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EN EL PROBLEMA DE PRUEBA DE HIPÓTESIS
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Este trabajo trata sobre dos aspectos fundamentales en la teoŕıa de prueba de

hipótesis para modelos estad́ısticos paramétricos, a saber, (i) la posibilidad de

comenter errores al decidir sobre la validez de una hipótesis dada o su hipótesis

complementaria, y (ii) la noción de insesgamiento de una prueba. Los principales

objetivos son (i) establecer una cota inferior para las probabilidades de decidir

incorrectamente entre dos hipótesis complementarias dadas, y (ii) demostrar que

una prueba de Neyman-Pearson es insesgada en el sentido estricto. La exposición

inicia con una descripción breve del problema de prueba de hipótesis en mo-

delos paramétricos, para continuar con una discusión de los posibles errores en

que se puede incurrir al tratar de determinar la validez de una hipótesis o de

su complementaria basándose en una observación aleatoria; el resultado princi-

pal que se obtiene es una cota inferior para la suma de los posibles errores de

decisión, mostrando que dicha cota es, generalmente, positiva y que, bajo condi-

ciones menores, es igual a uno. Adicionalmente, se discute la construcción de

pruebas de Neyman-Pearson para decidir entre dos hipótesis simples y se establece

el insesgamiento estricto de dichas pruebas.

iv



ABSTRACT

STRICT UNBIASEDNESS AND DECISION ERRORS

IN HYPOTHESIS TESTING

BY
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This work is concerned with two basic aspects in the theory of hypothesis testing

in the context of parametric statistical models, namely, (i) the possibility of taking

incorrect decisions when the validity of one of two complementary hypothesis is

assessed, and (ii) the idea of unbiased test. The main objectives of the thesis

are (i) to establish a lower bound for the probabilities of deciding incorrectly

between to given complementary hypothesis, and (ii) to prove that a Neyman-

Pearson test is strictly unbiased. La exposition begins with a brief description of

the testing problem for parametric models, and continues discussing the potential

errors that can occur when a random observation vector is used to decide between

to complementary hypothesis; the main result established in this direction is that

the sum of the probabilities of the possible errors is bounded below by a number

that, generally, is positive and, moreover, under mild conditions it is shown that

such a bound is equal to 1. Additionally, the existence and construction of a

Neyman-Pearson test is discussed, and it is proved that such a test is strictly

unbiased.
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Chapter 1

A General Perspective of This Work

This chapter presents a brief outline of this work, establishing the main objectives and

describing the organization of the subsequent material. The main contributions are clearly

stated.

1.1. Introduction

This work deals with the problem of hypothesis testing in the context of parametric statis-

tical models, which lays in the core of the classical statistical methodology. For instance,

the most basic statistical technique used in agriculture is the so called analysis of variance,

which is widely used to compare the effects of diverse treatments applied to experimental

units; when an analysis of variance is performed, the first objective is to decide whether or

not the treatments produce different effects on the experimental units, that is, to test the

claim of absence of treatments effects. In the area of quality control, an important problem

is to test that the real characteristic X of a product has the value δ stipulated by the

design, and that such a characteristic does not change substantially among the different

products. Two graphical devices are used in industry—the X and R charts—to decide if

the real characteristic coincides in the average with δ and to check if the variability of the

relevant characteristic is not larger than the admissible tolerance. Every time that those

charts are used, a test of a statistical hypothesis is performed (Montgomery, 2011).

On the other hand, due to its practical and theoretical relevance, every treatise on

Statistics dedicates a good amount of space to study the problem of hypothesis testing,

analyzing the construction of statistical tests with optimality properties (Dudewicz and

Mishra 1998, Wackerly et al. 2009, Lehmann and Romano 1999, or Graybill 2000).
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The topics studied in the following chapters are mainly concentrated on three aspects

of the theory of hypothesis testing:

(i) The analysis of the errors that can occur when a statistical test is used;

(ii) The existence and construction of optimal tests for a given problem of hypoth-

esis testing, and

(iii) The dependence of an optimal statistical test on sufficient statistics.

Each one of the results presented below are illustrated by detailed examples.

1.2. Testing a Parametric Hypothesis

The purpose of a statistical analysis is to use the observed data to gain knowledge about

some unknown aspect of the process generating the observations. The observable data

X = (X1, X2, . . . , Xn) is thought of as a random vector whose distribution is not completely

known. Rather, theoretical or modeling considerations lead to assume that the distribution

of X, say PX, belongs to a certain family F of probability measures defined on (the Borel

class of) IRn:

PX ∈ F . (1.2.1)

This is a statistical model, and in any practical instance it is necessary to include a precise

definition of the family F . In this work, the main interest concentrates on parametric mod-

els, for which the family F can be indexed by a k-dimensional vector θ whose components

are real numbers; in such a case the set of possible values of θ, which is referred to as the

parameter space, will be denoted be Θ and F can be written as

F = {Pθ | θ ∈ Θ}.

In this context the model (1.2.1) ensures that there exists some parameter θ∗ ∈ Θ such that

PX = Pθ∗ , that is, for every (Borel) subset A of IRn

P [X ∈ A] = PX[A] = Pθ∗ [A]. (1.2.2)

The parameter θ∗ satisfying this relation for every (Borel) subset of IRn is the true parameter

value. Notice that the model prescribes the existence of θ∗ ∈ Θ such that the above equality

always holds, but does not specify which is the parameter θ∗; it is only supposed that θ∗

belongs to the parameter space Θ. Indeed, the lack of exact knowledge of θ∗ represents ‘the

aspects that are not completely known’ to the analyst about the real process generating the

observation vector X. One way of getting knowledge about the unknown true parameter

value θ∗ can be described as follows: Suppose that the reseacher has reasons to think that

θ∗ belongs to a certain subset Θ0 of the parameter space Θ, i.e., that

H: θ∗ ∈ Θ0; (1.2.3)
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such an statement is a (parametric) hypothesis and the objective of the analyst is to use

the observed values of the data vector X to decide whether or not H occurs. If based on the

observed value of X it is decided that H is a correct statement, that is, that θ∗ ∈ Θ0, then

knowledge is gained about θ∗: originally, it was known that θ ∈ Θ, but after the observation

of X it is declared that θ belongs to the smaller subset Θ0, so that the statement θ ∈ Θ0

represents less uncertainty than θ ∈ Θ. On the other hand, if the observation X leads the

analyst to conclude that H is false, then it will be declared that θ∗ does not belong to Θ0;

since θ is assumed to be a member of Θ, the conclusion is that the statement

K: θ ∈ Θ \Θ0

holds; since the set Θ \ Θ0 is smaller than Θ0, the above statement also represents less

uncertainty than the original inclusion θ ∈ Θ0. In short, assuming that after the observation

of X the analyst can declare that H is a correct or an incorrect statement, knowledge about

Θ will be improved after the experiment. However, in practice a definitive conclusion about

the validity of a hypothesis like H above can not be established, that is, it is possible to

take an incorrect decision, and two errors are possible:

• To declare that H: θ ∈ Θ0 is false when it is true, and

• To declare that K: θ ∈ Θ \Θ0 is false when it is true.

The (largest) probabilities of incurring in these errors are denoted by E(H) and E(K),

respectively, and it will be shown explicitly that both error probabilities E(H) and E(K) can

not be made simultaneously small. Indeed, a positive lower bound for the sum E(H)+E(K)

will be obtained, so that if E(H) is ‘small’, then E(K) is necessarily ‘large’. It follows that

designing a rule to decide which of H or K is valid is a complex and interesting problem, a

fact that provides the motivation for this work.

1.3. Main Objectives and Contributions

As already mentioned, this note is concerned with the hypothesis testing problem which

can be roughly described as follows: Given a statistical model for an observation vector X

whose distribution depends on an unknown parameter θ, it is desired to decide whether or

not a statement of the form H: θ ∈ Θ0 is valid. Any rule based on the observed value of

X that is used to take a decision about the validity of H is called a test, and the general

objective of this work is to study the construction and properties of a ‘good’ test.

The main specific goals of the thesis are as follows:

(i) To establish a lower bound for the (largest) probabilities of taking an incor-

rect decision when the validity of a hypothesis H: θ ∈ Θ0 or the complementary

statement K: θ ∈ Θ \Θ0 are being assessed. The lower bound established below is

explicit and holds for every possible decision rule (test) that is used by the analyst.
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(ii) To prove that, for the testing problem H: θ = θ0 versus K: θ = θ1, the optimal

test is strictly unbiased; the unbiasedness property is a desirable property of any

test, and the result in this direction is an improvement of the conclusions usually

stated in classical treatises.

(iii) To illustrate the diverse ideas studied below using carefully analyzed examples.

The main contributions presented below can be briefly described as follows: As for the first

objective, it is established that the largest error probabilities E(H) and E(K) satisfy

E(H) + E(K) ≥ `(H,K)

where `(H,K) is a generally positive number depending on the model, but not on the test

used to decide whether or not H is a valid claim; moreover, it is shown that under the mild

condition that the sets Θ0 and Θ\Θ0 share a boundary point, such a lower bound is equal to

1. Concerning the second objective, the main conclusion establishes that, for the problem

of testing H: θ = θ0 versus K: θ = θ1, the relation E(H) < 1− E(K) occurs, improving the

inequality E(H) ≤ 1− E(K) that is usually presented in the literature. Finally, it is worth

mentioning that the examples presented below are analized in full detail, paying attention

to all relevant technical arguments, a feature that makes the presentation self-contained.

1.4. The Origin of This Work

This work may be considered as a product of the activities developed in the project Mathe-

matical Statistics: Elements of Theory and Examples, started on July 2011 by the Graduate

Program in Statistics at the Universidad Autónoma Agraria Antonio Narro; the founder

students were Mary Carmen Ruiz Moreno and Alfonso Soto Almaguer, and other partic-

ipants include Ana Paula Isais, Alberto Aguilar, Maŕıa Elena Berlanga, Julieta Bautista,

and Maŕıa de Jesús Pinales Chávez. The basic aims of the project are:

(i) To be a framework were statistical problems can be freely and fruitfully discussed;

(ii) To promote the understanding of basic statistical and analytical tools through the

analysis and detailed solution of exercises.

(iii) To develop the writing skills of the participants, generating an organized set of neatly

solved examples, which can used by other members of the program, as well as by the

statistical communities in other institutions and countries.

(iv) To develop the communication skills of the students and faculty through the regular

participation in seminars, were the results of their activities are discussed with the members

of the program.

The activities of the project are concerned with fundamental statistical theory at an

intermediate (non-measure theoretical) level, as in the book Mathematical Statistics by
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Dudewicz and Mishra (1998). When necessary, other more advanced references that have

been useful are Lehmann and Casella (1998), Borobkov (1999) and Shao (2010), whereas

deeper probabilistic aspects have been studied in the classical text by Loève (1984). On

the other hand, statistical analysis requires algebraic and analytical tools, and in these

directions the basic references in the project are Apostol (1980), Fulks (1980), Khuri (2002)

and Royden (2003), which concern mathematical analysis, whereas the algebraic aspects

are covered in Graybill (2001) and Harville (2008). Initially, the project was concerned

with the theory of Point Estimation and, starting on July 2012, the Theory of Hypothesis

Testing has been studied; these work, as well as the one in Pinales Chávez (2013), may be

considered as a product of all the activities of the project during the last year, and reflect

the discussions and different perspectives of analysis of all the participants. In particular,

it is a real pleasure to thank to my classmate, Alfonso Soto Almaguer, by his generous help

and clever suggestions.

1.5. The Organization

The remainder of this work has been organized as follows:

In Chapter 2 the basic ideas and terminology involved in the study of hypothesis testing

are introduced. The presentation begins with a brief description of a parametric statistical

model, and then the notion of statistical hypothesis is introduced. Next, after presenting

the ideas of simple, composite and complementary hypothesis, the notion of (deterministic,

non-randomized) test is formally defined, and the exposition concludes studying the concept

of randomized test.

Next, in Chapter 3 the possibility of taking an incorrect decision when testing a hy-

pothesis H is studied. The main conclusion to be established below is that, regardless of

the test γ used by the analyst, the possibility of an erroneous decision can not be generally

avoided. The main contributions of this work are stated in Theorem 3.1, and Lemmas 3.2.1

and 3.3.1.

Then, Chapter 4 is concerned with parametric statistical models whose parameter

space consists of two points θ0 and θ1, and the problem of testing the hypothesis H0: θ = θ0

versus H1: θ = θ1 is studied. For this problem, the existence of an optimal (most powerful)

test is rigorously established and it is proved that such a test is unbiased.

Finally, the exposition concludes in Chapter 5 analyzing two basic properties that are

satisfied by a most powerful test. The first one concerns a natural and intuitive condition:

Under a reasonable test, the probability of rejecting the null hypothesis when it is false must

be at least equal to the probability of rejection when H0 is true; a test with this property

is called unbiased. The second property refers to the information that must be gathered

in order to apply a most powerful test. The main result in this direction establishes that,
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when a simple hypothesis is being tested versus another simple hypothesis, a most powerful

test can be always specified in terms of a sufficient statistic. The main contribution of this

chapter is Theorem 5.4.1, establishing that a Neyman-Pearson test is strictly unbiased.



Chapter 2

Test of Hypothesis

In this chapter the basic ideas and terminology involved in the study of hypothesis

testing are introduced. The presentation begins with a brief description of a parametric

statistical model, and then the notion of statistical hypothesis is introduced. Next, af-

ter presenting the ideas of simple, composite and complementary hypothesis, the notion

of (deterministic, non-randomized) test is formally defined, and the exposition concludes

studying the concept of randomized test.

2.1. Statistical Models

A statistical model for a random vector postulates that the distribution of the vector belongs

to a certain family of probability measures. As it was already mentioned, in this work it will

be assumed that the class of potential distributions of the observation vector X is indexed

by a parameter θ whose components are real numbers, and Pθ stands for the distribution

associated with θ. Thus, a statistical model may be written as

X ∼ Pθ, θ ∈ Θ, (2.1.1)

where X = (X1, X2, . . . , Xn) is the observation vector and, for each θ in the parameter

space Θ ⊂ IRk, the probability measure Pθ is defined on (the Borel sets of) IRn. This

model prescribes that the distribution PX of the observation vector X is Pθ for some

θ ∈ Θ, that is,

there exists θ ∈ Θ such that for ‘any set A ⊂ IRn’ the

probability that X belongs to A is PX[A] = Pθ[A].

7
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More explicitly, there exists θ ∈ Θ such that

(i) If Pθ is a continuous distribution with density f(x; θ), then

PX [A] = P [X ∈ A] =

∫
A

f(x; θ) dx,

and

(ii) If Pθ is a discrete distribution with probability function f(x; θ), then

PX [A] = P [X ∈ A] =
∑
x∈A

f(x; θ).

The following basic identifiability condition is enforced throughout the remainder.

Assumption 2.1.1. For each θ0, θ1 ∈ Θ with θ0 6= θ1, the corresponding distributions are

different. More explicitly, if θ0 6= θ1, then there exists a set A such that

Pθ0 [A] 6= Pθ1 [A].

In words, this condition establishes that, for the model (2.1.1), different parameters cor-

respond to different distributions.

Remark 2.1.1. Usually, a statistical model is specified by giving a condition that allows to

determine a family of probability measures containing the distribution of the observation

vector X. A common situation is as follows:

(i) It is supposed that the components of X are independent and identically dis-

tributed with common density or probability function f(·; θ), and

(ii) The unknown parameter θ is a member of a given set Θ,

requirements that are summarized as

X1, X2, . . . , Xn ∼ i .i .d . f(x; θ), θ ∈ Θ. (2.1.2)

When the common density or probability function of the variables Xi is f(x; θ), the in-

dependence property in condition (i) yields that the distribution of X is the probability

measure Pθ specifying that, for each (Borel) set A ⊂ IRn,

Pθ[A] =


∫
A

f(x1; θ)f(x2; θ) · · · f(xn; θ) dx, if f(·; θ) is a density,∑
x∈A

f(x1; θ)f(x2; θ) · · · f(xn; θ), if f(·; θ) is a probability function,

where

x = (x1, x2, . . . , xn) and dx = dx1 dx2 · · · dxn;
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since condition (ii) establishes that θ is an arbitrary element of parameter space Θ, the

statement (2.1.2) is equivalent to (2.1.1), On the other hand, the above conditions (i) and

(ii) are frequently summarized as

X is a sample of f(x; θ), θ ∈ Θ,

so that this statement and (2.1.2) are equivalent; if the distribution corresponding to f(·; θ)
is denoted by D(θ), then the above display and

X is a sample of D(θ), θ ∈ Θ

are equivalent statements. tu

2.2. Statistical Hypothesis

Notice that the specific parameter value θ that corresponds to the distribution of X is

unknown, because the model prescribes only that such a parameter belongs to the space Θ.

