105	5.7
2101 2004	57 55	59 57	207 247	112 107	1.0 1.6	1.5 2.0	1.7 2.2	1.0 1.5	<mark>94</mark> 89	5.4 5.4
2109	55 57	57 59	225	112	1.6	2.0 1.9	2.2 1.8	1.3	129	5.4
2013	57	59	217	102	1.4	1.5	1.8	1.0	138	5.2
2025	59	60	215	112	1.2	1.5	1.8	1.4	113	5.1
2005	57	58	207	112	1.6	1.7	1.8	1.5	103	5.0
2020	60	60	225	117	1.2	2.3	1.8	1.8	101	4.9
1925	60	60	245	122	1.0	2.3	1.7	1.2	72	4.4

Cuadro A1 Continuación

GRUPO 6	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROLF.	REND.
UG 97 A	(M)	(H)	(Cm)	(Cm)	%	%	%	%	%	(Ton/ha)
2212	58	59	247	140	1.2	1.2	1.7	1.5	92	9.8
2303	55	57	232	112	1.2	2.5	1.8	1.0	103	8.3
D-880	54	56	190	90	1.2	1.0	1.7	1.2	102	8.2
2203	55	57	232	120	1.4	2.2	1.8	1.0	98	8.1
2207	57	57	235	112	1.7	2.4	2.0	1.0	95	7.8
2113	60	61	242	122	1.7	2.3	1.7	1.3	141	7.6
2117	60	60	252	135	1.2	2.7	2.0	1.0	78	7.3
2205	57	58	235	117	1.2	1.9	2.0	1.0	123	7.2
2302	58	58	215	95	1.2	1.8	1.8	1.2	118	7.1
2219	57	57	222	112	1.4	1.5	1.9	1.0	107	6.9
2112	60	61	247	125	1.4	2.2	1.7	1.3	97	6.4
2115	60	61	245	122	1.4	1.5	1.8	1.2	87	6.3
2119	56	58	240	130	1.0	3.2	1.8	1.2	117	5.9
2111	57	57	225	115	1.2	1.5	1.8	1.0	98	5.6
2116	60	61	245	125	1.4	2.1	1.8	1.0	98	5.5
2224	60	61	225	110	1.2	1.2	1.8	1.2	108	5.1

Cuadro A1 Continuación

GRUPO 7	DAM	DAF	AP	AM	AR	ΑT	MP	FSR	PROLF.	REND.
UG 97 A	(M)	(H)	(Cm)	(Cm)	%	%	%	%	%	(Ton/ha)
2325	54	56	242	122	1.4	2.0	1.8	1.5	99	9.7
2421	54	57	217	112	1.0	2.2	1.8	1.2	133	9.2
2304	56	58	250	130	1.7	1.9	1.8	2.0	99	9.2
2422	55	57	235	112	1.2	2.0	1.8	1.7	115	8.8
2405	56	58	230	132	1.4	2.4	1.8	1.4	121	8.4
2317	54	57	225	127	1.7	2.8	1.7	1.5	116	8.0
2420	54	56	225	110	1.9	1.8	1.5	1.2	100	8.0
2311	58	58	230	117	1.0	2.1	1.7	1.5	138	7.9
2415	54	56	237	127	1.4	2.0	2.1	2.3	117	7.5
2312	55	57	245	120	1.4	2.9	1.7	1.7	108	7.5

2417	54	57	222	112	1.0	2.1	1.8	1.5	105	7.5
2324	57	59	247	125	1.2	1.3	2.0	1.0	80	7.5
2305	54	56	235	122	1.2	3.4	1.7	1.5	145	7.3
2319	59	60	230	120	1.6	2.1	1.7	1.3	141	7.2
2408	56	58	210	115	1.7	1.5	2.0	1.4	96	7.2
2412	56	58	232	117	1.2	1.5	2.0	1.2	105	5.7
2410	56	57	237	132	1.0	2.0	1.8	1.8	96	5.7
2307	55	57	227	110	1.2	1.7	1.8	1.3	107	5.0
2320	60	61	225	110	1.4	1.7	2.0	1.2	117	4.8
D-880	54	56	188	98	1.3	1.2	1.7	1.3	94	8.2

Cuadro A2. Concentración de medias de las características agronómicas evaluadas y su DMS para la variable Rendimiento, para la localidad de Juan Rodríguez Clara, Veracruz.

