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Mexican farmers report that their main problematic is the high cost of crop-inputs and 

services. Additionally, with the recent increases in fertilizer prices, is necessary to 

optimize their usage. Precision Agriculture Technologies, and particularly Information 

Intensive Technologies (IITs) offer data driven solutions for farmers to optimize their 

crop-input usage.  

However, the adoption rate of IITs for precision agriculture (soil mapping, statistical 

analysis, prescription generation) is low because IITs require the user to have specialized 

knowledge and skills. Unlike embodied knowledge technologies (EKTs), whose adoption 

rates are much higher (autosteering, section control, among others) since the operator does 

not need to be an expert to use them.  Many of IITs' potential users have low information 

technology literacy, and to encourage them to use and benefit from software programs, 

easy-to-use applications are needed. 

AgStat is an application that was designed to provide farmers, researchers, and advisors 

with an integral, user-friendly system to perform automated data processing. The 

application was developed in python language and incorporates field surveying, soil 

mapping, data visualization functionalities, and a fully automated variable-rate 

prescription generation (VRPG) algorithm for nitrogen application. The algorithms 

developed for prescription generation include Artificial Neural Networks (ANN) for corn 

seeding recommendations and an expert-provided fixed model for nitrogen rate 

recommendations in a silage cornfield. Unlike the nitrogen recommendation model, ANN 

resulting models were not viable for use since the training data lacked quality and quantity, 

and therefore were not integrated on the application. 

AgStat’s VRPG results in a ready-to-use ESRI shapefile that can be exported to an 

external USB drive, which can be used to transfer the file to a variable-rate machine in the 

field. AgStat provides the insights for decision-making of an IIT without requiring the 

user to be a specialized geographic information systems operator or an expert agronomic 

advisor. 

Keywords: User-Friendly application, Spatial variability mapping, Agronomic 

prescription, Precision agriculture, GIS. 
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1 INTRODUCTION 

 

Precision Agriculture (PA) or site-specific management involves data analytics to address 

the spatial and temporal variability within agricultural plots to improve yields, reduce 

costs, and mitigate the farm’s environmental footprint. The International Society of 

Precision Agriculture (ISPA) defines it as a “Management strategy that gathers, processes 

and analyzes temporal, spatial and individual data and combines it with other information 

to support management decisions according to estimated variability for improved resource 

use efficiency, productivity, quality, profitability and sustainability of agricultural 

production.”  Specialized equipment and tools have been developed to help farmers to 

make data-driven decisions in every site of their fields, automate labors and optimize their 

production. However, data analytics tools, also called “information intensive 

technologies” (IIT) for PA require specialized knowledge and skills to operate. Farmers, 

and even agronomic advisors, often lack those skills, which has resulted in a limited 

adoption of this technologies. This work aims to create a user-friendly application that 

automates data processing, encouraging the adoption of IITs by farmers and agronomic 

advisors. This chapter will discuss the background and context of this thesis, followed by 

the research problem, aims and objectives, significance and finally, the limitations. 

The concept of PA as we know it emerged in the 1980’s decade and was totally focused 

on the spatial variability involved in crop production. With the years, new variability 

components and other agricultural sectors were related to the concept (Gili et al., 2018). 

Some of the technologies on which PA relies are Global Positioning Systems (GPS), 

Geographic Information Systems (GIS), and variable-rate equipment. Combining the 

mentioned technologies, farmers can manage their operation dividing each field into 

subplots according to their characteristics. The variable rate machinery then can apply a 

different amount of crop-input (seed, fertilizer, herbicide, among others) based on the 

productivity potential of each subplot in the field, saving costs and improving yields. The 

file that instructs the variable-rate equipment how much crop-input to apply and where to 

apply it is called an agronomic prescription. To create adequate agronomic prescriptions, 

the user needs proper agronomic knowledge, geostatistical analysis skills, and strong 
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information-technology proficiency. Erickson et al. (2018) reported the difficulties 

farmers and PA agencies in the United States face to find personnel with the previously 

mentioned skills, which has resulted in a low adoption rate for IITs. An effective solution 

to this problem is to create user-friendly applications (Demiris et al., 2004). This solution 

proposal has taken the form of applications created specially to facilitate the duties of 

farmers (Rahmayanti et al., 2020; Songsupakit et al., 2019; Ali et al., 2018). In the context 

of PA, applications have been developed to automatically process data and delineate 

subplots within a field, also called management zones (MZ). Paccioretti (2020) 

programmed an application that automatically generates MZ by aggregating data with k-

means clustering processing.  The application created by Albornoz et al. (2018), 

additionally to delineating MZ, generates a prescription file, but requires the user to enter 

the rates’ values manually. These applications represent great advances in easy-to-use IITs 

for PA users, but none of them fully automates the agronomic prescription process, 

requiring the user to have the pertinent knowledge or access to a specialist to decide the 

crop-input rates.  

This document describes the creation of the AgStat application which fully automates the 

prescription generation process. The literature review explores PA concepts, terminology, 

and previous works in software development for PA. In the Materials, Equipment, and 

Methods section, the source data is presented which includes three grain corn producing 

cornfields from Argentina and one silage corn field from Mexico, which were the data 

available at the time of this project’s development. Additionally, the software packages 

used and the steps taken into the design of the application are discussed. The results and 

discussion section presents performance data, maps obtained and the resulting 

functionalities of the application. Development decisions based on model performance are 

discussed as well in the aforementioned section. Finally, the conclusions, references, and 

annexes are presented. 

1.1 Contribution 

The present work will contribute to the adoption of IITs by providing an easy-to-use tool 

“AgStat” to farmers, researchers, and agronomic advisors. The fact that the AgStat user 

does not need to be a skilled specialist to generate ready-to-use prescriptions can lead to 
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an increase in the adoption of IITs. With more farmers implementing PA strategies in their 

operations, the elevated fertilizer prices (Beghin & Nogueira, 2021) can be addressed to 

maintain productivity and profitability. 

1.2 Objectives 

Given the lack of IITs that fully automate the agronomic prescription generation process, 

this work has the following aim: 

1.2.1 Main objective 

Develop a user-friendly application to automatically generate variable-rate prescriptions 

and agricultural data visualizations. 

1.2.2 Specific objectives 

1. Model corn yield variability with Artificial Neural Networks and regression analysis 

2. Use Artificial Neural Networks to prescribe variable seeding rates for corn 

3. Develop an algorithm to create variable-rate nitrogen prescriptions 

4. Design a user-friendly interface for an embedded application 

5. Design and program application’s functionalities 

6. Deploy application into a Jetson Nano Board 

1.3 Hypothesis 

It is possible to fully automate an agronomic prescription generation process with 

fixed models and artificial neural networks via a portable graphic application 
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2 LITERATURE REVIEW 

2.1 Background 

2.1.1 Problem: Crop-input cost and ecological footprint 

Since the beginning of agriculture, humanity has developed technologies to improve its 

productivity and efficiency (Khana & Kaur, 2019; Bhakta et al., 2019; Isioye, 2013). The 

agricultural mechanization revolution in the 19th century and the green revolution in the 

20th century resulted in increased productivity never seen before (Van Zanden, 1991). As 

a result, a minimum portion of individuals began to have the possibility of producing food 

for the rest of the population. The use of machinery, improved seeds, and agrochemicals 

such as fertilizers, herbicides, and pesticides have notably increased the competitiveness 

of agricultural companies (Evenson & Gollin, 2003; Thompson & Blank, 2000). However, 

the methodology that has been used and continues to be used by most Mexican companies 

with agricultural machinery is not sustainable in the long term. Excessive applications of 

agrochemicals generate leaching (Bergström et al., 2005), which results in contamination 

of soils and aquifers. 

 

Figure 1. Mexican farmers’ main problematics. Most farmers reported trouble with high 

crop-input and services costs. (from INEGI, 2020). 
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Additionally, the excessive use of agrochemicals is reflected in the production costs of 

agricultural companies, reducing their profitability, even more so with the rise in fertilizer 

prices (Beghin and Nogueira, 2021). According to INEGI (2020) expensive crop-inputs is 

the Mexican farmers’ main issue (Figure 1). 