The objective of performing the experiment rendering the vector X is to use the observed

value X = x to obtain ‘information’ about the precise or true value of θ such that PX = Pθ;

the statistical procedures using the observed values of X to obtain ‘conclusions’ about the

true parameter value constitute that is called statistical inference. This chapter studies a

particular form of statistical inference called hypothesis testing which can be described as

follows:

Originally, the model prescribes that the distribution PX of X is a member of

the family {Pθ, θ ∈ Θ}, and the problem consists in deciding whether or not the

observed values of X support the assertion that the distribution of X belongs to

the smaller family {Pθ, θ ∈ Θ0}, where Θ0 is a subset of Θ.

Definition 2.2.1. Consider the statistical model (2.1.1) for the observation vector X. A

hypothesis H is a statement of the form

H : θ ∈ Θ0, (2.2.1)

where Θ0 is a subset of the parameter space Θ.

The hypothesis (2.2.1) is interpreted as the assertion that the distribution of X belongs

to the reduced family {Pθ, θ ∈ Θ0}, and represents conditions whose validity is of interest

for the analyst

Example 2.2.1. To study the labor security in a local factory, the number of accidents

X1, X2, . . . , Xn occurring in n weeks is recorded. Suppose that the variables Xi are inde-

pendent and identically distributed random variables with Poisson distribution:

X1, X2, . . . , Xn is a sample of P(θ), θ > 0.
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In this case the parameter space is Θ = (0,∞) and the (unknown) parameter θ is the ex-

pected number of accidents in a week. Several hypothesis might be of interest. For instance,

suppose that in other countries the expected number of accidents in similar factories is 3.

(i) The condition that the security in the national factory is higher than the one in foreign

factories is expressed by the hypothesis H : θ ∈ (0, 3), that is,

H : θ < 3.

(ii) The hypothesis

H : θ = 3

is interpreted as the assertion that the security in the local factory is the same as in the

foreign ones, whereas

(iii) The assertion that the security in the local factory is worse than the one in foreign

factories is expressed as

H : θ > 3

In each one of these cases the problem is to see if the observed value of the variables

X1, X2, . . . , Xn support the validity of the corresponding hypothesis. tu

2.3. Simple, Composite and Complementary Hypothesis

In this section a simple classification of hypothesis is formulated and the idea of comple-

mentary hypothesis is introduced.

Definition 2.3.1. A hypothesis H : θ ∈ Θ0 is simple if Θ0 = {θ0} is a singleton, so that H
can be expressed as

H: θ = θ0,

whereas H is composite when Θ0 has two or more elements.

In the context of Example 2.2.1 the Hypothesis in parts (i) and (iii) are composite,

whereas the Hypothesis H : θ = 3 in part (ii) is simple. The following examples discuss the

ideas in Definition 2.3.1.

Exercise 2.3.1. Suppose that , X1, X2, . . . , Xn is a sample of N (µ, σ2).

(i) If σ2 is known, determine whether each hypothesis is simple or composite, where µ0 is

a known constant.

(a) H : µ = µ0;

(b) H : µ > µ0;
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(c) H : µ 6= µ0;

(d) H : µ ∈ I, where I is a specified interval with positive length.

(ii) If σ2 is unknown, determine whether each of the four hypothesis formulated above is

simple or composite.

Solution. (i) Notice that the parameter is µ, and the parameter space is (−∞,∞). In case

(a) the value of the parameter is completely determined by the hypothesis, which can be

written as H : µ ∈ {µ0}, and then the hypothesis is simple. However, in cases (b), (c)

and (d), the hypothesis is composite, since it does not determine exactly the value of the

parameter. For instance, H can be written as

H : µ ∈ (µ0,∞)

in case (b), and as

H:µ ∈ (−∞, µ0) ∪ (µ0,∞)

in case (c).

(ii) In this context, the parameter is θ = (µ, σ2) and

Θ = {(µ, σ2) |µ ∈ IR, σ2 > 0} = IR× (0,∞).

is the parameter space. Neither of the hypothesis determines the value of θ = (µ, σ2)

exactly, and then all of the hypothesis are composite. For instance, H can be written as

H: θ = (µ, σ2) ∈ Θ0 = {0} × (0,∞) in case (a), and then, since Θ0 contains more than one

element, it follows that H is composite. tu

Remark 2.3.1. Other common formulation of the idea of simple hypothesis is the following:

A hypothesis H is simple if, under H, the distribution of the observation vector is

uniquely determined.

Notice that if H can be expressed as H: θ = θ0 (where θ0 is known), then under H the

distribution of X is uniquely determined and is equal to Pθ0 . tu

Exercise 2.3.2. Are the following hypothesis simple or composite?

(a) H : X is a sample of an exponential distribution with some parameter θ;

(b) If X = (X1, X2, . . . , Xn) is a sample of size n of N (µ, σ2), where θ = (µ, σ2) ∈ IR ×
(0,∞),

H :
Eθ[X1]

Varθ [X1]
= c0
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where c0 is a known constant.

(c) If X = (X1, X2, . . . , Xn) is a sample of size n of Bernoulli (θ) where θ ∈ (0, 1),

H :
Eθ[X1]

Varθ [X1]
= c0

where c0 is a known constant.

Solution. (a) UnderH the distribution of the variables Xi is exponential, but the parameter

of the distribution is unknown; thus, under H the distribution of the observation vector X

is not uniquely determined, and then H is composite.

(b) Since Eθ[X1] = µ and Varθ [X1] = σ2, the hypothesis can be explicitly written as

H:
µ

σ2
= c0, or H : µ = c0σ

2.

Therefore, under H the parameter θ = (µ, σ2) is not uniquely determined, and then H is

composite.

(c) Using that Eθ[X1] = θ and Varθ [X1] = θ(1− θ), in the present case H can be stated as

H:
θ

θ(1− θ)
= c0,

that is,

H : θ = 1− 1

c0
.

Consequently, under H the distribution of X is uniquely determined, so that H is a simple

hypothesis. tu

A natural companion to a hypothesis H is the statement that the property stipulated

by H does not occur.

Definition 2.3.2. Let X ∼ Pθ, θ ∈ Θ be a statistical model. Given a hypothesis H: θ ∈ Θ0,

the corresponding complementary hypothesis is

K: θ ∈ Θ \Θ0.

Example 2.3.1. The following examples show a hypothesis H and the corresponding com-

plementary hypothesis K.

(i) H : µ > µ0, K : µ ≤ µ0.

(ii) H :
µ

σ2
= c0, K :

µ

σ2
6= c0.

(iii) H : µ+ 1.96σ ≤ 3, K : µ+ 1.96σ > 3. tu
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2.4. Testing Procedures

As already mentioned, given a statistical hypothesis H, the main objective of the analyst

is to decide whether or not the observed data support the properties of the parameter

stipulated by H. The classical theory faces this problem as a decision between the validity

of the original hypothesis H and the complementary hypothesis K, that is, if it is decided

that the observed data support the validity of H, then H is ‘accepted’ and, consequently,

K is ‘rejected’; of course, when according to the criterion of the analyst the available data

do not support H, then H is ‘rejected’ and K is ‘accepted’.

Definition 2.4.1. Given a statistical model X ∼ Pθ, θ ∈ Θ, consider a hypothesisH : θ ∈ Θ0

and the corresponding complementary hypothesis K : θ ∈ Θ \ Θ0. Let X be the set of

possible values of the observation vector X, that is,

X = {x | f(x; θ) > 0 for some θ ∈ Θ}, (2.4.1)

and notice that

Pθ[X ∈ X ] = 1, θ ∈ Θ. (2.4.2)

A test γ of H versus K is a partition of X into two sets A and R = X \ A = Ac, called

the acceptance and rejection regions, respectively. When using γ, the decision taken after

observing X = x is denoted by γ(x) and is determined as follows:

γ(x) =

{
Accept H (equivalently, Reject K), if x ∈ A
Reject H (equivalently, Accept K), if x ∈ R

Thus, after observing X, the analyst always ends up with a decision about the validity

of H; the properties stipulated by H are ‘accepted’ or ‘rejected’.

Example 2.4.1. Let X = (X1, X2, . . . , X16) be a sample of the Poisson (θ) distribution,

where θ ∈ (0,∞), and consider the hypothesis

H : θ ≤ 12,

as well as the companion complementary hypothesis K : θ > 12. Observing that θ is the

mean of the variables Xi, it is natural to estimate the unknown value of θ by the sample

average X = (X1 + X2 + · · · + X16)/16, which is taken as an approximation of the true

parameter value. Since according to H the parameter does not exceed 12, it is natural to

reject H if X is ‘substantially’ larger that 12, for instance if X > 15. These considerations

lead to formulate the following procedure to reject or accept H:

γ(X) =

Accept H : θ ≤ 12 (equivalently, Reject K : θ > 12), if X ≤ 15

Reject H : θ ≤ 12 (equivalently, Accept K : θ > 12), if X > 15.

(2.4.3)
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Notice that in the present case the set of possible values of the observation vector X is

X = {x = (x1, x2, . . . , x16)|xi is a nonnegative integer, i = 1, 2, . . . , 16},

and that the acceptance an rejection regions corresponding to the test γ are given by

A = {x ∈ X |x ≤ 15}, R = {x ∈ X |x > 15},

where x = (x1 + x2 + · · ·+ x16)/16. tu

Example 2.4.2. Suppose now that X = (X1, X2, . . . , X16) is a sample of the N (θ, 1) distri-

bution, where θ ∈ IR and, consider the hypothesis

H : 10 ≤ θ ≤ 12

as well as the complementary hypothesis

K : θ < 10 or θ > 12.

Since θ is the mean of the variables Xi, the sample average X = (X1 +X2 + · · ·+X16)/16

is a natural estimator of θ. On the other hand, because according to H the true parameter

lays between 10 and 12, it is natural to reject H if X is ‘substantially’ far form the interval

[10, 12], say if X > 15 or X < 7, and this leads to formulate the following testing procedure

to reject or accept H:

γ(X) =

Accept H : 10 ≤ θ ≤ 12, if 7 ≤ X ≤ 15

Reject H : 10 ≤ θ ≤ 12, if X < 7 or X > 15.

(2.4.4)

In this example the set of possible values of the observation vector X is

X = {x = (x1, x2, . . . , x16)|xi ∈ IR for all i = 1, 2, . . . , 16} = IR16,

whereas that the acceptance and rejection regions corresponding to the test γ are given by

A = {x ∈ X |7 ≤ x ≤ 15}, R = {x ∈ X |x < 7 or x > 15}

where, as before, x is the average of the components of x. tu

2.5. Randomized Tests

In this section the class of tests in Definition 2.4.1 is generalized to include the so called

randomized tests.



15

Definition 2.5.1. Let X ∼ Pθ, θ ∈ Θ be a statistical model, and let X be the set of possible

values of the observation X; see (2.4.2).

(i) A mapping ϕ:X → [0, 1] is referred to as a critical function.

(ii) Consider a hypothesis H : θ ∈ Θ0 and the complementary hypothesis K : θ ∈ Θ \ Θ0.

The randomized test γϕ ≡ γ corresponding to a critical function ϕ is the random variable

γ(X) whose conditional distribution given X is determined as follows: γ(X) takes on the

two values ‘Accept H’ and ‘Reject H’with probabilities

P [γ(X) = Reject H|X] = ϕ(X),

whereas

P [γ(X) = Accept H|X] = 1− ϕ(X).

For a given critical function ϕ, the value ϕ(X) may be thought of as the strength

of the evidence to reject H that, according to the analyst’s criterion, is provided by the

observation vector X.

Remark 2.5.1. (i) An observer using the randomized test γϕ corresponding to a critical

function ϕ operates as follows:

If X = x is observed, then

• H is rejected when ϕ(x) = 1,

• H is accepted if ϕ(x) = 0,

• When 0 < ϕ(x) < 1, a Bernoulli experiment with success probability ϕ(X) is

performed, and if the result of the experiment is ‘success’, the hypothesis H is

rejected, whereas H is accepted when the result is ‘failure’.

As it will be shown later, randomized tests have a great theoretical importance.

(ii) It is interesting to observe that the (non-randomized) tests in Definition 2.4.1 are a

particular class of randomized tests. Indeed, let γ be a test is the sense of Definition 2.4.1,

and let R be the corresponding rejection region. Define ϕ:X → [0, 1] as the indicator

function of R, that is,

ϕ(x) = IR(x) =

{
1, if x ∈ R
0, if x ∈ X \ R = A.

Now, consider the randomized test γϕ corresponding to this critical function ϕ, so that

P [γϕ(X) = Reject H|X] =

{
1, if ϕ(X) = 1, that is, if X ∈ R,
0, if ϕ(X) = 0, i.e., if X ∈ A.
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It follows that the decision γϕ(X) is ‘Reject H’ when X ∈ R, and γϕ(X) is ‘Accept H’

if X ∈ A = X \ R; thus, γϕ is the test γ with rejection region R and acceptance region

A. This argument shows that the tests described in Definition 2.4.1 correspond to critical

functions attaining exclusively the values 0 and 1. tu

2.6. Examples

In this section the notions of randomized and nonrandomized test are illustrated in the

context of specific examples.

Example 2.6.1. (i) As in Example 2.4.1, let X = (X1, X2, . . . , X16) be a sample of the

Poisson (θ) distribution, where θ ∈ (0,∞), and consider the hypothesis H : θ ≤ 12. The

test in (2.4.3) corresponds to the critical function

ϕ(X) =

{
1, if X > 15
0, if X ≤ 15;

using the notation of indicator functions, ϕ(X) = I(15,∞)(X).

(ii) Suppose again that X = (X1, X2, . . . , X16) is a sample of the Poisson (θ) distribution

with θ > 0. An example of a randomized test for H : θ ≤ 12 has the following critical

function:

ϕ(X) =

 1, if X > 15
1/2 if X = 15
0, if X < 15.

The test γϕ corresponding to this critical function rejects H when X > 15 and accepts H
if X < 15; however, when X = 15 a Bernoulli experiment with success probability 1/2 is

performed, and H is rejected if a success is obtained, whereas a failure leads to acceptance

of H. With the notation of indicator function ϕ can be specified by

ϕ(X) = I(15,∞)(X) +
1

2
I{15}(X).

(iii) Continuing with Example 2.4.2, suppose that X = (X1, X2, . . . , X16) is a sample of

the N (θ, 1) distribution, where θ ∈ IR and, consider the hypothesis

H : 10 ≤ θ ≤ 12

and the complementary

K : θ < 10 or θ > 12.

The test γ in (2.4.4) is associated to the critical function

ϕ(X) =

{
0, if 7 ≤ X ≤ 15

1, if X < 7 or X > 15;
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notice that the test γ is non-randomized, and for this reason the critical function takes only

the values 0 and 1. With the notation of indicator functions,

ϕ(X) = I(−∞,7)∪(15,∞)(X).

(iv) In the context of the previous part, a ‘reasonable’ randomized test will be now de-

scribed. Recall that X is a ‘good’ estimator of the mean θ of the N (θ, 1) distribution, and

suppose that the analyst considers the distance between X and [7, 10] as a measure of the

evidence provided by that data against H; as the distance gets larger, the evidence against

H increases. Moreover, assume that the analyst considers a distance of three or less units

as an event due to chance, but a distance of size five or more units is regarded as a definitive

evidence against H. For distances from 3 to 5, the evidence against H increases linearly

from 0 to 1. These considerations lead to formulate the critical function of the analyst as

follows:

ϕ(X) =


0, if 7 ≤ X ≤ 15
1, if X < 5 or X > 17
(7−X)/2, if 5 ≤ X < 7
(X− 15)/2, if 15 < X ≤ 17.