GRUPO 1	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROLF	REND
UG 97 A	(M)	(H)	(Cm)	(Cm)	%	%	%	%	%	(Ton/ha)
1501	46	51	195	87	1.6	1.7	1.0	1.0	95	7.3
1518	58	60	167	87	1.4	3.5	1.0	1.0	111	6.9
1503	50	55	165	82	1.0	2.9	1.4	1.0	97	6.9
1410	55	57	192	90	1.9	2.1	1.7	2.0	98	6.4
1413	58	60	167	75	2.1	2.9	1.0	1.7	90	6.0
1405	55	57	172	72	1.0	3.6	1.0	2.0	98	5.6
D-880	50	55	152	60	1.0	2.6	1.4	2.7	124	5.5
1512	57	59	165	72	2.4	2.3	1.4	1.0	109	5.1
1506	54	58	192	92	1.5	3.2	1.4	1.4	87	5.1
1505	50	55	172	85	1.8	2.4	2.4	2.0	102	4.8
1416	48	53	150	60	1.6	2.6	1.7	2.2	98	4.8
1513	57	60	155	92	1.2	3.7	1.4	1.0	97	4.8
1504	50	55	152	72	1.2	2.4	1.0	1.7	105	4.8
1404	58	60	175	87	1.6	1.4	1.4	1.0	102	4.8
1408	57	60	175	92	1.4	2.8	1.0	1.4	90	4.7
1516	49	54	190	133	1.2	2.3	1.4	1.0	94	4.6
1502	55	60	185	97	1.8	2.4	1.7	3.3	144	4.6
1520	56	59	157	77	1.5	3.2	1.0	1.4	75	4.5
1418	45	50	172	80	1.6	2.7	1.0	1.4	133	4.4
1422	45	50	150	72	1.6	2.5	1.0	2.2	114	4.1
1517	59	60	170	87	1.2	2.0	1.0	2.2	86	4.1
1521	54	57	180	92	1.7	3.0	1.0	1.4	64	3.8
1511	55	60	150	62	1.0	2.0	2.0	1.7	83	3.7
1423	45	50	170	82	1.7	2.5	1.0	1.0	83	3.6
1419	45	50	145	77	1.5	2.0	1.0	1.0	107	2.9

GRUPO 2 UG 97 A 1621 1604 1609 1618 1614 1611 1616 1612 1623 1624 1607 1615 1620 1602 1617 D-880 1606 1523 1605 1601 1608 1608	DAM (M) 48 48 53 55 48 45 53 48 49 50 49 55 50 49 49 49 49	DAF (H) 53 55 59 53 60 58 54 55 54 55 50 55 54 55 60 54 54 54	AP (Cm) 190 167 185 162 197 177 180 170 165 152 177 160 162 172 185 157 167 132 140 172 160	AM (Cm) 92 67 85 65 118 85 103 81 95 75 77 100 85 82 80 62 82 60 75 55 82 72	AR % 1.2 1.9 2.8 1.4 1.2 2.0 1.5 1.2 1.0 1.8 2.1 1.7 1.8 1.7 1.7 2.0 1.4 1.6 1.0	AT % 3.1 4.5 2.6 3.6 2.9 3.0 3.3 3.2 3.1 2.0 3.0 2.8 3.2 1.8 2.9 2.6 3.9 3.5 1.4	MP % 1.0 1.5 2.0 1.5 1.2 1.4 1.2 1.4 1.2 1.0 1.6 1.2 1.2 1.0 1.0 1.1 1.0 1.1 1.0 1.1 1.0 1.0 1.0	FSR % 1.7 1.6 2.2 2.2 1.8 1.7 1.4 2.2 2.3 1.0 1.7 1.4 1.7 3.1 2.0 1.6 1.5 1.8 2.2 1.2 1.2	PROLF % 92 106 100 101 123 84 101 121 98 78 71 96 124 74 149 134 94 75 87 33 74 53	REND. (Ton/ha) 7.4 7.0 7.0 7.0 6.6 6.2 5.9 5.8 5.8 5.8 5.5 5.2 5.2 5.1 4.7 4.4 4.3 4.0 3.8
1524	49	54	187	103	1.7	4.6	1.2	1.6	70	3.7
Cuad	ro A2 .		Contin	uación						
GRUPO 3 UG 97 A 1724 1804 1725 1706 1808 1707 1801 1806 1711 1710 1703 1715 1716 1714	DAM (M) 56 47 48 55 47 50 50 56 48 55 47 53 50	(H) 59	AP (Cm) 182 185 192 152 167 177 160 182 175 175 165 170 187	AM (Cm) 110 77 100 75 70 80 72 95 80 82 82 87 77 90 77	AR % 1.4 1.2 1.6 1.9 1.6 1.0 1.4 1.5 1.2 1.5	AT % 2.2 2.2 3.3 2.5 1.7 3.2 2.1 2.7 3.8 1.6 1.6 2.3 2.6 2.2 2.0	MP % 1.2 1.7 1.4 1.0 1.2 1.4 1.0 1.0 1.2 1.4 1.0 1.0 1.2 1.2 1.7 1.0 1.2	FSR % 1.0 2.5 1.7 1.8 2.2 2.7 1.0 2.1 2.2 1.4 2.1 1.0 1.6 1.7	PROLF % 89 93 90 102 86 71 102 90 124 76 73 86 82 81 97	REND. (Ton/ha) 7.0 6.2 6.2 6.1 6.1 5.9 5.9 5.7 5.5 5.4 5.3 5.3 5.2 5.1