2.1.2 Precision agriculture 

Also called “site-specific management”, this strategy optimizes crop-input applications 

and increases a farm’s profitability by addressing the continuous variability in the soil, 

topography, and climate.  

 

Figure 2.  Information process flow of Precision Agriculture. Includes data collection 

from the crop, soil, weather, etc. The information is processed, and site-specific 

recommendations are generated and applied, then data collection starts again. (from 

Abdullahi & Zubair, 2017) 

Despite the innovative appearances of PA practices, their same principles were used 

before the agrarian revolution by small-scale farmers. Onyango et al. (2021) point out that 
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in the past, sub-Saharan Africa’s small-scale farmers planned their management strategies 

addressing the soil condition’s variability of their plots to optimize their resources.  

 

Figure 3. Hierarchy of Precision Agriculture Technologies (from Barnes et al., 2019) 

These practices were largely lost since the introduction of inorganic fertilizers generalized 

agronomic recommendations, and the introduction of large-scale mechanized agricultural 

production. In recent decades, economic and environmental factors have encouraged 

farmers to optimize their operations by addressing the spatial and temporal variability in 

their fields. Since the 1990’s, precision agriculture technologies (PATs) such automated 
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guidance, variable-rate technology, yield mapping, unmanned aerial vehicles and 

multispectral sensing have gained popularity (DeLay et al., 2022).  

PATs rely on data processing (Figure 2) to help farmers optimize their resources and 

increase their productivity (Bhakta et al., 2019). Barnes et al. (2019) cited numerous 

studies that have classified PATs into two major categories (Figure 3) based on the level 

of interaction and knowledge required to operate them: Embodied Knowledge 

Technologies (EKTs) and Information Intensive Technologies (IITs). Autosteering and 

section control are good examples of EKTs. They have been proved to be adopted at a 

considerably higher rate than non-automated technology since, once installed, they do not 

need specialized skills or technical knowledge to operate. On the other hand, IITs like data 

geoprocessing and soil characterization, need a higher level of knowledge and human 

capabilities to benefit from them (Erickson et al., 2018).  

2.1.2.1 Variable-rate technology 

Most farmers in Mexico intend to apply crop production inputs uniformly to their fields 

and some only adjust rates between fields, but in reality the seeding rate varies 

continuously due to variations in speed, seed size, among other factors.. This management 

strategy does not maximize the crop-input use efficiency nor profitability. The previously 

mentioned premise leads to variable-rate technologies (VRT). Sawyer (1994) provides 

five assumptions needed to conceptualize VRT: 

1) Important factors that affect crop yield vary spatially within fields 

2) Spatial variability does influence crop yield 

3) Spatial variability can be identified, quantified, and mapped 

4) Precise crop response models are available to determine appropriate variable 

input rates 

Implementing VRT in an agricultural operation is costly, the money invested in 

equipment, software, and trained personnel to carry out the pertinent analysis and 

applications needs to be surpassed by the improvements in crop yield or savings in crop 

inputs to make this technology viable. The value of PA needs to be adequately quantified 

and demonstrated to promote adoption between farmers. Figure 4 shows an example of a 



8 

 

 

 

VRT implementation cycle, which starts with crop monitoring via a drone equipped with 

a multispectral camera. The imagery captured by the drone can be used to extract a 

Normalized Difference Vegetation Index map (NDVI, Rouse et al., 1974) which strongly 

correlates with the plant vigor.  

 

Figure 4. Overview of variable rate herbicide implementation in a vineyard. The 

classified NDVI map zones are used to apply different herbicide rates. (from Campos et 

al., 2020) 

The NDVI map needs to be classified (Figure 4, Classified vigor map) to form MZ which 

then are used to assign herbicide rates (Figure 4, Prescription map) according to the plant 

vigor class and the pertinent agronomic criteria. In this case, the canopy of the plants in 

each zone measured to obtain the Leaf Wall Area (LWA), and then the rates were 

prescribed by the decision support system “Dosaviña ®” based on the LWA parameter.  

Once the prescription is ready, the herbicide was applied with variable-rate equipment 

(Figure 4, VRA prototype). The variable-rate application map of Figure 4 shows the actual 
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rates applied to the vineyard by the sprayer. The application, despite following generally 

the management zones, is not perfect because the equipment cannot change its application 

rate instantaneously when changing management zone. This illustrates the need for 

management zones with smooth changes between them to obtain a greater fidelity in the 

crop-input application. Once applied, the effect of the crop-input in the plants can be 

evaluated again with the drone, and the cycle starts one more time. 

2.1.2.1.1 Prescription maps 

The prescription map’s fundamental components are the variable management zones and 

the corresponding crop-input rates. In other words, a prescription map indicates the 

machinery how much and where to apply a crop-input (seed, fertilizer, herbicide, among 

others). The management zones in the previously mentioned example were derived from 

NDVI data, but there is no correct methodology to delineate them. A common conclusion 

among publications regarding management zone delineation is that the methodology 

regarded as best in that specific study might not be optimal for other fields, crops or time 

frames. Management zones can be derived from a single variable i.e. biomass (Breunig et 

al., 2020), apparent electrical conductivity (Millan et al., 2019), among others. Some 

authors have delineated management zones using more than one variable by forming 

spatial clusters (Ohana-Levi et al., 2021).  

A prescription file normally has a shapefile format (ESRI, 1998). A shapefile is formed 

by multiple files with the same name, but different extension. Although a shapefile can be 

composed of 10+ files, only three of them are mandatory ‘SHP’, ‘DBF’ and ‘SHX’ files. 

The SHP file contains the geometry of its features, in prescription maps those features are 

polygons corresponding to the management zones. DBF files are tables that store the 

information of the features, in precision agriculture context, the information are the crop-

input rates. SHX files stores the index of the polygons and functions as a link between the 

geometry (SHP) and the database information (DBF) files. 

2.1.2.2 Process automation 

2.1.2.2.1 Precision agriculture apps 

Many potential PATs users lack an information technology affinity. With the advent 

increasingly complex analytics systems for agriculture, automated data processing is 
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needed to promote the adoption of PATs. Along these lines, SAGARPA and CONACYT 

(2014) established mobile application development for automated data-processing, 

seeding, and fertilization as priority research lines in Mexico. Demiris et al. (2004) found 

that a user-friendly interface (UI) can encourage users that lack information technology 

proficiency to use and benefit from software applications. UI and user experience (UX) 

design significantly impact the adoption of technology, satisfaction, and user loyalty (Kim 

& Mc. Fadden, 2020; Nugraha & Dhewanto, 2019). Darejeh & Singh (2013) compiled 

UI/UX solutions for users with low computer literacy: clear and straightforward 

navigation paths, reduce the number of features available at any given time, avoid the use 

of complicated terminology, use of similar functions for different jobs, available user’s 

guide and help in the software, among others.  

Some applications have been developed to address the need for user-friendly systems for 

farmers (Rahmayanti et al., 2020; Songsupakit et al., 2019; Ali et al., 2018). For example, 

Paccioretti et al. (2020) and Albornoz et al. (2018) designed and developed user-centered 

/ easy-to-use applications for automatic management zone delineation via fuzzy K-means 

clustering, considering multiple data layers. The system developed by Albornoz et al. 

(2018) was programmed to generate an ESRI shapefile as the last step in its processing 

sequence. Nevertheless, the user manually enters the rate values for each management 

zone, so technical knowledge or access to an expert is required. 

 

2.1.2.2.2 Artificial Neural Networks 

Artificial Intelligence (AI) is found in numerous and varied aspects of contemporary life. 

Thanks to the access to Big Data and the processing power of modern computers, it has 

gone from a mere concept to a reality that is transforming organizations in many sectors. 