This function ϕ attains values in [0, 1] and the is a critical function determining a genuine

test. tu

Remark 2.6.1. A test γ and the corresponding critical function determine each other, and

they will be identified in the subsequent development. tu

To conclude this section, it will be shown that the (unconditional) probability of re-

jecting a hypothesis H when using a test γ, can be evaluated by taking the expectation of

the corresponding critical function.

Lemma 2.6.1. Given a statistical model X ∼ Pθ, θ ∈ Θ, consider a hypothesis H : θ ∈ Θ0

and let γ be a test with corresponding critical function ϕ, so that

P [γ(X) = Reject H |X] = ϕ(X).

In this case, for each θ ∈ Θ

Pθ[γ(X) = Reject H] = Eθ[ϕ(X)].

Proof. Using that the probability of an event A equals the expectation of the corresponding

indicator function, the double expectation theorem yields that

Pθ[γ(X) = Reject H] = Eθ[I[γ(X) = Reject H]]

= Eθ[Eθ[[I[γ(X) = Reject H]|X]]]

= Eθ[[Pθ[γ(X) = Reject H]|X]].
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On the other hand, under the test γ, the conditional probability of rejecting H given X is

ϕ(X) regardless of the parameter value, so that

Pθ[γ(X) = Reject H |X] = P [γ(X) = Reject H |X] = ϕ(X);

combining this fact with the previous display it follows that

Pθ[γ(X) = Reject H ] = Eθ[ϕ(X)],

concluding the argument. tu



Chapter 3

Decision Errors

In this chapter the possibility of taking an incorrect decision when testing a hypothesis

H is studied. The main conclusion to be established below is that, regardless of the test γ

used by the analyst, the possibility of an erroneous decision can not be generally avoided.

3.1. Errors and a Lower Bound

To begin with, consider a hypothesis

H : θ ∈ Θ0

and its complement

K : θ ∈ Θ \Θ0.

Recall now that after observing the vector X a test γ attains two possible values, namely,

‘Reject H’, and ‘Accept H’, and let ϕ be the critical function associated to γ.

• The decision γ(X) = ‘Reject H’ is an error when θ ∈ Θ0, and the probability of incurring

in this error is Eθ[ϕ(X)], by Lemma 2.6.1. The largest probability of rejecting H incorrectly

is

Eγ [H] = max
θ0∈Θ0

Eθ0 [ϕ(X)] (3.1.1)

• The decision γ(X) = ‘Accept H’—which is equivalent to ‘Reject K’—is incorrect when

θ ∈ Θ\Θ0. By Lemma 2.6.1 the probability of accepting H is 1−Eθ[ϕ(X)] = Eθ[1−ϕ(X)],

so that the largest probability of rejecting K incorrectly is

Eγ [K] = max
θ1∈Θ\Θ0

Eθ1 [1− ϕ(X)] (3.1.2)

19
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In the remainder of the section a lower bound for the sum Eγ [H] + Eγ [K] will be

determined. The starting point is the following idea.

Definition 3.1.1. Consider a statistical model X ∼ Pθ, θ ∈ Θ where the observation vector

X has dimension n, and let H and K be the complementary hypothesis given by

H: θ ∈ Θ0, K: θ ∈ Θ \Θ0,

where Θ0 is a subset of Θ. The number `(H,K) corresponding to the pair of hypothesis H
and K is defined as follows:

(i) If Pθ is a continuous distribution with density f(x; θ) for each θ ∈ Θ

`(H,K): = max
θ0∈Θ0, θ1∈Θ\Θ0

∫
IRn

min{f(x; θ0), f(x; θ1)} dx,

whereas

(ii) If Pθ is a discrete distribution with probability function f(x; θ) for each θ ∈ Θ

`(H,K): = max
θ0∈Θ0, θ1∈Θ\Θ0

∑
x∈IRn

min{f(x; θ0), f(x; θ1)}.

The following simple result plays a central role in the subsequent development.

Theorem 3.1.1. In the context of Definition 3.1.1, for any test γ the largest probabilities

Eγ [H] and Eγ [K] of an incorrect rejection of H and K, respectively, satisfy that

Eγ [H] + Eγ [K] ≥ `(H,K).

Proof. Let γ be a test with critical function ϕ. Suppose that Pθ is a continuous distribution

with density f(x; θ) and select θ0 ∈ Θ0 and θ1 ∈ Θ \Θ0. Notice now that

Eθ0 [ϕ(X)] + Eθ1 [1− ϕ(X)] =

∫
IRn

ϕ(x)f(x; θ0) dx +

∫
IRn

(1− ϕ(x))f(x; θ1) dx

≥
∫

IRn
ϕ(x) min{f(x; θ0), f(x; θ1)} dx

+

∫
IRn

(1− ϕ(x)) min{f(x; θ0), f(x; θ1)} dx

=

∫
IRn

[ϕ(x) + (1− ϕ(x)) min{f(x; θ0), f(x; θ1)} dx

and then

Eθ0 [ϕ(X)] + Eθ1 [1− ϕ(X)] ≥
∫

IRn
min{f(x; θ0), f(x; θ1)} dx;
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taking the maximum over θ0 ∈ Θ0 and θ1 ∈ Θ \ Θ0, from (3.1.1), (3.1.2) and Definition

3.1.1 it follows that Eγ [H] + Eγ [K] ≥ `(H,K). The argument in the discrete case is similar.

tu

3.2. Positivity of the Lower Bound

As it is shown below, in general `(H,K) is a positive number.

Lemma 3.2.1. In the context of Definition 3.1.1 the following assertions (i) and (ii) hold.

(i) Suppose that Pθ is a continuous distribution with density f(x; θ), and that there exist

parameters θ0 ∈ Θ0 and θ1 ∈ Θ \Θ0 as well as a point x ∈ IRn such that

The densities f(·; θ0) and f(·; θ1) are continuous at x, and

f(x; θ0) > 0 and f(x; θ1) > 0.
(3.2.1)

In this case, `(H,K) > 0.

(ii) Suppose that Pθ is a discrete distribution with probability function f(x; θ), and that

for some parameters θ0 ∈ Θ0 and θ1 ∈ Θ \Θ0 and a point x ∈ IRn

f(x; θ0) > 0 and f(x; θ1) > 0.

In this framework,

`(H,K) > 0.

On the other hand,

(iii) The relation

`(H,K) ≤ 1,

is always valid.

Proof. (i) Let the parameters θ0 ∈ Θ0 and θ1 ∈ Θ \Θ0 as well as x ∈ IRn be as in (3.2.1).

Since the densities f(·; θ0) and f(·; θ1) are continuous at x, there exist a ε > 0 such that

f(y; θ0) and f(y; θ1) are positive numbers when ‖y − x‖ ≤ ε, and then∫
IRn

min{f(y; θ0), f(y; θ1)} dy ≥
∫
y: ‖y−x‖≤ε

min{f(y; θ0), f(y; θ1)} dy > 0.

It follows that

`(H,K) = max
θ0∈Θ0;;θ1∈Θ\Θ0

∫
IRn

min{f(y; θ0), f(y; θ1)} dy > 0;
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this completes the proof of part (i), whereas the second assertion can be established along

similar lines. To establish part (iii), just observe that the relation

min{f(y; θ0), f(y; θ1)} ≤ f(y; θ0)

is always valid, so that∫
IRn

min{f(y; θ0), f(y; θ1)} dy ≤
∫

IRn
f(y; θ0) dy = 1;

taking the maximum with respect to θ0 ∈ Θ0 and θ1 ∈ Θ \Θ0, the conclusion `(H,K) ≤ 1

follows. tu

Remark 3.2.1. The essential condition in Lemma 3.2.1 is that the supports of same dis-

tributions Pθ0 and Pθ1 with θ0 ∈ Θ0 and θ1 ∈ Θ \ Θ0 have nonempty intersection. This

requirement is very weak and in practically satisfied in all models considered in applications.

Thus, the conclusion of Lemma 3.2.1 allows to establish the following assertion:

Regardless of the test γ being used to decide which of the complementary hy-

pothesis H and K holds, in practically all interesting applications the largest error

probabilities Eγ [H] and Eγ [K] satisfy the inequality

Eγ [H] + Eγ [K] ≥ `(H,K) > 0.

This inequality shows that, given an observation vector X, the maximum error probabilities

Eγ [H] and Eγ [K] can not be made simultaneously ‘small’. tu

3.3. An Improved Result

The following result is a refinement of the previous lemma, and provides conditions under

which the number `(H,K) is equal to 1.

Lemma 3.3.1. In the context of Definition 3.1.1, let f(x; θ) be the density or probability

function corresponding to Pθ, and suppose that there exists θ∗ ∈ Θ satisfying that

(i) lim
θ→θ∗

∫
IRn
|f(x; θ)− f(x; θ∗)| dx = 0 if Pθ is a continuous distribution, or

lim
θ→θ∗

∑
x∈IRn

|f(x; θ)− f(x; θ∗)| = 0 if the distribution Pθ is discrete.

(ii) There exist sequences {θ0n} ⊂ Θ0 and {θ1n} ⊂ Θ \Θ0 such that
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lim
n→∞

θ0,n = θ∗ = lim
n→∞

θ1,n.

In this case, `(H,K) = 1.

Proof. The argument will be presented for the case in which Pθ is a continuous distribution.

Suppose that θ∗ ∈ Θ \Θ0, and select {θ0,n} ⊂ Θ0 such that limn→∞ θ0,n = θ∗. In this case

condition (i) yields that

lim
n→∞

∫
IRn
|f(x; θ0,n)− f(x; θ∗)| dx = 0. (3.3.1)

Notice now that

max{f(x; θ0,n), f(x; θ∗)}+ min{f(x; θ0,n), f(x; θ∗)} = f(x; θ0,n) + f(x; θ∗)

max{f(x; θ0,n), f(x; θ∗)} −min{f(x; θ0,n), f(x; θ∗)} = |f(x; θ0,n)− f(x; θ∗)|,

so that∫
IRn

max{f(x; θ0,n), f(x; θ∗)} dx +

∫
IRn

min{f(x; θ0,n), f(x; θ∗)} dx = 2, (3.3.2)

and∫
IRn

max{f(x; θ0,n), f(x; θ∗)} dx−
∫

IRn
min{f(x; θ0,n), f(x; θ∗)} dx→ 0 as n→∞,

where the convergence follows from (3.3.1). Equation (3.3.2) allows to obtain the equality∫
IRn

max{f(x; θ0,n), f(x; θ∗)} dx = 2 −
∫

IRn
min{f(x; θ0,n), f(x; θ∗)} dx, and replacing this

expression in the above display it follows that

[2−
∫

IRn
min{f(x; θ0,n), f(x; θ∗)} dx]−

∫
IRn

min{f(x; θ0,n), f(x; θ∗)} dx→ 0,

which is equivalent to

lim
n→∞

∫
IRn

min{f(x; θ0,n), f(x; θ∗)} dx = 1.

Notice now that the inclusions θ0,n ∈ Θ0 and θ∗ ∈ Θ \Θ0 yield that the inequality

`(H,K) ≥
∫

IRn
min{f(x; θ0,n), f(x; θ∗)} dx

occurs, by Definition 3.1.1, and after taking the limit as n→∞, it follows that `(H,K) ≥ 1;

combining this inequality with the relation `(H,K) ≤ 1 established in Lemma 3.2.1(iii), it

follows that `(H,K) = 1. The case θ∗ ∈ Θ0 can be analyzed along similar lines. tu
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Remark 3.3.1. Assume that each distribution Pθ is continuous, and that the {Pθ}θ∈Θ is a

location-scale family, that is, Pθ is the distribution of AZ+µ where Z has a fixed (known)

continuous distribution, whereas A is an invertible matrix and µ is a vector. In this case,

condition (i) in Lemma 3.3.1 holds; this fact can be verified by using the following analytical

results: If g(·) is an integrable function, then∫
IRn
|g(x + µ)− g(x)| dx→ 0 as µ→ 0,

and ∫
IRn
|g(Ax)− g(x)| dx→ 0 as A→ I,

where I is the identity matrix. On the other hand, the second condition in Lemma 3.3.1

is satisfied when the sets Θ0 and its complement Θ \Θ0 share a common boundary point.

For instance, suppose that Θ0 = [0, 4] and Θ \ Θ0 = (4,∞). In this case θ∗ = 4 can be

approximated using points in Θ0 and points in Θ \Θ0. In discrete models, the two above

displayed relations can be verified using the dominated convergence theorem, or Wierestrass

M -test for the convergence of series. In short, in common applications the conditions in

Lemma 3.3.1 are valid, so that `(H,K) = 1, and then Eγ [H] + Eγ [K] ≥ 1. tu

3.4. Null Hypothesis

When a test γ is used to decide which of the complementary hypothesis H or K occurs,

the objective of the analyst is to select the correct hypothesis. However, the results in

the previous section showed that, regardless of the test γ, the largest probabilities of re-

jecting incorrectly H or K—which are given by Eγ [H] and Eγ [K], respectively—can not be

made arbitrarily small simultaneously. The theory handles this problem by choosing the

hypothesis whose incorrect rejection is ‘more serious’, and selecting a test that makes the

probability of that serious error ‘small’, while trying to keep the probability of the other

error as small as possible.

Definition 3.4.1. Given two complementary hypothesis H and K,

(i) The null hypothesis is the one whose incorrect rejection represents the more serious

error; the null hypothesis is denoted by H0.

(ii) The hypothesis that is complementary to H0 is referred to as the alternative hypothesis

and is denoted by H1.

Example 3.4.1. A disease is prevented by a vaccine in 95% of the cases. A new vaccine has

been produced and it is claimed that it is effective in at least 98% of the cases, an assertion
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that must be verified by the Health Department before proceeding to massive application

of the new formula. The following hypothesis are considered:

H: θ ∈ [0.98, 1], and K: θ ∈ [0, 0.98),

where θ ∈ Θ = [0, 1] is the proportion of cases in which the new vaccine is effective. When

using a test, two errors may occur:

• H is rejected when H is true.

In this case the new vaccine is effective in 98% or more of the cases, but the test fails in

detecting the improvement with respect to the vaccine that is currently in use. Thus, the

Health Department keeps on using the old vaccine, missing the opportunity to obtain at

less 3% more protection.

• K is rejected when K is true.

In this case the new vaccine is effective in less that 98% of the cases—in particular, it may

be effective in less that 95% of the cases—but the according to the test it is declared that

it is 3% or more effective that the vaccine presently used. Thus, the Health Department

eagerly recommends the massive application of the new vaccine, but this decision may

diminish the protection of the population against the disease.

In short:

If H is incorrectly rejected, an improvement of 3% in the protection rate is missed;

If K is incorrectly rejected, the protection of the population against the disease

may decrease below the present level.

Between these errors, the second one (rejecting K incorrectly) seems to have the most

serious consequences, and then the null hypothesis is K, that is,

H0: θ ∈ [0, 0.98)

and the alternative hypothesis is H1: θ ∈ [0.98, 1] . tu

After selecting the null and alternative hypothesis, the performance of a test is mea-

sured by the the power function, an idea that is now introduced.

Definition 3.4.2. Let X ∼ Pθ, θ ∈ Θ be a statistical model and consider a null hypothesis

H0: θ ∈ Θ0

as well as the corresponding alternative hypothesis.

H1: θ ∈ Θ \Θ0.
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Let γ be a given test.

(i) The power function of the test γ is denoted by πγ and is defined by

πγ(θ) = Pθ[γ(X) = Reject H0], θ ∈ Θ.

(ii) An error of type I occurs if H0 is rejected when H0 is true and, when θ ∈ Θ0, the

probability of incurring in such an error is denoted by αγ(θ), that is,

αγ(θ) = Pθ[γ(X) = Reject H0], θ ∈ Θ0.