1720	48	53	175	84	1.0	4.5	1.6	1.7	72	5.1
D-880	48	54	147	65	1.4	2.5	1.2	3.8	112	4.7
1704	57	60	182	108	1.2	2.1	1.0	1.0	85	4.7
1712	49	54	160	72	1.4	3.8	1.2	2.0	66	4.7
1719	53	57	170	90	2.1	3.9	1.0	2.2	104	4.4
1709	48	54	172	60	1.0	2.9	1.4	1.6	87	4.0
1803	57	60	185	80	1.2	2.1	1.2	1.9	62	3.5
Cuadro	A2	C	ontinu	ación						
CDLIDO 4 I	рам г	ΛE	ΔD	ΔΙΛ	ΔP	ΔΤΙ	MD	ESD	DDOI E	DENID

GRUPO 4	DAM	DAF	AP	AM	AR	AT I	MP	FSR	PROLF	REND.
UG 97 A	(M)	(H)	(Cm)	(Cm)	%	%	%	%	%	(Ton/ha)
1918	50	55	213	118	1.8	3.2	1.6	2.5	100	7.4
1923	48	52	185	90	1.7	3.1	1.7	1.2	85	7.0
1817	47	53	202	113	2.2	3.0	1.2	2.0	88	6.7
1910	47	53	210	103	1.2	2.6	1.6	2.9	110	6.6
1809	47	53	220	97	1.4	1.9	1.4	2.0	104	6.2
1825	51	55	160	85	1.4	3.3	1.0	2.1	92	5.9
1813	48	53	160	87	1.2	3.2	1.4	2.9	87	5.8
D-880	45	50	145	57	1.4	2.8	1.2	3.0	113	5.5
1815	50	55	162	67	1.9	2.1	1.2	2.7	95	5.5
1814	55	58	185	95	1.0	2.4	1.2	2.1	111	5.3
1821	55	59	182	90	1.7	2.5	1.4	1.8	72	5.3
1824	48	54	165	82	1.4	4.0	1.2	2.2	110	5.2
1922	46	51	170	72	1.4	2.2	1.4	1.7	97	5.2
1810	51	55	187	90	1.2	2.9	1.6	1.6	84	5.2
1911	48	53	160	77	1.0	3.6	1.2	2.2	96	5.1
1912	45	50	182	87	1.4	3.6	1.5	2.2	77	4.9
1811	54	56	202	115	1.5	2.6	1.6	1.9	77	4.9
1913	50	55	172	67	1.0	2.3	1.4	2.5	76	4.6
1904	60	63	175	87	1.4	3.8	2.0	2.8	116	4.5
1905	48	52	182	97	1.2	2.8	1.4	3.2	114	4.5
1920	49	54	167	72	2.0	3.5	2.0	2.6	54	4.3
1919	57	60	172	87	1.2	1.7	1.2	2.1	119	4.0
1921	47	51	195	100	1.2	2.0	1.2	1.5	60	3.9
1903	48	53	147	85	1.2	2.6	1.2	2.2	95	2.9