De Mauro et. al. (2016) proposed a formal definition of Big Data based on its essential 

features: “Big Data is the Information asset characterized by such a High Volume, 

Velocity and Variety to require specific Technology and Analytical Methods for its 

transformation into Value.” 
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Artificial Intelligence, which encompasses concepts such as Machine Learning and Deep 

Learning, dates back to the 50s decade of the twentieth century. Until a few years ago, its 

use was limited to research laboratories (Arrabales, 2016). Thanks to Big Data, there has 

been a digital revolution in organizations and companies with diverse lines of business. In 

this revolution, there is substantial demand for intelligent systems capable of processing, 

analyzing, and interpreting the numerous data generated by millions of individuals thanks 

to social networks, online shopping, among others. Deep Learning (DL) is a subfield of 

Machine Learning (Janiesch et al., 2021), whose concept appeared in the doctoral thesis 

of Paul Werbos in 1974 and was rediscovered in 1980 by Geoffrey Hinton, who was 

devoted to the implementation of the human learning model applied in a machine (Smart 

Panel, 2019).  

Among the systems that use DL are artificial neural networks (ANN): computer systems 

based on an analogy to biological neural networks. They consist of multiple layers formed 

of simple processors called "nodes" or "neurons" (Agatibivuc-Kustrin & Beresford, 2000) 

that are interconnected with each other and operate in parallel. Depending on the type of 

ANN, connections between layers are arranged in many forms. A common ANN type is 

“fully connected” (Figure 5) but not all ANNs are internally connected like that, in some 

cases, neighboring layers are not necessarily connected. Values passing through each 

neuron are multiplied by a coefficient or weight and summed at the output of that neuron. 

These weights affect the functioning of adjacent neurons. 

Another type of ANN is the Convolutional Neural Network (CNN), whose functioning is 

similar to that of the visual cortex. Its hidden layers can extract and identify attributes 

(lines, curves, textures, among others.) or specific features (eyes, the silhouette of an 

animal, a plant species) in a two-dimensional matrix. They are widely used for image 

processing and classification (Ghosh et al., 2020). Recurrent Neural Networks (RNN) 

allow the creation of feedback loops between neurons, which allows the network to have 

memory, and it is because of this attribute that this type of learning is potent for the 

analysis of sequences such as text, audio, video, etc. (Calvo, 2018). Self-Organizing Maps 

(SOM) were invented to represent multidimensional numerical data in spaces of reduced 

dimensions, usually in 2 or 3. A common way to demonstrate their operation is by 
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arranging 3d vectors formed by the RGB components of the color in a two-dimensional 

space, where colors are grouped with others having similar values. Rulaningtyas et al. 

(2017) used a self-organizing map to classify secretions caused by tuberculosis based on 

the color of the secretions. 

 

Figure 5. Generic example of a fully connected ANN structure. (adapted from Tibco, 

2022) 

For an ANN to work correctly, training must be performed through which the neural 

network identifies the patterns that relate the input variables with the output variable. 

Before training, data preprocessing is performed, dividing the data into a training section 

and a test section (80% and 20% are typical values) and then scaling the values for proper 

processing. Once these steps are completed, the network training is performed. A vector 

containing normalized and scaled values is introduced through the input layer. Each value 

is assigned to its corresponding input neuron or node. The ANN used for this example is 

a fully connected network, so each neuron in the hidden layers is connected to all the 
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nodes in the layer before and after the layer where it is located. Each of the input 

connections to the neurons has an assigned weight, i.e., in Figure 5, each neuron of the 

first hidden layer has three inputs and a weight corresponding to each of them. In 

comparison, the neurons of the other hidden layers and the output layer have four inputs. 

At the beginning of training, each weight is randomly assigned a value close to 0. The first 

vector enters the neural network through the input layer and is processed by each neuron. 

The processing that occurs in each neuron is as follows: 

Each input variable xn is multiplied by its assigned weight wn (Figure 5) Then the node 

obtains the sum of the products of these variables with their weights. At the output of each 

neuron is an activation function that is applied to the sum of products and whose resulting 

value corresponds to the output of the neuron. The neuron's output will be propagated to 

the next layer of the neural network to be processed again. Figure 6 shows some examples 

of activation functions. The "x" axis corresponds to the possible values of the neuron's 

sum of products, and the "y" axis corresponds to the value at the neuron's output. A 

commonly used activation function for hidden layers is “ReLU" (Figure 6) with an output 

range from 0 to infinity. For the output node, a popular choice is "sigmoid" function since 

often the expected result is between 0 and 1. 

Once all the neurons process the variables, the output layer generates the prediction result. 

Then, the prediction is compared with the actual value, and the prediction's error is 

computed. The error value is used to evaluate the cost function, which is sought to be 

minimized through the gradient descent method. This method evaluates the slope of the 

cost function for the prediction so that the system eventually reaches a prediction value 

that minimizes the error in the prediction (a prediction close enough to the actual value).  

Is common for neural networks to use the batch learning model, which means that the 

above processes are repeated for n vectors or database entries where n is a parameter called 

"batch size." Each time batch processing is completed, the weights in the neurons are 

updated through a process called "backpropagation". When all batches of training data are 

processed, an epoch is completed. The user determines the number of epochs he/she 

considers appropriate so that the accuracy of the neural network tends to increase over 

time without stagnating since, after a certain number of epochs, the accuracy stops 
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increasing. When the neural network training finishes, the testing phase is executed, where 

the section of the database reserved for this purpose is introduced to the network. 

Predictions are made, and the results are compared with the actual values, obtaining a 

measurable error for the network. 

 

Figure 6. Activation functions. Each function has unique properties and behavior and are 

suitable for different applications (adapted from Sze et al., 2017) 

After a successful testing phase is over, the ANN can be deployed or integrated into an 

external system, where it can help users to make data-driven decisions. DL is a potent and 

versatile tool that is transforming the way of analyzing data and understanding 

phenomena, particularly those of complex and multivariate nature, such as those related 

to agriculture (Kamilaris & Penafreta-Boldú, 2018). 

2.2 Target market 

2.2.1 Corn production in Mexico, a representative crop 

Corn (Zea mayz) is the cereal with the greatest production volume. Only in 2021, 1.2 

metric tons of corn were harvested worldwide (Shahbandeh, 2022). Corn surpassed rice 

and wheat about ten years ago, becoming the most extensively cultivated cereal in the 

world (Garcia-Lara & Serna-Sandoval, 2019). This crop is an autochthonous Mexican 

species (CONABIO, 2006). The earliest paleoethnobotanical evidence of its 

domestication is located in the Mexican state of Tamaulipas and dates between from 6000 

and 20000 years BC (Garcia-Lara & Serna-Sandoval, 2019). Despite the Mexican origins 

of corn and the fact that nearly a third of the national agricultural surface is destined to its 
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production, our country ranks 8th in the production of this commodity worldwide. Grain 

corn represents 89.1% of Mexican grain production. In 2020, Mexico produced 27.4 

million metric tons of this cereal worth $114,911 million MXN in 7.4 million hectares, 

being Sinaloa and Jalisco the top producing states (SIAP, 2022). One of the main reasons 

for which Mexico, despite being the original corn land, shared only 2.25% to global corn 

production in 2020 (Shahbandeh, 2021) is that nine out of ten Mexican farmers produce 

on a small-medium scale (FAO, 2018). 

 

Figure 7. Mexican farmers’ classification (with data from Diaz & Lozano, 2019) 

 

The small-scale farmer majority in Mexico reflects also in the average grain corn yield, 

which was 3.8 tons per hectare in 2020 (SIAP, 2022) compared to large-scale farming in 

the United States: 11.2 tons per hectare in 2020, according to USDA (2022). Irrigation 

systems notoriously also affect Mexico’s corn production. 77.3% of the surface destined 

for corn farming used a rainfed system, but only contributed to 47.5 of national corn 

production. A corn production deficit exists currently in Mexico, to compensate for it 15.9 

million tons were imported on 2020, most of them was sweet (yellow) corn from the 

United States (SIAP, 2022). Addressing this issue, SAGARPA (2016) established 

production goals for 2030 (Table 1).  
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Table 1. Production goal for 2030 (from SAGARPA, 2016) 

Crop Production (thousands of tons) Cumulative 

Growth 

2015 2030 Goal 2015-2030 

Sweet corn 2,469.4 19,841.56 703.5% 

White corn 22,224.64 26,376.19 18.7% 

2.2.2 High yield corn production 

The nature of this research project requires the potential users to have access to relatively 

new technologies. In Mexico, most tractors are 15 or more years old (Figure 8), only 27% 

have 10 or less years of use (INEGI, 2020). The use of modern machinery and technology 

are required to perform PA operations and are usually correlated with high yield. To 

identify farmers that can benefit from the product of this research project, Cadena & 

Escobar (2020) classified Mexican municipalities according to the average corn yield of 

their farmers (table 2).  