(iii) An error of type II occurs if H1 is rejected when H1 holds—equivalently, if H0 is

accepted when H0 is false—and, for each θ ∈ Θ \ Θ0, the probability of incurring in an

error of type II is denoted by βγ(θ), i.e.,

βγ(θ) = Pθ[γ(X) = Accept H0], θ ∈ Θ \Θ0;

equivalently,

βγ(θ) = 1− πγ(θ), θ ∈ Θ \Θ0; (3.4.1)

(iv) The power of the test γ against the alternative value θ ∈ Θ \Θ0 is

πγ(θ) = 1− βγ(θ), θ ∈ Θ \Θ0. (3.4.2)

(v) The size of the test γ is denoted by αγ and is defined by

αγ = max
θ∈Θ0

αγ(θ) = max
θ∈Θ0

Pθ[γ(X) = Reject H0]. (3.4.3)

The size of a test measures the risk of incurring in an error of type I—the most serious

error—and the first objective of the analyst is to use a test that has a ‘small’ size, say less

than or equal to a specified number α ∈ (0, 1). After this property is granted, the next goal

is to have a probability of incurring in an error of type II as small as possible. A test that

satisfies these properties is formally described below:

Definition 3.4.3. Consider the null hypothesis H0: θ ∈ Θ0 and the corresponding alternative

H1: θ ∈ Θ \Θ0. A test γ is uniformly most powerful of size (less than or equal to ) α if the

following conditions (i) and (ii) hold:

(i) The size of γ does not exceed α, that is,

αγ = max
θ∈Θ0

πγ(θ) ≤ α;
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(ii) If γ̃ is an arbitrary test with size less than or equal to α, then the probability of incurring

in an error of type II is smaller under γ than under γ̃:

βγ(θ) ≤ βγ̃(θ), θ ∈ Θ \Θ0,

that is,

πγ(θ) ≥ πγ̃(θ), θ ∈ Θ \Θ0;

see (3.4.2).

The construction of uniformly most powerful tests will be illustrated in the following

sections.

Remark 3.4.1. When a test γ is used to test the hypothesis H0 versus H1, the probability

of an error of type I is less than or equal to the size αγ , that is, rejecting H0 when it is

true has a probability at most αγ . Thus, when the null hypothesis is rejected by a test

γ with a small size, then the analyst will be confident that the rejection is correct. This

comments signals a useful rule to select which of two complementary conditions on the

parameter should be selected as the null hypothesis: If it is desired to declare confidently

that a condition C on the parameter holds, select the null hypothesis as the opposite of the

condition C:
H0: Condition C does not occcur.

With this selection, onceH0 is rejected by a test with ‘small’ size, the alternativeH1—which

asserts that Condition C occurs—will be established on ‘firm’ grounds. tu

3.5. Examples

In this section the diverse concepts introduced above will be illustrated.

Exercise 3.5.1. An urn contains 10 balls, of which θ balls are blue (the rest being red and

white). To test the null hypothesis H0: θ = 3 versus H1: θ = 4, a sample of size 3 balls is

taken and the color of the balls in the sample is recorded. The test γ used in this problem

rejects H0 if all three balls drawn are blue. Compute the probabilities α and β of incurring

in an error of type I and II, respectively, if

(i) Sampling is done without replacement.

(ii) Sampling is done with replacement.

Solution. Let X be the number of blue balls contained in the sample of size 3.
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(i) When the sampling is without replacement, X has Hipergeometric (10, θ, 3) distribution,

where θ ∈ Θ = {3, 4}, that is,

Pθ[X = x] =

(
θ

x

)(
10− θ
3− x

)
(

10

3

) .

The power function π corresponding to γ is given by

π(θ) = Pθ[γ(X) = ‘Reject H0’]

= Pθ[X = 3]

=

(
θ

3

)(
10− θ
3− 3

)
(

10

3

) =

(
θ

3

)
(

10

3

) =
θ(θ − 1)(θ − 2)

10(9)(8)
, θ ∈ {3, 4}

Therefore,

α = π(3) =
1

120
, and β = 1− π(4) = 1− 1

30
=

29

30
.

.

(ii) Under sampling with replacement, X has Binomial

(
3,

θ

10

)
distribution, where θ ∈

Θ = {3, 4}, that is,

Pθ[X = x] =

(
3

x

)(
θ

10

)x(
1− θ

10

)3−x

.

The power function π corresponding to γ is given by

π(θ) = Pθ[γ(X) = ‘Reject H0’]

= Pθ[X = 3]

=

(
3

3

)(
θ

10

)3(
1− θ

10

)3−3

=
θ3

1000
, θ ∈ {3, 4}.

so that α = π(3) = 27/1000 and β = 1− π(4) = 1− 64/1000 = 936/1000. tu

Exercise 3.5.2. The manufacturer of an imported automobile claims that the average miles

per gallon (mpg) of this type of car is at least 30. Suppose that the mpg of a randomly

selected car is a normally distributed random variable with mean µ and variance σ2 = 25.

To check the claim, consider the testing problem:

H0:µ < 30 versus H1:µ ≥ 30.

A sample of 36 cars of the manufacturer’s output is taken and the the average mpg X for

the sampled cars is determined. Suppose it is decided to reject H0 if, and only if, X ≥ 32.
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(i) Compute the size of the critical region (i.e., α).

(ii) Compute the power π(µ) of the test against each alternative value µ ≥ 30, and then

find β(µ), the probability of an error of type II.

Solution. Since X is the average of 36 independent and normally distributed random vari-

ables with mean µ and variance σ2 = 25, it follows that X ∼ N (µ, 25/36). On the other

hand, the test rejects H0 when X ≥ 32, and then the power function is given by

π(µ) = Pµ[X ≥ 32] = Pµ

[
X− µ

5/6
≥ 32− µ

5/6

]
= P

[
Z ≥ 32− µ

5/6

]
.

where Z is a random variable with the standard normal distribution. Thus,

π(µ) = 1− Φ

(
32− µ

5/6

)
for every µ, (3.5.1)

where, as usual, Φ is the cumulative distribution function of the standard normal distribu-

tion; notice that π(·) is an increasing function.

(i) The null hypothesis is rejected when X ≥ 32. Thus, the rejection or critical region is

R = {x |x ∈ [32,∞)}. Observing that the expressions ‘size of the critical region’ and ‘size

of the test’ are synonymous, it follows that

α = max
µ<30

π(µ) = max
µ<30

[
1− Φ

(
32− µ

5/6

)]
= 1− Φ

(
32− 30

5/6

)
= 1− Φ(2.4)

(ii) Combining (3.4.1) and (3.5.1), it follows that the probability of an error of type II at

each alternative parameter µ is given by

β(µ) = Φ

(
32− µ

5/6

)
, µ ≥ 30;

notice that β(µ) is decreasing, and then the largest value of β(µ) is attained at µ = 30:

β(30) = Φ(2.4). It follows that the sum of the largest probability of an error of type I—the

size of the test, which is given by 1 − Φ(2.4)—and the largest possible probability of an

error of type II is equal to 1, as it is typical in most interesting testing problems, where the

sets specified by the null and alternative hypothesis share a boundary point; in the present

context such a point is µ = 30. tu

Exercise 3.5.3. It is desired to test H0:µ ≤ 10 versus H1:µ > 10 on the basis of a random

sample X of size 25 from a normal population with unknown mean µ and variance σ2 = 4.

If the (largest) probability of an error of type I is to be α = 0.025 and the test is determined

by the critical function ϕ(X) = 1 if X > c and ϕ(X) = 0 otherwise,

(i) Find c (and hence the critical region), and



30

(ii) Find β(µ).

Solution. The sample mean X has the normal distribution N (µ, 4/25). The power function

of the test is

π(µ) = Eµ[ϕ(X)]

= Pµ[X > c]

= Pµ

[
X− µ√

4/25
>

c− µ√
4/25

]

= P

[
Z >

5

2
(c− µ)

]
= 1− Φ

(
5

2
(c− µ)

)
, µ ∈ IR.

(i) Observe that (regardless of the value of c) the power function is an increasing function

of µ. Since the null hypothesis states that µ ≤ 10, the size of the test is

α = max
µ≤10

π(µ) = max
µ≤10

[
1− Φ

(
5

2
(c− µ)

)]
= 1− Φ

(
5

2
(c− 10)

)
.

Therefore, the condition α = 0.025 leads to

1− Φ

(
5

2
(c− 10)

)
= 0.025, i.e., Φ

(
5

2
(c− 10)

)
= 0.975.

It follows that
5

2
(c− 10) = Φ−1(0.975) = 1.96,

and then c = 10 + 3.92/5 = 10.7805 . This specifies completely the power function:

π(µ) = 1− Φ

(
5

2
(10.7805− µ)

)
, µ ∈ IR.

(ii) The probability of an error of type II is

β(µ) = 1− π(µ) = Φ

(
5

2
(10.7805− µ)

)
for each µ ∈ (10,∞). tu

Exercise 3.5.4. (i) Consider testing the simple null hypothesis H0: θ = θ0 versus the simple

alternative H1: θ = θ1 where θ is the mean of a normal distribution with known variance

σ2. Suppose that a random sample of size n (to be determined) is taken and that the test

with the following critical function is used: ϕ(X) = 1 if X > c (and 0 otherwise). How

large n is needed to obtain a probability of Type I error α and power of 1− β?

(ii) Suppose θ0 = 5 and θ1 = 8. If σ2 = 4, find the values of c and n such that α = 0.05 = β.
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Solution. Since X is a sample of size n from the N (θ, σ2) distribution, it follows that

X ∼ N (θ, σ2/n). Thus, the power function of the test described above is given by

π(θ) = Eθ[ϕ(x)]

= Pθ[X > c]

= Pθ

[
X− θ
σ/
√
n
>

c− θ
σ/
√
n

]
= P

[
Z >

c− θ
σ/
√
n

]
= 1− Φ

(
c− θ
σ/
√
n

)
, θ ∈ {θ0, θ1},

where Z has the standard normal distribution.

(i) The size α of the test is

α = π(θ0) = 1− Φ

(
c− θ0

σ/
√
n

)
, that is, 1− α = Φ

(
c− θ0

σ/
√
n

)
,

whereas the probability of an error of type II is given by β = 1− π(θ1), that is,

β = Φ

(
c− θ1

σ/
√
n

)
.

These two last displays together yield that

c− θ0

σ/
√
n

=z1−α

c− θ1

σ/
√
n

=zβ ,

(3.5.2)

where zδ = Φ−1(δ) for each δ ∈ (0, 1), that is, zδ is the quantile of order δ corresponding to

the standard normal distribution. Taking the difference of these equations it follows that

θ1 − θ0

σ/
√
n

= z1−α − zβ , that is,
σ√
n

=
θ1 − θ0

z1−α − zβ
. (3.5.3)

It follows that

n = σ2

(
z1−α − zβ
θ1 − θ0

)2

, (3.5.4)

whereas the second equation in (3.5.3) and the first equality in (3.5.2) together lead to

c = θ0 + z1−α
θ1 − θ0

z1−α − zβ
. (3.5.5)

(ii) When α and β take the value 0.05, it follows that

z1−α = z0.95 = 1.645
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and

z0.05 = −1.645.

Thus, if θ1 = 8, θ0 = 5 and σ2 = 4, the expressions (3.5.4) and (3.5.5) yield that

n = 4

(
2(1.645)

3

)2

and c = 6.5 .

tu

Exercise 3.5.5. Consider the Poisson (λ) distribution, where λ ∈ {2, 3}. The null hypothesis

H0:λ = 3 versus the alternative H1:λ = 2 will be tested based on a sample X of size 5.

The test γ calls for rejection of H0 if X < c, and accepts H0 otherwise. If α is to be the

number as closest to 0.05 as possible, find the critical region to use.

Solution. The power function of γ is π(λ) = Eλ[X > c], λ ∈ {2, 3}. The exercise calls for

the number c such that the size of the test γ— which is π(2) = P2[X > c]—provides the

better approximation to 0.05. Notice that, under H0,

Y = 5X ∼ Poisson (10)

and that

P2[X > c] = P [Y > 5c].

The table of the Poisson (10) distribution, which is reproduced below, shows that the

best approximation from below to 0.05 by P [Y > 5c] is attained when 5c = 15, that

is, when c = 3, and the critical (or rejection) region is R = {x ∈ X |x > 3}, where
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X = {x = (x1, x2, x3, x4, x5) | xi is a nonnegative integer}.

n P [Y = n] P [Y ≤ n] P [Y > n]

0 0.0000 0.0000 1.0000
1 0.0005 0.0005 0.9995
2 0.0023 0.0028 0.9972
3 0.0076 0.0103 0.9897
4 0.0189 0.0293 0.9707
5 0.0378 0.0671 0.9329
6 0.0631 0.1301 0.8699
7 0.0901 0.2202 0.7798
8 0.1126 0.3328 0.6672
9 0.1251 0.4579 0.5421
10 0.1251 0.5830 0.4170
11 0.1137 0.6968 0.3032
12 0.0948 0.7916 0.2084
13 0.0729 0.8645 0.1355
14 0.0521 0.9165 0.0835
15 0.0347 0.9513 0.0487
16 0.0217 0.9730 0.0270
17 0.0128 0.9857 0.0143
18 0.0071 0.9928 0.0072
19 0.0037 0.9965 0.0035
20 0.0019 0.9984 0.0016
21 0.0009 0.9993 0.0007
22 0.0004 0.9997 0.0003
23 0.0002 0.9999 0.0001
24 0.0001 1.0000 0.0000
25 0.0000 1.0000 0.0000

tu

Exercise 3.5.6. It is desired to test H0:µ = 10 versus H1:µ 6= 10, where µ is the population

mean of a normal distribution with standard deviation σ = 3. A random sample of size

n = 9 is taken, and the test γc with critical function ϕ(X) = 1 if |X−10| > c (and ϕ(X) = 0

otherwise) is used.

(i) Find the values of c to use for each size of the test α = 0.01, 0.02, 0.05, 0.10.

(ii) Find the power function of the test γc.

Solution. Since X is a random sample of size n = 9 from the N (µ, 9) , it follows that

X ∼ N (µ, 1). (3.5.6)

(i) The test γc that rejects H0 : µ = 10 when |X− 10| > c has size

αc = P10[ |X− 10| > c] = 2(1− Φ(c)),
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where it was used that, under H0:µ = 10, the random variable X − 10 has the standard

normal distribution. Therefore,

c = Φ−1
(

1− αc
2

)
.

The values of c for the different values of α are shown below:

α 0.01 0.02 0.05 0.1
c 2.576 2.326 1.960 1.645

(ii) Using (3.5.6), it follows that the power function of the test πγc is given by

πγc(µ) = Pµ[|X− 10| > c]

= 1− Pµ[|X− 10| ≤ c]

= 1− Pµ[10− c ≤ X ≤ 10 + c]

= 1− Pµ[10− µ− c ≤ X− µ ≤ 10− µ+ c]

= 1− [Φ(10− µ+ c)− Φ(10− µ− c)]

= 1− Φ(10− µ+ c) + Φ(10− µ− c)

= Φ(µ− 10− c) + Φ(10− µ− c).

Notice that

πγc(10 + µ) = Φ(µ− c) + Φ(−µ− c) = πγc(10− µ),

so that πγc is symmetric about 10. tu

Exercise 3.5.7. It is desired to testH0: p = 0.2 versus H1: p = 0.4 for a binomial distribution

with n = 10. For the test γ with critical function ϕ(X) = 1 if X ≤ 3 (and ϕ(X) = 0

otherwise), find α and β. Can you find a better test (i.e., with improved probabilities of

type I and II errors) with the same n = 10?

Solution. The power function of γ is

πγ(p) = Pp[X ≤ 3] = (1− p)10 + 10(1− p)9p+ 45(1− p)8p2 + 120(1− p)7p3.

Therefore,

α = πγ(0.2) = 0.8791 and β = 1− πγ(0.4) = 1− 0.3823 = 0.6177 .