Cuadro A2 Continuación

GRUPO 5	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROLF	REND.
UG 97 A	(M)	(H)	(Cm)	(Cm)	%	%	%	%	%	(Ton/ha)
2003	55	58	182	77	1.6	5.0	1.7	2.7	87	6.1
2101	46	51	175	100	1.0	3.1	1.2	2.8	85	5.9
2009	49	54	170	80	1.6	2.6	1.8	2.3	60	5.8
2025	49	54	167	60	1.2	3.4	1.2	2.0	65	5.6
2011	45	50	187	92	1.5	2.9	1.2	1.0	104	5.5
2012	47	52	167	80	1.6	2.7	1.2	1.9	80	5.5

45	50	162	87	1.0	4.8	1.6	1.8	73	5.5
49	54	172	87	1.2	3.2	1.0	1.9	91	5.3
56	59	160	87	1.4	2.7	1.2	3.0	60	5.2
48	53	172	95	1.7	3.8	1.4	2.5	96	5.1
48	54	190	90	1.7	3.3	1.4	1.9	69	5.1
52	57	332	103	1.0	4.0	1.4	2.2	63	5.1
52	55	170	103	1.2	3.0	1.2	2.4	73	5.1
48	53	150	57	1.5	3.2	1.2	2.4	87	5.0
50	55	165	77	3.1	2.5	1.4	2.0	73	5.0
49	54	162	87	2.0	2.8	1.2	1.8	73	4.9
48	54	192	100	1.2	3.6	1.0	1.7	66	4.9
48	53	160	80	1.7	2.3	1.6	2.2	126	4.8
49	55	170	87	1.2	3.1	1.7	2.3	88	4.8
54	57	197	97	1.0	1.9	1.2	1.2	138	4.5
54	56	185	100	1.0	3.0	1.2	1.5	73	4.5
47	53	170	57	1.0	2.9	1.4	1.4	74	4.3
46	51	197	95	1.0	2.4	1.6	2.3	75	4.0
50	55	185	80	1.6	2.1	2.0	1.6	69	3.6
49	54	182	100	1.0	2.3	1.2	1.9	83	2.9
	49 56 48 48 52 52 48 50 49 48 49 54 54 47 46 50	49 54 56 59 48 53 48 54 52 57 52 55 48 53 50 55 49 54 48 54 48 53 49 55 54 57 54 56 47 53 46 51 50 55	49 54 172 56 59 160 48 53 172 48 54 190 52 57 332 52 55 170 48 53 150 50 55 165 49 54 162 48 54 192 48 53 160 49 55 170 54 57 197 54 56 185 47 53 170 46 51 197 50 55 185	49 54 172 87 56 59 160 87 48 53 172 95 48 54 190 90 52 57 332 103 52 55 170 103 48 53 150 57 50 55 165 77 49 54 162 87 48 54 192 100 48 53 160 80 49 55 170 87 54 57 197 97 54 56 185 100 47 53 170 57 46 51 197 95 50 55 185 80	49 54 172 87 1.2 56 59 160 87 1.4 48 53 172 95 1.7 48 54 190 90 1.7 52 57 332 103 1.0 52 55 170 103 1.2 48 53 150 57 1.5 50 55 165 77 3.1 49 54 162 87 2.0 48 54 192 100 1.2 48 53 160 80 1.7 49 55 170 87 1.2 54 57 197 97 1.0 54 56 185 100 1.0 47 53 170 57 1.0 46 51 197 95 1.0 50 55 185 80 1.6	49 54 172 87 1.2 3.2 56 59 160 87 1.4 2.7 48 53 172 95 1.7 3.8 48 54 190 90 1.7 3.3 52 57 332 103 1.0 4.0 52 55 170 103 1.2 3.0 48 53 150 57 1.5 3.2 50 55 165 77 3.1 2.5 49 54 162 87 2.0 2.8 48 54 192 100 1.2 3.6 48 53 160 80 1.7 2.3 49 55 170 87 1.2 3.1 54 57 197 97 1.0 