Table 2. Corn yield classes (from Cadena & Escobar, 2020) 

Class Low Low-Med Medium Med-High High 

Average 

yield (t/ha) 

< 3 3 – 5  5 – 8  8 – 10   > 10 

 

According to FAO (2018) large-scale farmers, despite being minority, are responsible for 

half of the national agricultural production in Mexico. Since yield and technology use are 

closely related, it is highly probable that farmers located in municipalities with average 

yield greater than 8 t/ha (mid-high and high yield segments) can benefit from the 

technology developed in this project.  Figures 9 & 10 suggest that the average sweet corn 

farmer have access to better technology than the average white corn farmer. The value of 

this market is summarized in table 3. Municipalities highlighted in figure 11 correspond 

to the selected yield segments with high potential to benefit from this research project, 

almost all of them located in the states of Chihuahua and Sinaloa. 
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Figure 8. Average agricultural machinery age in Mexico 2019. Tractors appear to be not 

as old as their implements. (with data from INEGI, 2020) 

 

Table 3. Annual production surface and value from segments mid-high and high (with 

data from SIAP and SIACON, 2020) 

Crop Surface (ha) Value $USD 

White corn 750,000 1.5 billion 

Sweet corn 170,000 307 million 

 

A complementary market to corn farmers is sorghum farmers. According to data from 

SIAP (2021) the highest concentration of surface used to grow sorghum in Mexico is in 

the municipalities of San Fernando, Matamoros, and Rio Bravo (Figure 12). Only in 2020, 

819450 hectares of sorghum were planted in the state of Tamaulipas. Despite being 

heavily farmed, sorghum production in Tamaulipas has relatively low yields (Figure 13). 

Precision Agriculture adoption programs exist in the region and this project can assist 

Tamaulipas’ sorghum farmers to optimize their resources and be more competitive. Figure 

2 illustrates more alternate markets in high yielding municipalities that produce with high-

value crops. Most of this market are export crops produced in the Bajío region. 
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Figure 9. Mexico’s white corn production classes 2019. Top 2% of municipalities 

produce nearly 30% of grain corn. (from Cadena & Escobar, 2020) 

 

 

Figure10. Mexico’s sweet corn production classes 2019. Top 6.6% municipalities 

produce nearly 25% of sweet corn. 
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Figure 11. Target corn market location. Almost all corn market is located in Mexico’s 

northwest (from Cadena & Escobar, 2020) 

 

Figure 12. Planted sorghum surface per municipality 2020. Almost all concentrated in 

Tamaulipas state. 
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Figure 13. Sorghum yield per municipality 2020. Highest yields in Querétaro and Jalisco 

states. 

 

Figure 14. Alternate market location. Mostly consisting in export crops grown in the 

Bajío region. (from Cadena & Escobar, 2020) 
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3 MATERIALS, EQUIPMENT, AND METHODS 

3.1 Materials 

This research work used data from four cornfields, three of them are in Argentina (Figure 

15) and are used to grow grain corn. The fourth field is from Mexico and is used to produce 

silage corn. The Argentinian fields were used for ANN analysis, and the Mexican field 

was used for regression analysis. 

3.1.1 Fields A, B, and C 

3.1.1.1 Field Imagery 

The information available for the three fields included Apparent Electrical Conductivity 

(ECa), Altitude, Seed rate, and Yield. The data was acquired from Easy Agro (2019) as 

imagery containing maps (annex 1), which were georeferenced and digitized for analysis. 

 

Figure 15. Location map (Fields A, B, and C). All located in Argentina. 
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3.1.2 Field D 

3.1.2.1 Orthomosaics 

For regression analysis, data from a center-pivot cornfield in Aguascalientes, Mexico was 

used (Figure 16). The silage corn produced in the field is used to feed livestock in the 

same farm. The field has a diameter of approximately 530 m and covers a surface of 21.1 

ha. A dirt road within the field is used to access the center of the pivot.  

 

Figure 16. Location map (Field D). Located in Aguascalientes, Mexico.  

The crop in this field was monitored via multispectral aerial orthophotos captured by an 

eBee drone (SenseFly, 2018). Orthophotos differ from ordinary photos since they are 

processed to correct lens distortion, camera tilt, perspective, and topographic relief 

(Dogget, n.d.), so they result in a perfectly straight-down view of the objects in the frame 

(Figure 17). To create map-quality images, orthophotos are combined into an orthomosaic, 

where additional geometric and color corrections are performed (ESRI, n.d.). 
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Figure 17. Raw photo (left) orthophoto (right). (Günay et al. 2007) 

A NDVI orthomosaic from "pivot 1" field was created with Pix4DMapper software 

(Pix4D SA, 2022), combining the orthophotos captured by an eBee drone (SenseFly, 

2018) with a parrot sequoia multispectral sensor (Parrot, 2018). The orthomosaic has a 

resolution of 10cm per pixel and was provided in Geo tiff format (Figure 18). 

 

Figure 18. NDVI orthomosaic collected by eBee drone equipped with multispectral 

camera 
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3.1.2.2 Soil samples 

To estimate the soil properties’ spatial variability within the Mexican field, 25 samples 

were taken averaging 0.84 hectares per sample. The sampling locations were selected in 

a random distribution within the field. Pixels that corresponded to the dirt road and the 

pivot structure were filtered out to preserve only the crop’s data (Figure 19). The 

preprocessing steps will be discussed further in the methods section. 

 

Figure 19. Soil sampling distribution 

3.1.2.3 Yield samples 

Yield is one of the most important parameters in agriculture, and generally the most 

important to farmers, since it is directly linked to their income. To assess the relationship 

between soil properties and yield, five samples were taken manually in the locations 
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shown in Figure 20. The samples were taken in locations near to the field boundaries 

because intense rain made impossible to reach into the field. 

 

Figure 20. Yield samples’ spatial distribution 

 

3.2 Equipment 

3.2.1 Software 

3.2.1.1 Python 

It is an interpreted programming language designed in 1991 by Guido van Rossum. Python 

is multi-paradigm and fully supports object-oriented programming and structured 

programming. Its philosophy highlights code readability and simplicity. 
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3.2.1.1.1 NumPy 

Python library that supports high level mathematical functions and fast multi-dimension 

array computing. This work relied on NumPy to process big tridimensional databases in a 

fast and efficient way. 

3.2.1.1.2 Pandas 

Python Data Analysis “Pandas” is a software library for data analytics. Its “Data Frame” 

object supports fast manipulation, reshaping, indexing, merging, splitting, among other 

functions. Databases were stored and modified into Data Frame objects for this project. 

3.2.1.1.3 GDAL 

Geospatial Data Abstraction Library. Developed by the Open-Source Geospatial 

Foundation, supports vector and raster processing. Its python APIs were used to process 

tabular data into georeferenced raster data and vice versa. 

3.2.1.1.4 Geopandas 

Provides a high-level interface to process geospatial vector data, extends the pandas’ Data 

Frame object into Geo Data Frame to allow spatial processing and to store geometric 

information. Map plotting and geometric processing in this project was achieved with 

Geopandas. 

3.2.1.1.5 PyQt5 

Developed by Riverbank Computing, PyQt offers many GUI widgets to develop 

applications in an intuitive and fast manner. The user interface and basic functionality of 

the application developed in this project was created with QtDesigner and PyQt5. 

3.2.1.1.6 Matplotlib 

Plotting library that provides an object-oriented API to embed plots in applications (i.e. 