Notice that γ rejects H0 when X ≤ 3. Intuitively, it is more reasonable to reject H0 when

X is ‘large’. Consider now the test γ̃ with critical function ϕ̃(X) = 1 if X ≥ 4 and zero

otherwise; notice that ϕ̃ = 1− ϕ, so that

πγ̃(p) = 1− πγ(p),
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and then

α̃ = πγ̃(0.2) = 0.1209 and β̃ = 1− πγ̃(0.4) = 1− 0.6177 = 0.3823;

since α̃ < α and β̃ < β, the test γ̃ is better that γ. tu

Exercise 3.5.8. Let X = (X1, X2, X3) be a sample of the Exponential (λ) distribution, where

λ ∈ {1/2, 1/3}. Consider testing H0:λ = 1/2 versus H1:λ = 1/3, and let γ be the test with

critical function

ϕ(x) = 1 if

∏3
i=1 f(xi; 1/3)∏3
i=1 f(xi; 1/2)

≥ 1

(and ϕ(x) = 0 otherwise), where f(x;λ) = λe−λxI[0,∞)(x) is the exponential density with

parameter λ. Find α and β for this test.

Solution. Notice that∏3
i=1 f(xi; 1/3)∏3
i=1 f(xi; 1/2)

=
(1/3)3e−(x1+x2+x3)/3

(1/2)3e−(x1+x2+x3)/2
=

8

27
e(x1+x2+x3)/6.

Therefore, the critical function ϕ can be explicitly written as

ϕ(x) =

{
1, if x1 + x2 + x3 ≥ 6 log(27/8)
0, otherwise,

and the corresponding critical function π is given by

π(λ) = Pλ[X1 +X2 +X3 ≥ 6 log(27/8)].

To compute the above probability, notice that

• If Y ∼ Exponential (λ), then 2λY ∼ Exponential (1/2) = Γ(1, 1/2) = χ2
2.

Since X1, X2, X3 are independent with the Exponential (λ) distribution, it follows that

2λX1, 2λX2, 2λX3 is a sample of the χ2
2 distribution, and then

2λX1 + 2λX2 + 2λX3 ∼ χ2
6.

Consequently,

π(λ) = Pλ[2λX1 + 2λX2 + 2λX3 ≥ 12λ log(27/8)] = P [W ≥ 12λ log(27/8)],

where

W ∼ χ2
6.

Therefore,

α = π(1/2) = P [W ≥ 6 log(27/8)] = 0.2941,
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and

β = 1− π(1/3) = 1− P [W ≥ 4 log(27/8)] = 1− 0.5612 = 0.4388 .

Notice that α + β < 1, a relation that can be traced back to the fact that the null subset

{1/2} and the alternative subset {1/3} do not share a boundary point. tu

Exercise 3.5.9. Let ϕ be a randomized test. Show that ϕ = 1−ϕ is also a randomized test.

Compute the relationship between the power functions of tests ϕ and ϕ.

Solution. Recall that a critical function is a map from X into [0, 1], where X is the set of

possible values of the observation vector X, and that the critical function is identified with

the corresponding (randomized) test γ. Thus, starting with a critical function, it follows

that the function ϕ = 1−ϕ, also maps X into [0, 1], and consequently is a critical function.

The power functions associated to ϕ and ϕ satisfy

πϕ(θ) = Eθ[ϕ] = Eθ[1− ϕ] = 1− Eθ[ϕ] = 1− πϕ(θ),

so that πϕ + πϕ = 1. tu

Exercise 3.5.10. Consider a random sample of size n from a distribution with mean µ and

variance σ2, with n large enough that it is reasonable to assume that X has a normal

distribution. To test H0:µ = µ0 versus H1:µ 6= µ0, a suggested test is ϕ(X) = 1 if

|X− µ0| ≥ c, and ϕ(X) = 0 otherwise.

(i) Find an approximate α-level critical region for this test if σ2 is known.

(ii) Find an approximation for the power of the test in part (i).

Solution. Given c > 0, the power function π corresponding to ϕ is

π(µ) = Pµ[ |X− µ0| ≥ c]

= 1− Pµ[ |X− µ0| ≤ c]

= 1− Pµ[µ0 − c ≤ X ≤ µ0 + c]

= 1− Pµ[µ0 − µ− c ≤ X− µ ≤ µ0 − µ+ c]

= 1− Pµ
[√

n
µ0 − µ− c

σ
≤ X− µ
σ/
√
n
≤
√
n
µ0 − µ+ c

σ

]
;

from this point, the central limit theorem allows to establish the following approximation,

where Z is a random variable with the standard normal distribution:

π(µ) ≈ 1− P
[√

n
µ0 − µ− c

σ
≤ Z ≤

√
n
µ0 − µ+ c

σ

]
;

= 1−
[
Φ

(√
n
µ0 − µ+ c

σ

)
− Φ

(√
n
µ0 − µ− c

σ

)]
= 1− Φ

(√
n
µ0 − µ+ c

σ

)
+ Φ

(√
n
µ0 − µ− c

σ

)
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so that, using the relation 1− Φ(x) = Φ(−x) for every x ∈ IR,

π(µ) ≈ Φ

(√
n
µ− µ0 − c

σ

)
+ Φ

(√
n
µ0 − µ− c

σ

)
. (3.5.7)

The approximate size of the test is

π(µ0) ≈ Φ

(
−
√
n c

σ

)
+ Φ

(
−
√
n c

σ

)
= 2Φ

(
−
√
n c

σ

)
.

(i) If α = π(µ0), then

α ≈ 2Φ

(
−
√
n c

σ

)
so that

c ≈ − σ√
n

Φ−1
(α

2

)
=

σ√
n

Φ−1
(

1− α

2

)
=

σ√
n
z1−α/2. (3.5.8)

Thus, the test with critical region

R = {x | |x− µ0| ≥ σz1−α/2/
√
n}

has size approximately α.

(ii) Replacing the value of c obtained in (3.5.8) into (3.5.7) it follows that the power function

of the test with the critical region in the above display satisfies

π(µ) ≈ Φ

(√
n
µ− µ0

σ
− z1−α/2

)
+ Φ

(√
n
µ0 − µ
σ

− z1−α/2

)
,

completing the analysis. tu

Exercise 3.5.11. As in Exercise 3.5.10, consider a random sample of size n from a distri-

bution with mean µ and variance σ2, with n large enough that it is reasonable to assume

that X has a normal distribution. To test H0:µ = µ0 versus H1:µ 6= µ0, a suggested test is

ϕ(X) = 1 if |X−µ0|/S ≥ c, and ϕ(X) = 0 otherwise, where S =
√∑n

i=1(Xi −X)2/(n− 1)

is the sample standard deviation.

(i) Find an approximate α-level critical region for this test if σ2 is known.

(ii) Find an ‘approximation’ for the power of the test in part (i).

Solution. Proceeding as in Exercise 3.5.11, given c > 0, the power function π corresponding

to ϕ is

π(µ) = Pµ[ |X− µ0|/S ≥ c]

= 1− Pµ[ |X− µ0|/S ≤ c]

= 1− Pµ[µ0 − cS ≤ X ≤ µ0 + cS]

= 1− Pµ[µ0 − µ− cS ≤ X− µ ≤ µ0 − µ+ cS]

= 1− Pµ
[√

n
µ0 − µ− cS

S
≤ X− µ
S/
√
n
≤
√
n
µ0 − µ+ cS

S

]
= 1− Pµ

[√
n

(
µ0 − µ
S

− c
)
≤ X− µ
S/
√
n
≤
√
n

(
µ0 − µ
S

+ c

)]
.

(3.5.9)
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When n increases, ‘large’, S → σ and (X − µ)/(σ/
√
n)

d−→N (0, 1), so that Slustsky’s

theorem implies that
X− µ
S/
√
n

d−→N (0, 1).

On the other hand, when n is ‘large’, S is ‘near’ σ with high probability, and treating S as

a constant, the last probability in (3.5.9) can be estimated by

π(µ) ≈ 1−
[
Φ

(√
n

[
µ0 − µ
S

+ c

])
− Φ

(√
n

[
µ0 − µ
S

− c
])]

.

Thus,

π(µ) ≈ 1− Φ

(√
n

[
µ0 − µ
S

+ c

])
+ Φ

(√
n

[
µ0 − µ
S

− c
])

= Φ

(√
n

[
µ− µ0

S
− c
])

+ Φ

(√
n

[
µ0 − µ
S

− c
])

.

(3.5.10)

The approximate size of the test is

π(µ0) ≈ Φ
(
−
√
n c
)

+ Φ
(
−
√
n c
)

= 2Φ
(
−
√
n c
)
.

(i) If α = π(µ0), then

α ≈ 2Φ
(
−
√
n c
)

so that

c ≈ − 1√
n

Φ−1
(α

2

)
=

1√
n

Φ−1
(

1− α

2

)
=
z1−α/2√

n
. (3.5.11)

Thus, the test with critical region

R = {x | |x− µ0|/s ≥ z1−α/2/
√
n} = {x |

√
n|x− µ0|/s ≥ z1−α/2}

has size approximately α.

(ii) Replacing the value of c obtained in (3.5.11) into (3.5.10) it follows that, for a given

value of µ, the power function of the test with the critical region in the above display can

be estimated by

π(µ) ≈ Φ

(√
n
µ− µ0

S
− z1−α/2

)
+ Φ

(√
n
µ0 − µ
S

− z1−α/2

)
,

concluding the argument. tu



Chapter 4

Neyman-Pearson Theory

Throughout this chapter a statistical model X ∼ Pθ is considered, where the parameter

space consists of two points θ0 and θ1, i.e., Θ = {θ0, θ1}, and the problem of testing the

hypothesis H0: θ = θ0 versus H1: θ = θ1 will be considered. A most powerful test for this

problem will be constructed and it will be proved that such a test is strictly unbiased.

4.1. Likelihood Ratio Tests

Consider the problem of testing the following simple null and alternative hypothesis:

H0: θ = θ0, H1: θ = θ1. (4.1.1)

It is supposed that both distributions Pθ0 and Pθ1 are (i) continuous or (ii) discrete, and

f(x; θi) stands for the density or probability function of Pθi , i = 1, 2. Recall that

f(x; θi) is the likelihood of θi given X = x.

Hence, if f(x; θ1) is ‘substantially’ larger that f(x; θ0) it is natural to decide that θ1 is the

true parameter value, i.e., that H1 holds. A class of tests based on this idea is introduced

below.

Definition 4.1.1. Let k ∈ [0,∞) and ψ:X → [0, 1] be arbitrary but fixed. The Neyman-

Pearson test for H0: θ = θ0 versus H1: θ = θ1 determined by k and ψ is the function

ϕk, ψ:X → [0, 1] given by

ϕk,ψ(x) ≡ ϕ(x) =

 1, if f(x; θ1) > kf(x; θ0)
0, if f(x; θ1) < kf(x; θ0)
ψ(x), if f(x; θ1) = kf(x; θ0)

(4.1.2)

39
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Remark 4.1.1. An analyst using the test ϕk, ψ operates as follows: After observing X = x,

(i) If f(x; θ1) > kf(x; θ0) the null hypothesis is rejected;

(ii) If f(x; θ1) < kf(x; θ0) the null hypothesis is accepted;

(iii) If f(x; θ1) = kf(x; θ0) then a Bernoulli experiment with success probability ψ(x)

is performed. If the outcome of the experiment is ‘success’, then the null hypothesis is

rejected, and if the outcome is ‘faliure’, then H0 is accepted. tu

The following theorem (known as the Neyman-Pearson lemma) shows that a Neyman-

Pearson test is most powerful.

Theorem 4.1.1. Given k ∈ [0,∞) and ψ:X → [0, 1], let ϕk,ψ be the critical function

specified in (4.1.2). If ϕ̃ is other critical function satisfying

Eθ0 [ϕ̃(X)] ≤ Eθ0 [ϕk,ψ(X)],

then

Eθ1 [ϕ̃(X)] ≤ Eθ1 [ϕk,ψ(X)].

In words, if

Eθ0 [ϕk,ψ(X)] = α,

then

ϕk,ψ is a most powerful test of size α

for the testing problem (4.1.1).

Proof. It will be shown that

[ϕk,ψ(x)− ϕ̃(x)][f(x; θ1)− kf(x; θ0)] ≥ 0. (4.1.3)

To verify this assertion, consider the following three exhaustive cases:

(i) f(x; θ1) − kf(x; θ0) > 0. In this context, (4.1.2) yields that ϕk,ψ(x) = 1, so that

ϕk,ψ(x)− ϕ̃(x) = 1− ϕ̃(x) ≥ 0, since the critical function ϕ̃ takes values in [0, 1]. It follows

that (4.1.3) occurs in this case.

(ii) f(x; θ1) − kf(x; θ0) < 0. Under this condition, (4.1.2) implies that ϕk,ψ(x) = 0, and

then ϕk,ψ(x)− ϕ̃(x) = 0− ϕ̃(x) ≤ 0 and, again, (4.1.3) follows.

(iii) f(x; θ1)− kf(x; θ0) = 0. In this context, the left-hand side of (4.1.3) is null.

From (4.1.3) it follows that

ϕk,ψ(x)f(x; θ1)− ϕ̃(x)f(x; θ1) ≥ k[ϕk,ψ(x)f(x; θ0)− ϕ̃(x)f(x; θ0)];
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taking the summation or the integral with respect to x in the discrete or continuous case,

respectively, it follows that

Eθ1 [ϕk,ψ(X)]− Eθ1 [ϕ̃(X)] ≥ k[Eθ0 [ϕk,ψ(X)]− Eθ0 [ϕ̃(X)]]; (4.1.4)

since k is nonnegative, this relation shows that

Eθ0 [ϕk,ψ(X)] ≥ Eθ0 [ϕ̃(X)]⇒ Eθ1 [ϕk,ψ(X)] ≥ Eθ1 [ϕ̃(X)],

concluding the argument. tu

4.2. Existence of Neyman-Pearson tests

The above theorem leads naturally to the following question: If α ∈ (0, 1) is arbitrary, are

there k ∈ [0,∞) and a function ψ:X → [0, 1] such that the Neyman-Pearson test ϕk,ψ has

size α? The following result shows that the answer is positive.

Theorem 4.2.1. Given α ∈ (0, 1), there exist k ∈ [0,∞) and a function ψ:X → [0, 1] such

that the Neyman-Pearson ϕk,ψ has size α, i.e., Eθ0 [ϕk,ψ(X)] = α.

The proof of this theorem relies on the following preliminary result.

Lemma 4.2.1. Given α ∈ (0, 1) there exists k ∈ (0,∞) such that

Pθ0 [{x | f(x; θ1) > kf(x; θ0) }] ≤ α (4.2.1)

and

Pθ0 [{x | f(x; θ1) ≥ kf(x; θ0) }] ≥ α. (4.2.2)

Proof. For each constant c, define

Sc = {x|f(x; θ1) > cf(x; θ0)} (4.2.3)

and let

S = {x| f(x; θ0) > 0}

be the support of f(x; θ0), so that

Pθ0 [S] = 1. (4.2.4)

Observe that Sc1 ⊂ Sc when c1 ≥ c, that is, the sets Sc decrease as c increases. The

monotonicity and continuity properties of a probability measure imply that

Pθ0 [Sc1 ] ≤ Pθ0 [Sc] if c1 ≥ c, (4.2.5)
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and

lim
c↗∞

Pθ0 [Sc] = Pθ0 [S∗] = Pθ0 [S∗ ∩ S], where S∗ =
⋂
c≥0

Sc. (4.2.6)

Notice now that

S ∩ S∗ = {x | f(x; θ0) > 0 and f(x; θ1) > cf(x; θ0) for all c > 0}

= {x | f(x; θ0) > 0 and f(x; θ1) =∞} = ∅,

where the last equality is due to the fact that a density or probability function attains only

finite values. Therefore, by (4.2.6), Pθ0 [S∗ ∩ S] = 0 and then

lim
c↗∞

Pθ0 [Sc] = 0. (4.2.7)

Next, given α ∈ (0, 1), define

A = {c > 0 |Pθ0 [Sc] ≤ α} (4.2.8)

and observe that (4.2.5) and (4.2.7) yield that A is a nonempty ray pointing to the right.