1.9 54 56 185 100 1.0 3.0 47 53 170 57 1.0 2.9 46 51 197 95 <td>49 54 172 87 1.2 3.2 1.0 56 59 160 87 1.4 2.7 1.2 48 53 172 95 1.7 3.8 1.4 48 54 190 90 1.7 3.3 1.4 52 57 332 103 1.0 4.0 1.4 52 55 170 103 1.2 3.0 1.2 48 53 150 57 1.5 3.2 1.2 50 55 165 77 3.1 2.5 1.4 49 54 162 87 2.0 2.8 1.2 48 54 192 100 1.2 3.6 1.0 48 53 160 80 1.7 2.3 1.6 49 55 170 87 1.2 3.1 1.7 54 57 197 97 1.0 1.9 1.2 54 56 185 100 1</td> <td>49 54 172 87 1.2 3.2 1.0 1.9 56 59 160 87 1.4 2.7 1.2 3.0 48 53 172 95 1.7 3.8 1.4 2.5 48 54 190 90 1.7 3.3 1.4 1.9 52 57 332 103 1.0 4.0 1.4 2.2 52 55 170 103 1.2 3.0 1.2 2.4 48 53 150 57 1.5 3.2 1.2 2.4 48 53 150 57 1.5 3.2 1.2 2.4 49 54 162 87 2.0 2.8 1.2 1.8 48 54 192 100 1.2 3.6 1.0 1.7 48 53 160 80 1.7 2.3 1.6 2.2 49 55 170 87 1.2 3.1 1.7 2.3</td> <td>49 54 172 87 1.2 3.2 1.0 1.9 91 56 59 160 87 1.4 2.7 1.2 3.0 60 48 53 172 95 1.7 3.8 1.4 2.5 96 48 54 190 90 1.7 3.3 1.4 1.9 69 52 57 332 103 1.0 4.0 1.4 2.2 63 52 55 170 103 1.2 3.0 1.2 2.4 73 48 53 150 57 1.5 3.2 1.2 2.4 87 50 55 165 77 3.1 2.5 1.4 2.0 73 49 54 162 87 2.0 2.8 1.2 1.8 73 48 54 192 100 1.2 3.6 1.0 1.7 66 48 53 160 80 1.7 2.3 1.6 2.2 126</td>	49 54 172 87 1.2 3.2 1.0 56 59 160 87 1.4 2.7 1.2 48 53 172 95 1.7 3.8 1.4 48 54 190 90 1.7 3.3 1.4 52 57 332 103 1.0 4.0 1.4 52 55 170 103 1.2 3.0 1.2 48 53 150 57 1.5 3.2 1.2 50 55 165 77 3.1 2.5 1.4 49 54 162 87 2.0 2.8 1.2 48 54 192 100 1.2 3.6 1.0 48 53 160 80 1.7 2.3 1.6 49 55 170 87 1.2 3.1 1.7 54 57 197 97 1.0 1.9 1.2 54 56 185 100 1	49 54 172 87 1.2 3.2 1.0 1.9 56 59 160 87 1.4 2.7 1.2 3.0 48 53 172 95 1.7 3.8 1.4 2.5 48 54 190 90 1.7 3.3 1.4 1.9 52 57 332 103 1.0 4.0 1.4 2.2 52 55 170 103 1.2 3.0 1.2 2.4 48 53 150 57 1.5 3.2 1.2 2.4 48 53 150 57 1.5 3.2 1.2 2.4 49 54 162 87 2.0 2.8 1.2 1.8 48 54 192 100 1.2 3.6 1.0 1.7 48 53 160 80 1.7 2.3 1.6 2.2 49 55 170 87 1.2 3.1 1.7 2.3	49 54 172 87 1.2 3.2 1.0 1.9 91 56 59 160 87 1.4 2.7 1.2 3.0 60 48 53 172 95 1.7 3.8 1.4 2.5 96 48 54 190 90 1.7 3.3 1.4 1.9 69 52 57 332 103 1.0 4.0 1.4 2.2 63 52 55 170 103 1.2 3.0 1.2 2.4 73 48 53 150 57 1.5 3.2 1.2 2.4 87 50 55 165 77 3.1 2.5 1.4 2.0 73 49 54 162 87 2.0 2.8 1.2 1.8 73 48 54 192 100 1.2 3.6 1.0 1.7 66 48 53 160 80 1.7 2.3 1.6 2.2 126