Qt). Geopandas’ plotting functionality depends on matplotlib. Scatterplots and histograms 

in the applications were produced with matplotlib as well. 

3.2.1.1.7 Seaborn 

Offers a high-level interface for plotting visually pleasing and informative plots with 

matplotlib objects. Regression plots on this work were produced with seaborn. 
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3.2.1.2 ArcMap 

Geographic Information System developed by ESRI, its functionalities include viewing, 

editing, creating, and analyzing geospatial data. Its interface allows the user to symbolize 

features and create professional map layouts. ArcMap was used to process the NDVI 

orthomosaic, process data before developing the application, and to create the maps 

presented in this document. 

 

3.2.2 Hardware 

3.2.2.1 Jetson Nano Board 

This product is a small computer (Figure 21) that can run multiple ANNs for a variety of 

applications. A decisive feature for using this piece of hardware is its 128 core Graphics 

Processing Unit (GPU), since most small computer units in the market do not have one. 

ANN’s computations run in parallel. GPUs specialize in this type of computations and are 

ideal for running ANNs (the processing tasks are divided among the GPU’s cores). 

Additionally, this portable board has the technical specifications mentioned in Table 4. 

 

Figure 21. Jetson Nano Board (From Nvidia, 2022) 
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Table 4. Jetson Nano Board’s specifications (from NVIDIA, 2022) 

GPU 128-core Maxwell 

CPU Quad-core ARM A57 @ 1.43 GHz 

AI Performance 472 GFLOPs 

Memory 4 GB 64-bit LPDDR4 25.6 GB/s 

Storage microSD (not included) 

Video Encode 4K @ 30 | 4x 1080p @ 30 | 9x 720p @ 30 
(H.264/H.265) 

Video Decode 4K @ 60 | 2x 4K @ 30 | 8x 1080p @ 30 | 18x 720p @ 
30 (H.264/H.265) 

Camera 2x MIPI CSI-2 DPHY lanes 

Connectivity Gigabit Ethernet, M.2 Key E 

Display HDMI and display port 

USB 4x USB 3.0, USB 2.0 Micro-B 

Others GPIO, I2C, I2S, SPI, UART 

Mechanical 69 mm x 45 mm, 260-pin edge connector 

  

 

3.2.2.2 Generic Display 

This display was required for the user to interact with the application via a capacitive 

tactile interface, which comes with high touch sensibility and good visibility in sunlight. 

The screen has a resolution of 800 x 480 pixels and measures 7”. The size, resolution and 

visibility of this screen make it practical for use in the field. In future works, displays with 
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a resistive tactile interface may be evaluated since they have a better resistance to dust and 

water (Li, 2018). 

3.3 Methods 

3.3.1 Data preparation 

3.3.1.1 Fields A, B, and C 

The map images were imported into ArcMap, and georeferenced via control points. 

Then, Polygon feature layers were manually digitized following the shapes in the maps 

(Figure 22). Each polygon corresponds to a range of values, but only one value can be 

stored as the identifier value in its attribute table. To solve this problem, the lower limit 

of each range was assigned to the “value” field of the attribute table for plotting 

purposes. The locations where the upper limit value of the range was necessary were 

edited manually. The editing process is discussed further in this chapter. The ranges 

shown in the legend correspond to a string type field in the attribute table of the polygon 

features.  

 

 

Figure 22. Original image (left), Manually digitized polygon features (right) 

 

To generate the databases, an interpolated surface was needed. To achieve this, the 

polygons were converted to point features following the procedure shown in Figure 23.  
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Since the polygon features share vertices with their neighboring range polygons, half of 

the polygon ranges were deleted following an alternate pattern (i.e. if the map had five 

ranges, the second and fourth ranges were deleted). This methodology preserves all the 

vertices needed to create contours without having duplicate points in the same location 

due to neighboring polygons sharing same vertices. After that, the polygon vertices were 

converted to point features (Figure 23. c)). The value field of the points was edited when 

necessary to preserve the spatial gradient of the variable (Figure 23. d). The points 

linked with lines in the pane d) of Figure 23 share the same value. A good manner to 

think of this operation is to think in the linked points as elevation curves. Finally, 

additional points were created inside the polygons that correspond to the extreme ranges. 

The extra points located inside the space that corresponds to the highest range polygons 

were assigned the upper limit of that range. On the other hand, the extra points located 

inside the space that corresponds with the lowest range polygons were assigned to the 

lower limit of that range.  

Other points were added in the boundaries of the field to cover the whole area, like the 

point shown in the upper-right corner of pane e) in Figure 23. The value assigned to the 

last-mentioned points was the value of the nearest “elevation curve”. A good example of 

the followed procedure’s results is shown in Figure 24. 

 

Figure 23. Procedure followed to convert digitized polygons to point features 
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Figure 24. Point features ready to be interpolated. Color indicates the value of the 

parameter of interest. 

 

The point values were then interpolated using the Kriging tool in ArcMap. An important 

exception to this procedure is the seeding rate data, since it was applied in discrete 

intervals, the polygon features were converted to raster without intermediate steps.  

The interpolated datapoints from each field were normalized with min-max methodology, 

and then concatenated into one large database with +100,000 entries and stored as a “.csv” 

file. Normalization ensures a common scale is used across all data entries and fields, while 

preserving the relative differences between values. The X and Y coordinates were 

normalized after concatenating the three field’s data to preserve the relative field sizes 

(Figure 25). Coordinates, Altitude, ECa, seeding rate, and yield were the variables 

registered for each observation. Additionally, the field variable was encoded into three 

columns, one for each field (i.e., for data observations that corresponded to field “A”, the 

column “Field A” was assigned with a value of 1, and the columns “Field B” and “Field 

C” were assigned a value of 0). This encoding processing is necessary because machine 

learning models only can process numerical data, and since the “Field” value is 

categorical, it must be converted to a format that the model can work with. After encoding, 

the three field columns were added to the database. 
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Figure 25. Normalized X, Y coordinates. The proportions between the sizes of the fields 

are preserved in this way. 

 

3.3.1.2 Field D 

The raw NDVI orthomosaic (Figure 18) was imported into ArcMap, the image covered 

the whole field, including areas that did not contain corn plants, like the dirt road in the 

middle of the field, and the metallic pivot structure. The NDVI values of interest were 

those of the corn plants, so a filter was applied with the “Con” tool to remove all the pixels 

with values below 0.7 from the raster. This way, the outer pixels, the pivot structure, and 

the dirt road were removed. Some pixels inside the field were also removed as a side effect 

of the filtering process, so a vector mask was created from the previously filter raster, 

then, the “holes” corresponding to the eliminated pixels that were in crop area were 

removed. The “Extract by mask” tool was used to clip the original raster preserving only 

the areas occupied by the crop, resulting in the maps of Figures 19 and 20. 
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3.3.2 Yield modeling 

3.3.2.1 Yield predictions with ANN (Fields A, B, and C) 

Among the main goals of Precision Agriculture are optimizing crop inputs and 

maximizing yields. Many tools are available to do this optimization processes. One of the 

most popular tools today is TensorFlow, which is an open-source and high-level library 

which specializes in machine learning. One of TensorFlow’s classes is the “Dense” 

Artificial Neural Network, which was used to make yield predictions and find the Seeding 

rate value that maximizes yield. That optimized Seeding rate value is considered the 

seeding prescription. The full normalized database was divided in training and test set 

80% and 20% respectively, and yield was set as target variable. Once the model (ANN1) 

was trained, an algorithm was developed to find the seeding rate value that maximizes 

yield for each datapoint. This was achieved by making ten yield predictions for each point, 

varying the normalized seeding rate from 0 to 1 with 0.1 increments and locking the rest 

of the input variables. Then, the seeding rate that generated the highest yield prediction 

was output as the “prescribed seed rate. 