Let k be the origin of the ray A, so that

(k,∞) ⊂ A ⊂ [k,∞), (4.2.9)

where

k = inf A; (4.2.10)

consequently,

c > k ⇒ c ∈ A ⇒ Pθ0 [Sc] ≤ α. (4.2.11)

On the other hand, the specification of the sets Sc yields that

Sc ∩ S ↗ Sk ∩ S as c↘ k,

and, via (4.2.4), the continuity property of a probability measure leads to

lim
c↘k

Pθ0 [Sc] = lim
c↘k

Pθ0 [Sc ∩ S] = Pθ0 [Sk ∩ S] = Pθ0 [Sk].

Combining this fact with (4.2.11) it follows that

Pθ0 [{x | f(x; θ1) > kf(x; θ0)}] = Pθ0 [Sk] ≤ α,

i.e., (4.2.1) holds. Next , it will be shown that (4.2.2) occurs by analyzing the follwing two

exhaustive cases about the value of k:

(i) If k = 0, then

{x | f(x; θ1) ≥ 0f(x; θ0)} = {x | f(x; θ1) ≥ 0} = IRk,
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so that (4.2.2) is equivalent to the inequality 1 ≥ α, a relation that is true.

(ii) Suppose now that k is positive. In this case, for any sufficiently large integer m the

inclusion k − 1/m ∈ (0, k) holds, and then k − 1/m /∈ A, by (4.2.9).In this case the

specification of A and (4.2.4) yield that

Pθ0 [S ∩ Sk−1/m] = Pθ0 [Sk−1/m] ≥ α. (4.2.12)

On the other hand, notice that

S ∩ Sk−1/m = {x | f(x; θ0) > 0, f(x; θ1) > (k − 1/m)f(x; θ0)},

an expression that immediately implies that, as m→∞,

S ∩ Sk−1/m ↘ {x | f(x; θ0) > 0, f(x; θ1) ≥ kf(x; θ0)}

= S ∩ {x | f(x; θ1) ≥ kf(x; θ0)}.

Using the continuity property of a probability measure, this last display and (4.2.12) lead

to
Pθ0 [{x | f(x; θ1) ≥ kf(x; θ0)}] = Pθ0 [S ∩ {x | f(x; θ1) ≥ kf(x; θ0)}]

= lim
m→∞

Pθ0 [S ∩ Sk−1/m] ≥ α,

completing the verification of (4.2.2). tu

Proof of Theorem 4.2.1. Let k be as in Lemma 4.2.1, so that

Pθ0 [{x | f(x; θ1) ≥ kf(x; θ0)}] ≥ α ≥ Pθ0 [{x | f(x; θ1) > kf(x; θ0)}],

and let ψ(·) ≡ ψ be the constant function defined as follows:

ψ =


1, if Pθ0 [{x | f(x; θ1) = kf(x; θ0)}] = 0
α− Pθ0 [{x | f(x; θ1) > kf(x; θ0)}]
Pθ0 [{x | f(x; θ1) = kf(x; θ0)}]

if Pθ0 [{x | f(x; θ1) = kf(x; θ0)}] 6= 0.

(4.2.13)

Let ϕk,ψ be the Neyman-Pearson critical function associated to this pair (k, ψ) as in (4.1.2)

and observe that

Eθ0 [ϕk,ψ(X)]

= Pθ0 [ϕk,ψ(X) = 1] + ψPθ0 [ϕk,ψ(X) = ψ]

= Pθ0 [{x | f(x; θ1) > kf(x; θ0)}]

+

(
α− Pθ0 [{x | f(x; θ1) > kf(x; θ0)}]
Pθ0 [{x | f(x; θ1) = kf(x; θ0)}]

)
Pθ0 [{x | f(x; θ1) = kf(x; θ0)}]

= α,
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that is, ϕk,ψ has size α, completing the proof. tu

4.3. Construction of Neyman-Pearson Tests

The results in Theorems 4.1.1 and 4.2.1 can be summarized as follows: For the testing

problem (4.1.1), given α ∈ (0, 1), there exists a Neyman-Pearson test with size α, and such

a test is most powerful. Also, the proof of Lemma 4.2.1 and Theorem 4.2.1 allow to state

the following procedure to construct a most powerful test of size α ∈ (0, 1) for the testing

problem (4.1.1). Let X be the set of possible values of the observation vector X under the

condition that θ is θ0 or θ1, that is,

X = {x | f(x; θ0) > 0 or f(x; θ1) > 0}.

• Step 1: For each k ≥ 0, find the region Rk = {x ∈ X |f(x; θ1) > kf(x; θ0)}.

• Step 2: Determine the size of each region Rk, which is given by Pθ0 [X ∈ Rk].

• Step 3: Find the region Rk∗ such that

Pθ0 [X ∈ Rk∗ ] ≤ α and Pθ0 [X ∈ Rk] ≥ α for k < k∗;

notice that

k∗ is the smallest nonnegative number k such that Pθ0 [X ∈ Rk] ≤ α, (4.3.1)

and that, if Rk is expressed in terms of a statistic with continuous distribution, in common

models the region Rk∗ is determined by solving the equation

Pθ0 [X ∈ Rk∗ ] = α. (4.3.2)

• Step 4: Define the constant ψ∗ as in (4.2.13) with k∗ instead of k, and

• Step 5: Finally, perform the test using the Neyman-Pearson critical function ϕk∗,ψ∗

given by

ϕk∗,ψ∗(x) =

 1, if f(X; θ1) > k∗f(X; θ0)
ψ∗, if f(X; θ1) = k∗f(X; θ0)
0, if f(X; θ1) < k∗f(X; θ0).

The application of this test leads to the following operation rule:

. Reject H0 if f(X; θ1) > k∗f(X; θ0);

. Accept H0 if f(X; θ1) < k∗f(X; θ0);

. Randomize the decision when f(X; θ1) = k∗f(X; θ0);
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. . Reject H0 with probability ψ∗;

. . Accept H0 with probability 1− ψ∗.

When Pθ0 [{x ∈ X |f(x; θ1) > k∗f(x; θ0)}] = 0, the constant ψ∗ does not have any influence

in the size of the test and, usually, ψ∗ is set equal to 1; with this assignment the above test

has critical function

ϕk∗,ψ∗(x) =

{
1, if f(X; θ1) ≥ k∗f(X; θ0)
0, if f(X; θ1) < k∗f(X; θ0).

This procedure to construct a most powerful test will be illustrated in the following section.

Remark 4.3.1. Define
a

0
=∞ when a > 0

and, as before, let X be the set where at least one of the densities (or probability functions)

f(x; θ1) and f(x; θ0) is positive. In this case, for every x ∈ X , the relation f(x; θ1) >

kf(x; θ0) is equivalent to

f(x; θ1)

f(x; θ0)
> k.

4.4. Examples

In this section the construction of a Neyman-Pearson test will be illustrated for some

common models.

Example 4.4.1. Let X = (X1, X2, . . . , Xn) be a sample of the N (µ, σ2
0) distribution, where

σ0 is a known positive number, µ ∈ {µ0, µ1} and µ1 > µ0. Consider the the testing problem

H0:µ = µ0 versus H1:µ = µ1.

To determine the Neyman-Pearson test with level α, first notice that the density of the

sample vector X when µ is the parameter value is given by

f(x;µ) =
n∏
i=1

1√
2πσ2

0

e−(xi−µ)2/2σ2
0

=
1

(2πσ2
0)n/2

e−[
∑n

i=1
x2
i+nµ

2]/(2σ2
0)eµ

∑n

i=1
xi/σ

2
0

Next, the desired test will be obtained by an application of the procedure outlined in

Remark 4.3.
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Step 1: Notice that

f(x;µ1) > kf(x;µ0) ⇐⇒ f(x;µ1)

f(x;µ0)
> k

⇐⇒

1

(2πσ2
0)n/2

e−[
∑n

i=1
x2
i+nµ

2
1]/(2σ

2
0)eµ1

∑n

i=1
xi/σ

2
0

1

(2πσ2
0)n/2

e−[
∑n

i=1
x2
i+nµ

2
0]/(2σ

2
0)eµ0

∑n

i=1
xi/σ

2
0

> k

⇐⇒ en(µ2
0−µ

2
1)/(2σ2

0)e(µ1−µ0)
∑n

i=1
xi/σ

2
0 > k

⇐⇒ e(µ1−µ0)
∑n

i=1
xi/σ

2
0 > ken(µ2

1−µ
2
0)/(2σ2

0)

⇐⇒
(µ1 − µ0)

∑n
i=1 xi

σ2
0

> log
(
ken(µ2

1−µ
2
0)/(2σ2

0)
)

and then, recalling that µ1 > µ0,

f(x;µ1) > kf(x;µ0) ⇐⇒ x =
1

n

n∑
i=1

xi > k̃,

where

k̃ =
σ2

0

n(µ1 − µ0)
log
(
ken(µ2

1−µ
2
0)/(2σ2

0)
)
.

Thus, Rk = {x |x > k̃}.

Step 2: The size of the critical region Rk when θ0 is the true parameter value is given by

Pθ0 [X ∈ Rk] = Pθ0 [X > k̃] = Pθ0

[
X− θ0√
σ2

0/n
>

k̃ − θ0√
σ2

0/n

]
= 1− Φ

(
k̃ − θ0√
σ2

0/n

)
,

where it was used that, under H0, the standardized sample mean (X− θ0)/
√
σ2

0/n has the

standard normal distribution.

Step 3: The critical region Rk is expressed in terms of X, whose distribution is continuous.

To find k∗—or equivalently, k̃— the following equation must be solved:

1− Φ

(
k̃ − θ0√
σ2

0/n

)
= α;

see (4.3.2). It follows that

k̃ − θ0√
σ2

0/n
= Φ−1(1− α) = z1−α,

and then

k̃ = θ0 +
σ0√
n
z1−α.
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Step 4: Since Pθ0 [{X ∈ X |f(X; θ1) = k∗f(x; θ0)}] = Pθ0 [X = k̃] = 0, the constant ψ∗ is

set equal to 1; see Remark 4.3(ii).

Step 5: The most powerful test with level α is determined by the following critical function:

ϕ(x) =

{
1, if x ≥ θ0 +

σ0√
n
z1−α

0, otherwise,

concluding the construction. tu

Example 4.4.2. Let X = (X1, X2, X3, X4) be a sample of the Poisson (λ) distribution where

λ ∈ {1, 2.5}. To construct a most powerful test of level α = 0.05 for the problem

H0:λ = 2.5 versus H1:λ = 1,

first notice that X takes values in

X = {x = (x1, x2, x3, x4) |xi is a nonnegative integer},

and that for x ∈ X ,

f(x;λ) =
4∏
i=1

λxi

xi!
e−λ = λ

∑4

i=1
xi e−4λ

x1!x2!x3!x4!
.

Therefore,

f(x;λ1)

f(x;λ0)
=
λ

∑4

i=1
xi

1

e−4λ1

x1!x2!x3!x4!

λ

∑4

i=1
xi

0

e−4λ0

x1!x2!x3!x4!

=

(
λ1

λ0

)∑4

i=1
xi

e−4(λ1−λ0).

Using this expression, the Neyman-Pearson test is constructed as follows:

Step 1: Since λ1 = 1 and λ0 = 2.5, it follows that for x ∈ X

f(x;λ1) > kf(x;λ0) ⇐⇒ f(x;λ1)

f(x;λ0)
> k

⇐⇒
(
λ1

λ0

)∑4

i=1
xi

e−4(λ1−λ0) > k

⇐⇒
(

1

2.5

)∑4

i=1
xi

e−6 > k

⇐⇒ (2.5)
∑4

i=1
xi <

1

ke6

⇐⇒ log (2.5)
4∑
i=1

xi < log

(
1

ke6

)
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and then

f(x;λ1) > kf(x;λ0) ⇐⇒ x < k̃

where

k̃ =
1

log (2.5)
log

(
1

ke6

)
.

Thus, Rk = {x ∈ X | f(x;λ1) > kf(x;λ0)} = {x ∈ X |x < k̃}; notice that k̃ is a decreasing

function of k.

Step 2: Under H0, the random variables Xi are independent with common Poisson (2.5)

distribution, so that
∑4
i=1Xi ∼ Poisson (10), and then the size of the critical region Rk

when λ = 2.5 is given by

Pλ0
[X ∈ Rk] = Pλ0

[X1 +X2 +X3 +X4 < k̃] =
∑

0≤t<k̃

e−10 10t

t!
.

Step 3: If k̃∗ corresponds to k∗ in (4.3.1), then k̃∗ is the largest value k̃ such that

Pλ0

[
4∑
i=1

Xi < k̃

]
≤ 0.05,

since k̃ is a decreasing function of k. A glance to portion of the table of the Poisson (10)

distribution displayed below shows that

Pλ0

[
4∑
i=1

Xi < 5

]
= 0.0293, and Pλ0

[
4∑
i=1

Xi < 6

]
= .0671.

so that k̃∗ = 5.
n P [Y = n] P [Y ≤ n] P [Y > n]

0 0.0000 0.0000 1.0000
1 0.0005 0.0005 0.9995
2 0.0023 0.0028 0.9972
3 0.0076 0.0103 0.9897
4 0.0189 0.0293 0.9707
5 0.0378 0.0671 0.9329
6 0.0631 0.1301 0.8699
7 0.0901 0.2202 0.7798

Step 4: Since Pθ0 [{X ∈ X |f(X; θ1) = k∗f(x; θ0)}] = Pθ0 [X = k̃∗] = Pθ0 [X = 5] = 0.0378,

it follows that

ψ∗ =
.05− Pλ0 [X < 5]

Pλ0 [X = 5]
=
.05− .0293

.0378
= .5476.

Step 5: The most powerful test with level α = 0.5 is determined by the following critical

function:

ϕ(x) =

{
1, if x < 5
.5476, if x = 5,
0, if x > 5.
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The application of this test is as follows: If X < 5 (respectively, X > 5) is observed,

then the null hypothesis is rejected (respectively, accepted), whereas if X = 5 occurs, then

a Bernoulli experiment with success probability is performed, and the null hypothesis is

rejected if the outcome of the Bernoulli experiment is ‘success’, while H0 is ‘accepted’when

a ‘failure’occurs. tu

In Example 4.4.1, when H0 is valid, the decision maker will not use any randomized

procedure to decide which of the null or the alternative hypothesis is true. On the other

hand, in Example 4.4.2, the analyst will take a randomized decision when X = 5, an event

that has probability 0.0378 if H0 is true. In the following example, the decision maker

always uses randomization to decide which of the null or alternative hypothesis holds.

Example 4.4.3. Let X be a random variable with the Uniform (0, θ) distribution, where

θ ∈ {1, 2}, and consider the problem of testing H0: θ = 1 versus H1: θ = 2. A test with

level α = 0.05 is constructed as follows:

Notice that, since the parameter space is {1, 2}, then X takes values in

X = (0, 2)

and that for x ∈ X ,
f(x; θ) =

1

θ
I(0,θ)(x).

Therefore,

f(x; θ1)

f(x; θ0)
=

1

θ1
I(0,θ1)(x)

1

θ0
I(0,θ0)(x)

=
θ0

θ1

I(0,θ1)(x)

I(0,θ0)(x)
=

{
∞, if x ∈ [1, 2)
1/2, if x ∈ (0, 1),

(4.4.1)

where the last equality used that θ0 = 1 and θ1 = 2. Using this expression, the Neyman-

Pearson test is constructed as follows:

Step 1: Observe that for each x ∈ X and k ∈ [0,∞)

f(x; θ1) > kf(x; θ0) ⇐⇒ f(x; θ1)

f(x; θ0)
> k

and then

Rk = {x ∈ X | f(x; θ1) > kf(x; θ0)} =

{
[1, 2), if k > 1/2
(0, 2), if k ∈ [0, 1/2].

Step 2: Under H0, the random variable X has the Uniform (0, 1) distribution, so that the

size of the region Rk is given by

Pθ0 [X ∈ Rk] =

{
Pθ0 [X ∈ [1, 2)] = 0, if k > 1/2
Pθ0 [X ∈ (0, 2)] = 1, if k ≤ 1/2.
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Step 3: According to the previous display, the minimum (infimum) k∗ of all the values k

such that Pθ0 [X ∈ Rk] ≤ α = 0.05 is

k∗ = 1/2.