Cuadro A2 Continuación

GRUPO 6	DAM	DAF	AP	AM	AR	AT	MP	FSR	PROLF	REND.
UG 97 A	(M)	(H)	(Cm)	(Cm)	%	%	%	%	%	(Ton/ha)
2212	49	53	192	118	2.0	3.2	1.5	1.6	87	5.9
2113	48	55	177	70	1.9	2.7	1.2	2.5	101	5.5
D-880	48	55	147	60	1.7	4.0	1.0	3.5	84	5.1
2219	45	50	180	90	1.5	3.4	1.4	2.4	92	5.1
2116	45	50	177	87	1.0	2.4	1.4	2.8	100	4.8
2303	50	56	177	85	1.0	3.6	1.4	3.4	79	4.8
2302	48	54	177	75	1.2	2.3	1.7	3.0	94	4.7
2224	54	56	185	100	1.2	1.9	1.6	1.9	85	4.7
2205	48	53	182	80	1.4	3.8	1.9	2.0	76	4.4
2112	60	63	192	113	1.4	3.0	1.5	1.9	71	4.3
2117	56	59	170	87	1.0	2.3	1.2	1.9	94	4.0
2203	48	53	180	95	1.0	2.8	1.0	1.8	72	4.0
2111	53	57	155	65	1.2	2.9	1.2	2.3	74	3.8
2119	46	51	180	100	1.2	2.8	1.0	2.2	110	3.7
2207	56	59	160	75	1.0	2.1	1.6	2.0	57	3.5
2115	49	54	182	100	1.0	2.0	1.6	2.3	83	3.3

Cuadro A2 Continuación

GRUPO 7	DAM	DAF	AP	AM	AR	ΑT	MP	FSR	PROLF	REND.
UG 97 A	(M)	(H)	(Cm)	(Cm)	%	%	%	%	%	(Ton/ha)
2324	48	53	148	75	1.3	1.8	1.0	1.8	93	7.1
2421	46	51	178	88	1.5	2.9	1.0	1.8	87	6.0
2307	51	56	175	85	1.2	2.2	1.0	2.0	111	5.9
2319	58	63	150	83	1.2	2.7	1.2	1.5	80	5.9
2317	48	54	168	80	1.9	4.0	1.2	3.0	104	5.7
D-880	47	53	149	60	1.4	3.0	1.2	2.9	105	5.1
2312	47	52	163	88	1.2	2.7	1.3	2.1	100	5.1
2320	49	55	180	85	1.7	3.5	1.0	2.2	95	4.8
2415	46	51	185	88	1.6	2.6	1.3	2.9	88	4.8
2305	44	49	145	55	1.5	3.0	1.8	2.2	110	4.7
2422	46	52	158	83	1.6	2.8	1.7	2.0	86	4.7
2304	45	50	165	90	1.8	2.3	1.2	1.7	79	4.5
2420	49	54	165	73	1.0	2.4	1.5	2.1	86	4.4
2311	49	54	173	88	1.5	2.7	1.0	1.3	84	4.2
2412	49	54	185	88	1.0	2.9	1.4	2.2	86	4.4
2417	45	50	168	88	1.2	4.4	1.5	1.8	81	4.4
2405	47	52	165	78	1.5	2.0	1.4	2.1	84	4.0
2325	47	52	185	85	1.5	2.7	1.2	2.5	83	3.8
2410	46	51	175	80	1.0	2.2	1.2	2.0	100	3.6
2408	49	56	135	73	1.0	2.1	1.2	1.7	76	3.6