3.3.2.2 Yield modeling with regression analysis (Field D) 

Since Field D is used to grow silage corn, NDVI is a good indicator of yield, which is not 

necessarily the case when working with grain corn. In this case to estimate yield, the dry 

plants collected in sampling areas of 4 x 4 m were weighed, then the dry mass was 

multiplied by a factor of 625 to scale it up to the equivalent mass in one hectare. NDVI 

values were aggregated in cells of 4 x 4 m, averaging the values of the 10 x 10 cm original 

cells. Once the NDVI cells were aggregated, the tool “sample” was used to collect the 

NDVI values corresponding to the yield sample locations. Linear, polynomial, 

logarithmic, and exponential regression models were fitted to the data. The outlier point 

highlighted in red was not considered. The model with highest r2 value was the 

exponential model, with r2 = 0.98 (Figure 26 and equation 1).  

𝐷𝑟𝑦 𝑚𝑎𝑡𝑡𝑒𝑟 (
𝑡

ℎ𝑎
) = 0.0045𝑒10.606𝑁𝐷𝑉𝐼 

Equation 1. Exponential model 
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The model was applied to the NDVI raster, and an Estimated Yield raster was obtained, 

then, the raster was classified in five-ton ranges, and converted to a polygon shapefile  

 

Figure 26 Exponential model fitted to yield and NDVI data. Atypical datapoint marked 

in red was not considered. 

 

3.3.3 Variable-rate recommendations 

3.3.3.1 Seeding rate recommendations with ANN (Fields A, B, and C) 

The second model (ANN2) aimed to prescribe the seeding rate according to a variable that 

represents the soil’s productive potential / environmental index. This involved extracting 

insights from the database before training the model. Talano (2016) analyzed the corn 

response to different seeding rates according to an environmental index. As Figure 27 

shows, each hybrid responds differently to seed rate and environmental index. The plot on 

the left of Figure 27 shows a way to find the optimum seed rate according to hybrid and 

environmental index. The variable designated to represent the environment index in this 

case was the Apparent Electrical conductivity, since it correlates strongly with important 

soil properties (Corwin & Lesch, 2005).  
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Figure 27. Response of two corn hybrids to seeding rate and environmental index. Yield 

increases along seeding rate, until excessive plants start competing for nutrients and 

yield decreases again. From Talano (2016) 

 

To follow the methodology proposed by Talano (2016), the datapoints were divided by 

field to account for the unique properties and behavior of each field. Then, the datapoints 

were grouped by ECa value in ten evenly spaced ranges to have a good generalization of 

the low, medium, and high ECa values and in which the groups had at least four different 

yield values. For each group, the seeding rate was plotted against the yield. The next step 

was to compute the average yield per seeding rate value. In Figure 28, the greatest average 

yield value is 0.37, this corresponds to a 0.82 seeding rate value, which is considered the 

optimum rate and hence, prescribed value. This operation was repeated for each ECa range 

in each field (Figure 29).   
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Figure 28. Field A, ECa range 0.4 – 0.5 (datapoints in blue, yield average in brown). 

Observed behavior is similar to the one described by Talano (2016) 

 

Once the optimum values for each ECa range in every field were obtained, the 

intermediate values were interpolated to obtain a function for each field that maximizes 

yield based on seeding rate.  

 

Figure 29. Average yield for each ECa range and seeding rate in field A 
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The interpolation was performed with the “interpolate” method of a pandas dataframe 

object (Pandas’ development team, 2022). The interpolation method was polynomial of 

order three. A new field “Optimum seed rate”, was added to the database and the 

optimized values were assigned to each of the datapoints. Then, the database was divided 

into training and test sets 80% and 20% respectively, and artificial neural networks of 

“dense” class were trained to predict optimum seed rates. Once trained and tested, the 

ANN2 was used to predict the optimum seed rate for all the data points. ANN1 predicted 

the corn yield using the seeding rates recommended by the ANN2 as shown on Figure 30.  

 

Figure 30. ANN prediction’s data processing 

 

3.3.3.2 Nitrogen rate recommendations with linear model (Field D) 

A formula (equation 2) to compute nitrogen rate was adapted from Stanford (1973). The 

model considers the nitrogen extraction needs of the crop according to a yield goal, the 

nitrogen present in the soil, the nitrogen assimilation efficiency of the crop, the 

fertilization method, and the fertilizer to optimize the nitrogen rate for each specific site. 

𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑅𝑎𝑡𝑒(𝑘𝑔ℎ𝑎−1) =
(𝑌𝑔 × 𝑁𝑒) − ((𝑁𝑚 + 𝑁𝑖 + 𝑁𝑟 + 𝑁𝑜) × 𝐸𝑓𝑁)

𝐸𝑓𝑓𝑒𝑟𝑡
 

Equation 2. Nitrogen rate model 
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Where: Yg is the yield goal of the crop in t ha-1, Ne is the nitrogen extracted by yield ton, 

Nm is the mineralized nitrogen in the soil, Ni is the inorganic nitrogen in the soil’s profile, 

Nr is the residual nitrogen on the soil, No is the organic nitrogen in the soil, EfN is the 

crop’s nitrogen assimilation efficiency, and Effert is the fertilization method’s efficiency. 

A goal of 24 t ha-1 of dry-matter corn was established, as it is a common value for high 

yielding silage corn in the area, this goal was also supported by the laboratory’s analysis. 

The considered nitrogen extraction needs for silage corn crop was 12 kg ha / t-1 (Stanford, 

1973), a nitrogen assimilation constant of 60%, and 80% efficiency for nitrogen fertigation 

via center pivot. Residual and organic nitrogen were considered as 0 kg ha-1 since the 

whole plants are harvested and no crop residue is left on the field. The fertilizer selected 

to apply nitrogen was urea (46-00-00). 

 

3.3.4 AgStat application 

3.3.4.1 User interface design 

To facilitate the user-machine interactions, a clean looking user interface was designed. 

The interface layout was created in QtDesigner (QT, 2022) which provides a graphical 

user interface to arrange the elements on the screen. QtDesigner’s files extension is “.ui”. 

To link the icon files to their respective objects in the interface, a resources file “.qrc” was 

created, in this way, the resources (icons, sounds, among others) can be compiled to and 

read directly from a python file. Each screen contains only the strictly needed elements to 

perform the tasks, if a process requires more than five steps, the steps are divided in 

various screens with four to five steps each. Elements on the screen were arranged 

consistently over the screen layout to facilitate operation and navigation. The color palette 

chosen for the interface is shown in Figure 31. High-contrasting colors and bright 

background were chosen to facilitate the visualization and of screen elements in outdoor 

conditions with intense sunlight. 
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Figure 31. AgStat’s color palette. The use of consistent colors favors an adequate 

usability. 

3.3.4.1.1 Analysis 

The data analysis menu was designed in a minimalist form (Figure 32), to let the user 

decide to visualize stored field data or generate new data (agronomic prescriptions) by 

processing the stored data. Most of the space in the screen was given to the menu buttons. 

Icons and text were added for clarity. 

 

Figure 32. Analysis menu. Interface designed with big and easy-to-interpret buttons. 
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3.3.4.1.1.1 Prescription generation 

The prescription generation process was divided into the steps/screens shown on Figure 

33. 

• On steps 1,2, and 3, the user enters/selects the information and parameters needed 

to generate the prescription. Input cost is optional (Figure 33, screen 3) 

• Screen 4 summarizes the information provided so the user can verify if the data 

entered is correct and go back if necessary. If the user is satisfied with the 

information shown, then the “generate” button can be pressed to run the tool. 

• On screen 5, the prescription map is plotted. If an area does not need input 

application, it will be colored in gray. The map’s legend shows the input rate and 

the area covered by the corresponding management zone. The user has the option 

to generate an economic estimate if the input cost was provided on screen 3. 

• The economic estimate offers a summarized dashboard in which the user can see 

the monetary value of the variable-rate input application. The first element of the 

monetary value is the difference in expected income from selling the harvest 

product. This is achieved by predicting the yield obtained with the recommended 

crop-input rates, multiplied by the market price of the crop, the expected income 

is compared to the income of the previous cycle. The second element of the 

monetary value is the crop-input savings, the total mass of the input (i.e. metric 

tons of Nitrogen) are multiplied by their unitary cost, and then compared to the 

previous cycle costs. The sum of the income from selling the harvest, and the 

savings in crop-input is the monetary value displayed in the application (Figure 

33, screen 6). 