Step 4: By (4.4.1),

Pθ0 [f(X; θ1) = k∗f(X; θ0)] = Pθ0

[
f(X; θ1)

f(X; θ0)
= k∗

]
= Pθ0

[
f(X; θ1)

f(X; θ0)
=

1

2

]
= Pθ0 [X ∈ (0, 1)] = 1.

Observing that Pθ0 [f(X; θ1) > k∗f(x; θ0)] = Pθ0 [X ∈ [1, 2)] = 0 it follows that

ψ∗ =
0.05− Pλ0

[X ∈ [1, 2)]

Pλ0
[X ∈ (0, 1)]

=
0.05− 0

1
= 0.05.

Step 5: Observing that {f(X; θ1) < k∗f(X; θ0)} = ∅, the most powerful test with level

α = 0.05 is determined by the following critical function:

ϕ(x) =

{
1, if x ∈ [1, 2)
0.05, if x = (0, 1).

Notice that under H0 the variable X takes values in (0, 1) with probability 1, so that, when

the null hypothesis is true, the analyst will always decide which of the null or alternative

hypothesis holds using a random mechanism. tu



Chapter 5

Unbiasedness Property

This chapter concerns two basic properties that are satisfied by a most powerful test.

The first one concerns a natural and intuitive condition: Under a reasonable test, the

probability of rejecting the null hypothesis when it is false must be at least equal to the

probability of rejection when H0 is true; a test with this property is called unbiased. The

second property refers to the information that must be gathered in order to apply a most

powerful test. The main result in this direction establishes that, when a simple hypothesis is

being tested versus another simple hypothesis, a most powerful test can be always specified

in terms of a sufficient statistic.

5.1. Unbiased Tests

To begin with, the most fundamental property of a test is introduced below.

Definition 5.1.1. A test γ for the problem H0: θ ∈ Θ0 versus H1: θ ∈ Θ \Θ0 is unbiased, if

the following condition holds:

max
θ∈Θ0

πγ(θ) ≤ πγ(θ̃), θ̃ ∈ Θ \Θ0.

This unbiasedness property for a test can be phrased as follows: The test γ is unbiased

if the probability of rejecting H0 when it is false is always larger than (or equal to) the

probability of rejection when H0 is true. As the following lemma shows, this intuitively

appealing property is satisfied by a uniformly most powerful test.

51
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Lemma 5.1.1. Let γ be a uniformly most powerful test of size α for the problem H0: θ ∈ Θ0

versus H1: θ ∈ Θ \Θ0. In this case γ is unbiased.

Proof. Let γ be a most powerful test of size α for the problem H0: θ ∈ Θ0 versus H1: θ ∈
Θ \Θ0. In this case

max
θ∈Θ0

πγ(θ) = α

and, for any other test γ̃ of size α,

πγ̃(θ̃) ≤ πγ(θ̃) for every θ̃ ∈ Θ \Θ0. (5.1.1)

Consider now the test γ̃ determined by the critical function ϕ̃(x) = α for every possible

value x of the observation vector X. This test satisfies that

πγ̃(θ) = Eθ[ϕ̃(X)] = Eθ[α] = α, θ ∈ Θ;

in particular, γ̃ has size α, and using the relation (5.1.1) with this test γ̃ it follows that, for

every θ̃ ∈ Θ \Θ0, α = Eθ̃[ϕ̃(X)] = πγ̃(θ̃) ≤ πγ(θ̃), and then

max
θ∈Θ0

πγ(θ) = α ≤ πγ(θ̃),

showing that γ is an unbiased test. tu

As an immediate corollary of the previous result, the unbiasedness property of a Neyman-

Pearson test is obtained.

Corollary 5.1.1. Consider the testing problem

H0: θ = θ0 versus H1: θ = θ1, (5.1.2)

and let ϕk, ψ be (the critical function of a) Neyman-Pearson test for this problem. In this

case ϕk, ψ is an unbiased test, that is,

πϕk, ψ (θ0) ≤ πϕk, ψ (θ1). (5.1.3)

Proof. Theorem 4.1.1 establishes that the test ϕk, ψ is most powerful for the problem

(5.1.2) with size πϕk, ψ (θ0), and consequently it is unbiased, by Lemma 5.1.1, that is, the

probability of rejecting H0 when it is true—which is given by πϕk, ψ (θ0)—is less than or

equal to the probability πϕk, ψ (θ1) of rejecting the null hypothesis when it is false, which is

the desired conclusion. tu
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In a later section it will be proved that, under mild conditions, the inequality in (5.1.3)

is strict.

5.2. Dependence on a Sufficient Statistic

In this section it will be shown that a Neyman-Pearson test depends on a sufficient statistic;

see Dudewicz and Mishra (1998) or Wackerly et al. (2009).

Lemma 5.2.1. Let X be a random vector with density or probability function f(x; θ).

Consider the testing problem H0: θ = θ0 versus H1: θ = θ1, and let S = S(X) be a

sufficient statistic for the underlying model. In this context, any Neyman-Pearson test

ϕk, ψ with ψ a constant, is a function of the sufficient statistic S.

Recalling that if a statistic S = S(X) is sufficient, then the analyst may record S and

nothing more without missing any useful information provided by the observed data X, it

follows from the previous lemma that an observer retaining only the value of S(X) will be

always able to construct a most powerful test.

Proof. Since S = S(X) is sufficient, it follows that the density (or probability function)

f(x; θ) can be expressed as

f(x; θ) = h(x)g(θ;S(x))

for certain nonnegative functions h and g. Set

A = {s | g(θ1; s) > kg(θ0; s)},

B = {s | g(θ1; s) < kg(θ0; s)},

C = {s | g(θ1; s) = kg(θ0; s)},

and recall that the set of possible values of X is given by X = {x | f(x; θ0) > 0} ∪
{x | f(x; θ1) > 0}, so that h(x) > 0 for every x ∈ X . Therefore, for every k ≥ 0 and

x ∈ X
f(x; θ1) > kf(x; θ0) ⇐⇒ h(x)g(θ1;S(x)) > kh(x)g(θ0;S(x))

⇐⇒ g(θ1;S(x)) > kg(θ0;S(x))

where the positivity of h(x) was used to set the second equivalence. Thus,

x ∈ {f(x; θ1) > kf(x; θ0)} ⇐⇒ S(x) ∈ {s | g(θ1; s) > kg(θ0; s)} = A.

Similarly,

x ∈ {f(x; θ1) < kf(x; θ0)} ⇐⇒ S(x) ∈ {s | g(θ1; s) < kg(θ0; s)} = B

and

x ∈ {f(x; θ1) = kf(x; θ0)} ⇐⇒ S(x) ∈ {s | g(θ1; s) = kg(θ0; s)} = C.



54

Combining these three lat displays with the formula (4.1.2) for ϕk,ψ it follows that

ϕk,ψ(x) =

 1, if S(x) ∈ A,
0, if S(x) ∈ B,
ψ, if S(x) ∈ C

or, in a more compact way,

ϕk,ψ(x) = IA(S(x)) + ψIC(S(x));

keeping in mind that ψ is constant, either of these expressions show that ϕk,ψ is a function

of S(x). tu

5.3. Additional Examples

The following examples illustrate the construction of Neyman-Pearson tests in some specific

cases, and show explicitly that the tests are unbiased and depend on a sufficient statistic.

First, some technical facts are stated in the remarks before each example; the proofs of the

results can be found in Dudewicz and Mishra (1998) or Wackerly et al. (2009).

Remark 5.3.1. Suppose that X = (X1, X2, . . . , Xn) is a sample of the density

f(x; θ) =
1

βαΓ(α)
xα−1e−x/βI(0,∞)(x),

which corresponds to the Gamma (α, β) distribution. In this case

(i) X1 +X2 + · · ·+Xn ∼ Gamma (nα, β),

(ii) (X1 +X2 + · · ·+Xn)/β ∼ Gamma (nα, 1), and

(iii) 2(X1 +X2 + · · ·+Xn)/β ∼ Gamma (nα, 1/2).

Also,

(iv) The Gamma(k/2, 1/2) distribution is referred to as the chi squared distribution with k

degrees of freedom, and is denoted as χ2
k. tu

Exercise 5.3.1. Suppose that X = (X1, X2, . . . , Xn) is a sample of the Gamma (α, β)

distribution (α, β > 0), which has density

f(x;α, β) =
1

Γ(α)βα
xα−1e−x/βI(0,∞)(x), x ∈ IR,

and assume that α is a known positive number.
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(a) For the testing problem H0 : β = 1 versus H1:β = 2

(i) Show explicitly that the best (most powerful) test at a specified level a0 is based on the

sufficient statistic S = X1 +X2 + · · ·+Xn,

(ii) Find a most powerful test at level a0, and

(iii) Show directly that this test is unbiased.

(b) Repeat part (a) for H0:β = β0 versus H1:β = β1, where β1 > β0, and hence generalize

part (a) to find a most powerful test, and

(c) Show that if ϕ is a Neyman-Pearson test of the form

ϕ(x) =

{
1, if X1 +X2 + · · ·+Xn > k
ψ, if X1 +X2 + · · ·+Xn = k
0, otherwise,

(5.3.1)

then the corresponding power function is a nondecreasing function of β.

Solution. The density fX(x;α, β) of X is supported on the set of all n-dimensional vectors

x with positive components. If xi > 0 for i = 1, 2, . . . , n,

fX(x;α, β) =
n∏
i=1

1

Γ(α)βα
xα−1e−x/βI(0,∞)(x)

=
1

Γ(α)n

(
n∏
i=1

xi

)α−1
1

βnα
e−
∑n

i=1
xi/β

= h(x)
1

βnα
e−
∑n

i=1
xi/β

(5.3.2)

where

h(x) =
1

Γ(α)n

(
n∏
i=1

xi

)α−1

.

(a) If x has positive components,

f(x;α, 2) > k̃f(x;α, 1) ⇐⇒ f(x;α, 2)

f(x;α, 1)
> k̃

⇐⇒
h(x)

1

2nα
e−
∑n

i=1
xi/2

h(x)e−
∑n

i=1
xi

> k̃

⇐⇒ e
∑n

i=1
xi/2 > k̃2nα

⇐⇒
n∑
i=1

xi > 2 log(k̃2nα) ≡ k.

and it follows that a Neyman-Pearson can be described as

ϕ(X) =

{
1, if X1 +X2 + · · ·+Xn ≥ k
0, if X1 +X2 + · · ·+Xn < k;

(5.3.3)
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see (4.1.2). Notice that the event [f(X;α, 2) = k̃f(X;α, 1)] = [X1 +X2 + · · ·+Xn = k] has

been incorporated to the rejection error, a choice that does not affects the size of the test,

since X1 + X2 + · · · + Xn has Gamma (nα, β) distribution, which is continuous, and then

the event has probability zero. The above expression shows that the Neyman-Pearson test

depends only on the sufficient statistic S = X1 + X2 + · · · + Xn. The power function of

the test is πϕ(β) = Pβ [X1 +X2 + · · ·+Xn ≥ k], and the level of this test for the problem

H0:β = 1 versus H1:β = 2 is πϕ(1). To obtain the level (size) a0, the constant k must be

selected in such a way that

a0 = π(1) = P1[X1 +X2 + · · ·+Xn > k]. (5.3.4)

Notice that when β = 1, S = X1 + X2 + · · · + Xn ∼ Γ(nα, 1), so that the density of S is

given by

fS(y) =
1

Γ(nα)
xnα−1e−xI(0,∞)(x).

Therefore, the number k in (5.3.4) must be selected as the (right-hand side) percentil pa0

of size a0 for this density:∫ ∞
pa0

1

Γ(nα)
xnα−1e−xI(0,∞)(x) dx = a0,

and the test of level a0 is obtained by replacing k by pa0 in the above expression for the

critical function ϕ; the power function is

π(β) = Pβ [X1 +X2 + · · ·+Xn > pa0 ].

Of course, π(1) = a0, and it will be shown that π(2) > a0. To achieve this goal, notice that

if X1, X2, . . . , Xn is a sample of the Gamma (α, β) distribution, then Xi/β, i = 1, 2, . . . , n

are i.i.d. with common distribution Gamma (α, 1), so that (X1 + X2 + · · · + Xn)/β ∼
Gamma (nα, 1), that is,

X1 +X2 + · · ·+Xn

β
has density

1

Γ(nα)
xnα−1e−xI(0,∞)(x). (5.3.5)

Therefore,

π(β) = Pβ

[
X1 +X2 + · · ·+Xn

β
>
pa0
β

]
=

∫
pa0/β

1

Γ(nα)
xnα−1e−x dx.

In particular,

π(2) =

∫
pa0/2

1

Γ(nα)
xnα−1e−x dx >

∫
pa0

1

Γ(nα)
xnα−1e−x dx = a0 = π(1),

showing that the test (5.3.3) with k = pa0 is unbiased for the testing problem H0:β = 1

versus H1:β = 2.
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(b) Consider the testing problem H0:β = β0 versus H1:β = β1, where β1 > β0. Using

(5.3.2), it follows that if x has positive components,

f(x;α, β1) > k̃f(x;α, β0) ⇐⇒ f(x;α, β1)

f(x;α, β0)
> k̃

⇐⇒
h(x)

1

βnα1

e−
∑n

i=1
xi/β1

h(x)
1

βnα0

e−
∑n

i=1
xi/β0

> k̃

⇐⇒ e(1/β0−1/β1)
∑n

i=1
xi > k̃

(
β1

β0

)nα
⇐⇒

n∑
i=1

xi >
β0β1

β1 − β0
log

(
k̃

(
β1

β0

)nα)
≡ k.

Thus, incorporating the set {x | fX(x;α, β1) = k̃fX(x;α, β0)} to the rejection region, the

Neyman-Pearson test for the present testing problem can be written as in (5.3.3), just

in terms of the sufficient statistic S = X1 + X2 + · · · + Xn. To determine the value

of k to obtain a test of size a0, notice that the power function of the test is given by

π(β) = Pβ [X1 +X2 + · · ·+Xn ≥ k], and then k must be selected in such a way that

a0 = π(β0) = Pβ0 [X1 +X2 + · · ·+Xn > k]. (5.3.6)

Recalling that (X1 +X2 + · · ·+Xn)/β has the Gamma (nα, 1) distribution when β is the

true parameter value, it follows that

π(β) = Pβ

[
X1 +X2 + · · ·+Xn

β
>
k

β

]
=

∫ ∞
k/β

1

Γ(nα)
xnα−1e−x dx,

so that (5.3.6) is equivalent to

a0 =

∫ ∞
k/β0

1

Γ(nα)
xnα−1e−x dx,

that is,
k

β0
= pa0 ,

the right percentil of order a0 of the Gamma (α, 1) distribution. Thus, k = β0pa0 , and the

Neyman-Person test is given by

ϕ(X) =

{
1, if X1 +X2 + · · ·+Xn ≥ β0pa0
0, if X1 +X2 + · · ·+Xn < β0pa0 .

Now, it will be shown that this is an unbiased test. Indeed,

π(β1) = Pβ1 [X1 +X2 + · · ·+Xn > β0pa0 ]

= Pβ1

[
X1 +X2 + · · ·+Xn

β1
>
β0pa0
β1

]
=

∫ ∞
β0pa0/β1

1

Γ(nα)
xnα−1e−xI(0,∞)(x) dx,
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where (5.3.5) was used to set the second equality; since β0 < β1, it follows that β0pa0/β1 <

pa0 , and then

π(β1) >

∫ ∞
pa0

1

Γ(nα)
xnα−1e−x dx = a0 = π(β0),

showing that the test is unbiased.

(iii) As already mentioned, Pβ [X1 +X2 + · · ·+Xn = k] = 0, so that the power function of

the test (5.3.1) is given by

π(β) = Pβ [X1 +X2 + · · ·+Xn > k] + ψPβ [X1 +X2 + · · ·+Xn = k]

= Pβ [X1 +X2 + · · ·+Xn ≥ k].

Let β0 < β1 be two positive numbers and set a0 = π(β0), so that

a0 = Pβ0 [X1 +X2 + · · ·+Xn ≥ k].