• Finally, the prescription shapefile can be exported to an external drive. The 

interface offers the option to remove previous files in the usb drive, since some 

field-monitor-controller brands require it to operate the prescription properly 

(Figure 33, screen 7). When the file transfer is complete, a dialog appears to notify 

the user (Figure 33, screen 8). When clicked on “accept”, the dialog takes the user 

to the main menu. 
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Figure 33. Prescription processing steps. Easy-to-follow interface during the processing 

steps. 
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3.3.4.1.1.2 Visualizations 

The data visualization section helps the user to generate useful plots of the acquired data. 

The plots are generated with minimal parameter selection, and a blue call-to-action button. 

The visualization menu (Figure 34, screen 1) displays the four plotting options with icons 

related to the type of plot.  

 

Figure 34. Data visualization utility screens. Menu with direct access to the different 

visualization tools. 

• The map plot section shows the spatial distribution of the selected soil attribute, 

dividing it in five equally spaced ranges (Figure 34, screen 2). 
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• On the histogram plot section, the users can select the number of bins according to 

their needs (Figure 34, screen 3). 

• The scatterplot and regression plots allow the user to select the “x” and “y” axis 

variables. The regression plot also permits the selection of the polynomial order 

(Figure 34, screens 4 and 5). 

3.3.4.1.2 Data acquisition 

Data enters the system via this section. It can be trough the Field Survey Utility (FSU), or 

the user can enter a .csv file that contains scattered or interpolated data points (Figure 35, 

screen 1).  

 

Figure 35. Data acquisition system 
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The user needs to specify the client, farm, and field the data corresponds to, as well as 

pertinent information like the variable to acquire or the directory in which the information 

will be stored (Figure 35, screens 2,3, and 4). The FSU has two operation modes, punctual, 

and on-the-go. Depending on the nature of the survey instrument, the user may select the 

mode that suits the survey needs. The punctual survey allows the user to take individual 

samples by pressing one button (Figure 35, screen 5). Meanwhile, the operation of on-the-

go survey consists in toggling the data capture, with a central button (Figure 35, screen 6). 

On the top of the capture screen, the interface displays the client, farm, field, and variable 

name. The screen also displays the sample number, the current reading, and status of RTK 

and satellite signal. 

3.3.4.1.3 Files 

The files utility provides an easy interface to extract data from the AgStat system. It 

displays the folder trees of AgStat on the left, and the external USB drive on the right. The 

user must select the source file or folder, and the destination folder. Finally, with the press 

of the central button, a copy of the file or folder is transferred to the new directory (Figure 

36). 

 

Figure 36. Files utility. Created to easily extract files and folders from the system 
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3.3.4.1.4 Settings 

This section (Figure 37) was created to customize system parameters, user profile editing, 

wireless connectivity, which includes Global Navigation Satellite Systems (GPS, 

GLONASS, and Galileo), and Global System Mobile communications (GSM). The 

settings menu offers four clear options to the user from which specific functionalities can 

be accessed.  

 

Figure 37. Settings menu interface 

3.3.4.2 Programming 

AgStat was developed in Microsoft Windows, the necessary python code to run it is 

contained in nine separate files which comprehend the different functionality aspects of 

the project. In some cases, more than one file will fit into the following categories. Since 

the number of objects contained in the python files’ code (buttons, labels, frames, among 

others) is very high, the author established a naming and abbreviation system: 

section_subsection_class_objectname 

i.e: an_gRx2_pushButton_home 
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In which “an” is the abbreviation for “analysis”, “gRx2” stands for “generate prescription, 

page 2”, “pushButton” indicates that the object is a push button, and “home” indicates that 

the button is meant to take the user to the home screen when it is pressed. The full list of 

abbreviations can be found at the annex 9. 

3.3.4.2.1 Client database 

This file contains the definition and structure of objects that will be recurrently mentioned 

in the next sections. This application was designed to store client profiles, similarly to 

systems like John Deere’s Operations Center, and Trimble Fmx display. The database 

structure is summarized in Figure 38. 

 

Figure 38. Client database’s general structure. 
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Figure 39. Proposed folder structure 
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The proposed folder structure is shown in Figure 39, it follows a similar logic to the 

database structure, it is designed to ease the process of storing and finding files within the 

system. The data reports in pdf are not implemented yet but are included in the structure’s 

proposal since they would be a useful feature for the user. The objects are programmed to 

create their corresponding folders in the system automatically.  

3.3.4.2.2 AgStat main  

The file “AgStatMain.py” integrates the functionality of the rest of the files. The 

application runs from the code in this file. Most of the code in this file is in the 

“MainWindow” class definition, which is a subclass of “QMainWindow” and 

“UI_MainWindow”. The different screens of the app are accessed changing the index of 

a Stacked Widget object. In this object, every screen or page has an assigned index, i.e., 

main menu screen is assigned to index 0. 

The MainWindow class definition has the following structure 

_init_ function definition 

Global indices setup: to load the first page of the stacked widget, as well as client, 

farm, and field information when the application starts. 

Set working directories for the internal system and external USB drive, for now 

the external drive needs to be connected to the hardware before AgStat starts in 

order to be detected. If the external drive is connected after the reading function 

was executed, it will not be detected. This functionality will be improved in the 

future to detect external drives at any moment. 

Navigation connections: Links between the navigation button objects and the 

navigation functions to browse the application pages. All the connections are made 

with signal-slot syntax. 

Action button connections: Here, the action buttons (Generate histogram, generate 

prescription, export prescription, among others) are connected to their respective 

functions. 
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Combo boxes connections: The connections in this section allow all the drop-down 

menus (comboBox class) to synchronize their contents over all the application 

sections, i.e., if the user selects one client, all client combo boxes update to show 

the same client. 

Navigation functions definition: Help the user to go to the different screens of the 

application by setting a determined index in the stacked widget. 

Combo boxes functions: These functions set the elements of the drop-down menus, reset 

them, or change the selected element. All the combo boxes send a signal when the user 

selects one element. Depending on the combo box level (client, farm, field, or cycle) the 

rest of the combo boxes are updated i.e.: 

The user selected a different farm: 

1. All farm combo boxes update their selected value 

2. Since the new selected farm has different fields and cycles, all the field and 

cycle combo boxes are emptied and then filled with the new fields. 

3. The field combo boxes automatically display the first field of the selected farm 

4. The cycle combo boxes automatically display the first cycle of the first field. 

Plot functions definition: In this section, the system takes the values selected by the user, 

and then calls the plotting functions from the “AgStatPlots.py” file to visually represent 

the selected data i.e.: 

The user pressed the “generate” button on the histogram section 

1. The system reads the “client”, “farm”, “field”, “cycle”, and “bins” combo 

boxes to extract the values selected by the user. The values are stored in 

variables. 

2. The plotting function is called, and the variables are passed as arguments. 

3. A histogram with the specified parameters is generated  

Dialog functions definition: These functions execute dialogs to notify the user that a task 

has been completed, i.e. prescription export. 
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Miscellaneous functions definition: A variety of functions is defined in this section. i.e. 

A function to fill the values in the confirmation page of the prescription generation process 

(Figure 33, screen 4). File transfer functions are also included in this category. 

After the “MainWindow” class definition, the “InformationDialog” class is defined. This 

last class’s purpose is to visually notify the user with a pop-up dialog when a process has 

been completed (Figure 33. Screen 8). Finally, the last lines on the “AgStatMain.py” 

initiate and execute the application. 