In this case, as it was established in part (b), k = β0pa0 and

π(β1) = Pβ1
[X1 +X2 + · · ·+Xn ≥ β0pa0 ] > a0 = π(β0),

showing that π is increasing. tu

Remark 5.3.2. The following fact will be useful in the analysis of the example below. Let

X = (X1, X2, . . . , Xn) be a sample of the Exponential (λ) distribution, so that

Pλ[Xi > x] = e−λx, x ≥ 0.

Observing that for every nonnegative x

[min(Xi) > x] =

n⋂
i=1

[Xi > x],

the independence of the variables Xi yields that

(i) Pλ[min(Xi) > x] =
∏n
i=1 Pλ[Xi > x] = enλx for all x ≥ 0, that is,

min(Xi) ∼ Exponential (nλ) .

Consequently, an application of the change of variable formula, leads to the following result:

(ii) nλmin(Xi) ∼ Exponential (1). tu
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Exercise 5.3.2. Let X = (X1, X2, . . . , Xn) be a random sample of the displaced exponential

density

f(x; θ) = e−(x−θ)I(θ,∞)(x).

Use the Neyman-Pearson Lemma to determine an α-level most powerful test for H0: θ = θ0

versus H1: θ = θ1, where θ1 > θ0.

Solution. In the context of this example the parameter space is {θ0, θ1}, and the set X of

possible values of X consists of all n-dimensional vectors x whose components are all larger

than θ0. For all x ∈ X ,

fX(x; θ) =

n∏
i=1

e−(xi−θ)I(θ,∞)(xi) = enθe−
∑n

i=1
xiI(θ,∞)(minxi).

From this point, the ratio f(x; θ1)/f(x; θ0) can be evaluated as

f(x; θ1)

f(x; θ0)
=
enθ1e−

∑n

i=1
xiI(θ1,∞)(minxi)

enθ0e−
∑n

i=1
xiI(θ0,∞)(minxi)

= en(θ1−θ0) I(θ1,∞)(minxi)

I(θ0,∞)(minxi)
,

and recalling that θ1 > θ0,

f(x; θ1)

f(x; θ0)
=

{
0, if θ0 < minxi ≤ θ1

en(θ1−θ0), if minxi > θ1.

This expression shows that f(x; θ1)/f(x; θ0) is an increasing function of minxi; indeed,

f(x; θ1)

f(x; θ0)
= g(minxi),

where the increasing function g(·) is given by

g(t) =

{
0, if t ≤ θ1

en(θ1−θ0), if t > θ1.

Consequently, a most powerful test for H0: θ = θ0 versus H1: θ = θ1 is given by

ϕ(X) =

{
1, if minXi > k
ψ if minXi = k
0, if minXi < k,

where k and ψ ∈ [0, 1] are determined to achieve the desired size α = Eθ0 [ϕ(X)]. To

complete the specification of the test, notice that if θ0 is the true parameter value, then Xi−
θ0 has the exponential density exI(0,∞)(x), that is, Xi−θ0 ∼ Exponential (1). Consequently,

(minXi)− θ0 = min(Xi − θ0) ∼ Exponential (n)

(see Remark 5.3.2) and than

n[(minXi)− θ0] ∼ Exponential (1) .
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It follows that minXi has a continuous distribution, and then ψ can be selected arbitrarily

in [0, 1], say ψ = 1. To find the value of k, notice that

Eθ0 [minXi > k] = Pθ0 [minXi > k]

= Pθ0 [n[minXi − θ0] > n[k − θ0]]

= e−n(k−θ0).

Thus, Eθ0 [minXi > k] = α if and only if α = e−n(k−θ0), and then

k = θ0 −
1

n
log(α) = θ0 +

1

n
log

(
1

α

)
.

In short: A most powerful test with level α is obtained by rejecting H0 if

minXi ≥ θ0 − log(α)/n,

and accepting H0 otherwise. tu

5.4. Strict Unbiasedness

In Corollary 5.1.1 it was show that any Neyman-Pearson test ϕk, ψ for the problem H0: θ =

θ0 versus H1: θ = θ1 is unbiased, that is,

Eθ0 [ϕk, ψ(X)] ≤ Eθ1 [ϕk, ψ(X)].

The main objective of this section is to show that, in general, the inequality in this relation

is strict, a result that is formally stated as follows.

Theorem 5.4.1. Let X be a random vector with density or probability function f(x; θ),

where θ ∈ {θ0, θ1} and, given α ∈ (0, 1), let φk,ψ be a Neyman-Pearson test of level α for

the problem

H0: θ = θ0 versus H1: θ = θ1.

In this case the test φk,ψ is strictly unbiased, that is,

Eθ0 [ϕk, ψ(X)] < Eθ1 [ϕk, ψ(X)]. (5.4.1)

The proof of this result relies on the following theorem analyzing the relation between

two most powerful tests.

Theorem 5.4.2. Consider the testing problem () and, given α ∈ (0, 1), let ϕk, ψ be the

Neyman-Pearson test of size α, where k ≥ 0 and ψ:X → [0, 1] and define D as the region

where f(x; θ1) and kf(x; θ0) are different, that is,

D = {x ∈ X |f(x; θ1) > kf(x; θ0)} ∪ {x ∈ X |f(x; θ1) < kf(x; θ0)}. (5.4.2)
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With this notation, if ϕ̃ is other a most powerful test of size α, then

ϕ̃ and ϕk, ψ coincide on the region D.

More precisely,

Pθ[[X ∈ D] ∩ [ϕk, ψ(X) = ϕ̃(X)]] = Pθ[X ∈ D], θ = θ0, θ1. (5.4.3)

Remark 5.4.1. (a) Suppose that Pθ[D] 6= 0. In this case, notice that the equality in (5.4.3)

is equivalent to

Pθ[ϕk, ψ(X) = ϕ̃(X)|X ∈ D] =
Pθ[[X ∈ D] ∩ [ϕk, ψ(X) = ϕ̃(X)]]

Pθ[X ∈ D]
= 1.

In words, this equality means that, under the condition that X ∈ D has been observed,

with probability 1 the critical functions ϕ̃ and ϕk, ψ coincide.

(b) The following simple analytical facts will be useful:

(i) If G is a nonnegative function defined on a region X ⊂ IRn , then∫
X
G(x) dx = 0⇒

∫
A
dx = 0, where A = {x ∈ X |G(x) 6= 0}

(ii) For A ⊂ IRn ∫
A
dx = 0⇒

∫
A
f(x) dx = 0 for any f :A → IR.

tu

The proof of Theorem 5.4.2 is particularly simple when the observation vector X is

discrete, and for this reason the argument is presented in two parts.

Proof of Theorem 5.4.2. The backbone of the argumentation is the relation

0 ≤ [ϕk,ψ(x)− ϕ̃(x)][f(x; θ1)− kf(x; θ0)], x ∈ X ; (5.4.4)

established in the proof of Theorem 4.1.1. To begin with, recall that the Neyman-Pearson

test ϕk, ψ is most powerful for the problem () at level α. Since ϕ̃ is also most powerful at

the significance level α, it follows that the power functions of these tests coincide at θ = θ1,

that is,

Eθ1 [ϕ̃(X)] = πϕ̃(θ1) = πϕk, ψ (θ1) = Eθ1 [ϕk, ψ(X)]

i.e.,

Eθ1 [ϕk, ψ(X)]− Eθ1 [ϕ̃(X)] = 0.
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On the other hand, by construction, the size of the test ϕk, ψ is α, that is, Eθ0 [ϕk, ψ(X)] = α

whereas, since ϕ̃ is most powerful at size α, it follows that Eθ0 [ϕ̃(X)] ≤ α; see Definition

3.4.3. Consequently, Eθ0 [ϕk, ψ(X)]−Eθ0 [ϕ̃(X)] ≥ 0 and then, recalling that k is nonnegative

number,

−k[Eθ0 [ϕk, ψ(X)]− Eθ0 [ϕ̃(X)]] ≤ 0.

Combining these two last displays it follows that

Eθ1 [ϕk, ψ(X)]− Eθ1 [ϕ̃(X)]− k[Eθ0 [ϕk, ψ(X)]− Eθ0 [ϕ̃(X)]] ≤ 0. (5.4.5)

From this point, it is convenient to analyze the discrete and continuous cases separately.

Case 1: The observation vector X is discrete.

Taking the summation over x ∈ X in both sides of (5.4.4) it follows that

0 ≤
∑
x∈X

[ϕk,ψ(x)− ϕ̃(x)][f(x; θ1)− kf(x; θ0)]

=
∑
x∈X

[ϕk,ψ(x)− ϕ̃(x)]f(x; θ1)− k
∑
x∈X

[ϕk,ψ(x)− ϕ̃(x)]f(x; θ0)]

=
∑
x∈X

ϕk,ψ(x)f(x; θ1)−
∑
x∈X

ϕ̃(x)f(x; θ1)

− k

(∑
x∈X

ϕk,ψ(x)f(x; θ0)−
∑
x∈X

ϕ̃(x)]f(x; θ0)

)
= Eθ1 [ϕk, ψ(X)]− Eθ1 [ϕ̃(X)]− k[Eθ0 [ϕk, ψ(X)]− Eθ0 [ϕ̃(X)]

(5.4.6)

Combining this relation with (5.4.5) it follows that

Eθ1 [ϕk, ψ(X)]− Eθ1 [ϕ̃(X)]− k[Eθ0 [ϕk, ψ(X)]− Eθ0 [ϕ̃(X)] = 0,

an equality that, via (5.4.6), is equivalent to∑
x∈X

[ϕk,ψ(x)− ϕ̃(x)][f(x; θ1)− kf(x; θ0)] = 0.

Since all the terms in this last summation are nonnegative, by (5.4.4), it follows that

[ϕk,ψ(x)− ϕ̃(x)][f(x; θ1)− kf(x; θ0)] = 0, x ∈ X .

Since [f(x; θ1)− kf(x; θ0)] 6= 0 when x ∈ D, it follows that

x ∈ D ⇒ ϕk,ψ(x) = ϕ̃(x),

so that the inclusion [X ∈ D] ⊂ [ϕk,ψ(X) = ϕ̃(X)] holds. Consequently,

[X ∈ D] ∩ [ϕk,ψ(X) = ϕ̃(X)] = [X ∈ D],
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an equality that immediately leads to to (5.4.3).

Case 2: The observation vector X is continuous.

The argument is similar to the one used in the discrete case. Taking the integral over x ∈ X
in both sides of (5.4.4) and paralleling the above argument it follows that

0 ≤
∫
x∈X

[ϕk,ψ(x)− ϕ̃(x)][f(x; θ1)− kf(x; θ0)] dx

= Eθ1 [ϕk, ψ(X)]− Eθ1 [ϕ̃(X)]− k[Eθ0 [ϕk, ψ(X)]− Eθ0 [ϕ̃(X)],

a relation that together with (5.4.5) yields that

Eθ1 [ϕk, ψ(X)]− Eθ1 [ϕ̃(X)]− k[Eθ0 [ϕk, ψ(X)]− Eθ0 [ϕ̃(X)] = 0,

and then ∫
x∈X

[ϕk,ψ(x)− ϕ̃(x)][f(x; θ1)− kf(x; θ0)] = 0.

Since the product in this integral is nonnegative, Remark 5.4.1(b) yields that∫
x∈A

dx = 0,

and then

Pθ0 [X ∈ A] =

∫
x∈A

f(x; θ0) dx = 0 =

∫
x∈A

f(x; θ0) dx = Pθ1 [X ∈ A], (5.4.7)

where

A = {x ∈ X | [ϕk,ψ(x)− ϕ̃(x)][f(x; θ1)− kf(x; θ0)] 6= 0}

= {x ∈ X |ϕk,ψ(x)− ϕ̃(x) 6= 0} ∩ {x ∈ X | f(x; θ1)− kf(x; θ0) 6= 0}

= {x ∈ X |ϕk,ψ(x)− ϕ̃(x) 6= 0} ∩ D;

see (5.4.2) for the last equality. It follows that the event [X ∈ A] can be expressed as

[X ∈ A] = [ϕk,ψ(X) 6= ϕ̃(X)] ∩ [X ∈ D]

and then (5.4.7) yields that

Pθ[[ϕk,ψ(X) 6= ϕ̃(X)] ∩ [X ∈ D]] = 0, θ = θ0, θ1.

Therefore, for θ = θ0, θ1,

Pθ[X ∈ D] = Pθ[[ϕk,ψ(X) = ϕ̃(X)] ∩ [X ∈ D]] + Pθ[[ϕk,ψ(X) 6= ϕ̃(X)] ∩ [X ∈ D]]

= Pθ[[ϕk,ψ(X) = ϕ̃(X)] ∩ [X ∈ D]]

establishing (5.4.3). tu
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Proof of Theorem 5.4.1. The argument relies heavily on Assumption 2.1.1. Given α ∈ (0, 1)

let ϕk, ψ be the Neyman-Pearson test of size α. By (5.1.1), the inequality Eθ0 [ϕk, ψ(X)] ≤
Eθ1 [ϕk, ψ(X)] holds. Thus, to establish the desired conclusion it is sufficient to show that

Eθ0 [ϕk, ψ(X)] = Eθ1 [ϕk, ψ(X)] (5.4.8)

does not occur. Proceeding by contradiction, suppose that this equality holds. Now,

defining ϕ̃(x) = α for every x ∈ X , it follows that

α = Eθ0 [ϕ̃(X)] = Eθ1 [ϕ̃(X)],

so that ϕ̃ is also a most powerful test with size α. Then, Theorem 5.4.2 yields that

Pθ[[X ∈ D] ∩ [ϕk, ψ(X) = ϕ̃(X)]] = Pθ[X ∈ D], θ = θ0, θ1,

where D is given in (5.4.2). Notice now that on the event [X ∈ D], one of the inequal-

ities f(X; θ1) > kf(X; θ0) or f(X; θ1) < kf(X; θ0), and in these cases ϕk, ψ(X) = 1 or

ϕk, ψ(X) = 0, respectively. Since ϕ(X) attains only the value α ∈ (0, 1), it follows that the

the equality ϕk, ψ(X) = ϕ̃(X) can not occur. In short,

[X ∈ D] ∩ [ϕk, ψ(X) = ϕ̃(X)] = ∅,

and combining this and the previous display it follows that

Pθ[X ∈ D] = 0, θ = θ0, θ1,

that is,

Pθ[f(X; θ1) = kf(X; θ0)] = Pθ[X ∈ Dc] = 1, θ = θ0, θ1,

an equality that leads to

Pθ[A] = Pθ[A ∩ [f(X; θ1) = kf(X; θ0)]], A ⊂ X , θ = θ0, θ1, (5.4.9)

To continue, suppose that X is discrete. and notice that, for every A ⊂ IRn,

Pθ1 [A] = Pθ1 [A ∩ [f(X; θ1) = kf(X; θ0)]]

=
∑

y∈A∩[x|f(x;θ1)=kf(x;θ0)]

f(y; θ1)

=
∑

y∈A∩[x|f(x;θ1)=kf(x;θ0)]

kf(y; θ0)

= k
∑

y∈A∩[x|f(x;θ1)=kf(x;θ0)]

f(y; θ0)

= kPθ0 [A ∩ [f(X; θ1) = kf(X; θ0)]]

= kPθ0 [A]
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Since 1 = Pθ0 [X ] = Pθ1 [X ], setting A = X in the above display it follows that

1 = Pθ1 [X ] = kPθ0 [X ] = k,

and then

Pθ1 [A] = Pθ0 [A] for every A,

that is, the distributions Pθ1 and Pθ0 coincide, contradicting Assumption 2.1.1. Therefore,

(5.4.8) does not occur, a fact that, as already mentioned, establishes (5.4.1). When X is

continuous, a similar argument—replacing the summation by integrals—allows to obtain

the desired conclusion. tu

The identifiability condition in Assumption 2.1.1 is practically satisfied in all models

considered in the literature (with exceptions in the theory of experimental designs). For

instance, in Example 4.4.1 the problem of testing H0:µ = µ0 versus H1:µ = µ1 based on

a sample X = (X1, X2, . . . , Xn) of the N (µ, σ2
0) distribution was considered, and it was

observed that the most powerful test satisfies that π(µ0) < π(µ1); the reason behind the

strict inequality is that the model is identifiable.
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