 

3.3.4.2.3 User interface 

The file “AgStat_ui.py” was generated automatically by the calling following function in 

the Windows’ command prompt (after setting the prompt’s working directory to the folder 

containing the .ui file): 

pyuic5 -x AgStat.ui -o AgStat_ui.py 

The above-mentioned function takes the Qt designer’s “.ui” file as an input and coverts it 

to a python code file that contains all the objects, their position, colors, size, among other 

attributes. If this file is executed, the created interface will be displayed but the objects 

will not function properly until connecting specific functions with signals and slots 

(AgStatMain.py). The resources file “.qrc” was converted to python file as well. To 

perform this task, the following function was called in the command prompt, similarly to 

the previously mentioned function: 

pyrcc5 -o AgStatResources_rc.py AgStatResources.qrc 

Without the proper resource’s python file, the interface’s objects will not display their 

icons when executed. 

The information dialog’s interface was designed following the same methodology as the 

main window, the python file obtained is “InfoDlg.py” 
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3.3.4.2.4 Processing 

The file “AgStatProcessing.py” contains the code to process geospatial and tabular data. 

Figure 40 shows the functionality that results from combining the functions included in 

this file.

 

Figure 40. Integrated data processing functionalities. To enter data in the system and 

create maps, and to generate prescriptions. 

 

Figure 40a describes the data acquisition, storage, and display processes. Figure 40b 

shows the prescription generation process, the economic estimate functions are still under 

development. Now, the specific functions will be described in order as they appear in the 

file: 

getBoundariesDir: Takes a diagnosis object as input and returns its field’s boundaries 

shapefile directory (Figure 39). 

paddedGrid: adds a padding of approximately 40 m to the bounds of the file. Its purpose 

is to avoid missing data after interpolation, since it is a common problem with some 
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libraries. The excess data outside the boundaries of the field is discarded after 

interpolation. 

scatterToDiagnosisMap: takes a diagnosis object as input and generates a diagnosis map 

based on scattered data points. This function accesses a folder named “unused”, its 

purpose is to store temporary files that are generated in intermediate processing steps, but 

are useless afterwards, so they are deleted automatically. The processing steps of this 

function are briefly described below: 

1. Set directories: Generates strings containing the routes to the source files, and the 

files to be generated. 

2. Delete previous files in the directories if they exist. 

3. Read datapoints, and delete values up to percentile 5, and from percentile 95 if the 

number of datapoints is greater than 100. The threshold of 100 values was 

established to prevent the algorithm from automatically deleting 10% of the 

datapoints (and losing information) if the number of observations is small (less 

than 100). 

4. Interpolate datapoints via gdal.Grid() and remove data outside boundaries with 

gdal.Warp(). Then save the interpolated data as a “.csv” file 

5. Classify interpolated points into five evenly spaced classes, and store class 

breakpoints into a “.csv” file. This classification is done for plotting purposes and 

facilitates map interpretation, by displaying two high ranges, two low ranges, and 

a middle range. 

6. Generate a raster “.tif” file from the classified datapoints. 

7. Convert classified raster to polygon features with gdal.Polygonize() 

8. Trim the edges of the resulting shapefile using the boundaries shapefile as 

reference. 

9. Delete garbage and unused files. 

generateRx: This function contains the Prescription Generation Algorithm (PGA). The 

inputs are “cycle”, “crop”, “agricultural input”, “application method”, and “yield goal”. 

The prescription values are obtained applying a vectorized function to a dataframe. A brief 

description of the processing steps is: 
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1. Set directories to read boundaries shapefile, and to store prescription shapefile. 

2. Read cycle’s interpolated database into a data frame 

3. Add constant columns to dataframe according to conditions (efficiency, crop, yield 

goal, and agricultural input) 

4. Apply vectorized prescription formula to dataframe and create a column with the 

results 

5. Set nine evenly spaced values (rates) between the maximum and minimum 

prescription value. This classification was designed to allow a relatively smooth 

change between different rates by maintaining consistent rate changes over the 

field. 

6. Snap/round prescription values to the nearest rate value 

7. Call generateMap function to create prescription shapefile 

generateMap: Reads classified values file, generates a raster, which is then converted to a 

shapefile. Finally cuts the shapefile using the boundaries file and stores it in the assigned 

directory. 

refreshDatabase: This function removes the previous combined database from the cycle’s 

diagnosis folder, and creates a new file, joining the different diagnosis interpolated files 

present at that moment. This is useful when a new variable is added to the cycle’s 

diagnosis. 

3.3.4.2.5 Plots 

Matplotlib is connected to PyQt5 via “mplwidget.py” file which contains the classes that 

allow the developer to embed matplotlib objects into PyQt5 widgets. In this application, 

QFrame widgets were located where the plots were supposed to be, the QFrames were 

then promoted to inherit the methods of the MplWidget class, so they could display the 

actual plot.  

“AgStatPlots.py” contains functions based on matplotlib to help visualize the data on an 

easy manner.  

truncate_colormap:  delimits a colormap for aesthetic purposes. 



54 

 

 

 

plotDiagnosisMap: reads diagnosis shapefile, configures the legend, and plots the map on 

the corresponding axes object. 

plotRx: reads prescription shapefile, computes the management zones’ areas, configures 

the legend, and plots the map on the corresponding axes object. For now, is configured 

for Urea prescriptions only. 

3.3.4.2.6 File system 

This functionality was developed to extract files from the application’s folders to an 

external disk. Files cannot be transferred from external drives to the application’s storage 

folders via the file system to protect the integrity and structure of folders and files (the 

DAA performs this operation automatically). To extract files, the user must select the 

source folder/file in the File System 1, and the destination folder in the File System 2, and 

then click on the central button to perform the transfer. The following descriptions 

correspond to the classes from “AgStatFileSystem.py” file. Together, the objects in this 

system form a folder tree.  

 

Figure 41. File systems and FolderLabel objects visual representation. Text outside screen 

and brown arrows are not part of the actual screen layout. 
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FolderLabel: This class functions as a button and as label. Folders and files are represented 

visually in the system with FolderLabel objects (Figure 41). When clicked, FolderLabel 

objects toggle between active and inactive state, this visually expands or collapses the sub 

folders contained in it. Its functions include: 

• click: Toggles active and inactive state of the object. When the folder is activated, 

the setSubFolders function is called: 

• setSubFolders: Iterates through the folder’s content and fills the sub folder list with 

the folder and file names. 

FileSystem: This class was created to manage and display the FolderLabel objects. Its 

main component is a list called “rows” in which FolderLabel objects are stored and 

removed according to the user’s needs. The position of the FolderLabel is determined by 

its index in the list (Idx), and the folder level (lvl), every folder level is “the level of its 

parent folder + 1”. This hierarchy is represented visually with indentation (Figure 41). 

Two file systems are used in AgStat, one for the application’s folders, and the other for 

the external disk’s folders. The following functions are methods for the FileSystem class: 

• createHomeFolder: This function sets the root folder for the system (lvl 0) from 

which the rest of the folders are derived 

• nextFolderIndex: Returns the index of the next folder on the same level as the input 

folder, if there is no next folder, it returns the last index of the rows list. The 

purpose of this function is to delimit the range of folders that will be visually 

removed when a parent folder is collapsed. 

• updateRows: This function adjusts the position of the folders in the screen after 

expanding/collapsing a folder. 

3.3.4.2.7 Settings 

The functionalities of this section are still under development. They will include functions 

to modify the clients database and high level connectivity functionalities to receive data 

from GNSS and engage with the GSM network. Additionally display functionalities will 

be implemented to modify screen appearance according to working conditions to improve 

usability. 
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4 RESULTS AND DISCUSSION 

4.1 Yield modeling 

4.1.1 Fields A, B, and C (ANN Predictions) 

4.1.1.1 Interpolated database 

The resulting interpolated maps are shown on Figures 42, 43, and 44. The spatial gradient 

of the variables is clear and has the appearance of a continuous surface, except for the 

seeding rate maps, which are distributed in discrete steps.  

 

Figure 42. Interpolated surfaces derived from point features (field A) 

 

Figure 43. Interpolated surfaces derived from point features (field B) 
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Figure 44. Interpolated surfaces derived from point features. (field C) 

The value distribution of the datapoints is shown in Figures 45, 46, and 47. Generally 

speaking, the variables have low correlation coefficients with yield, which may derive 

from the large number of factors that influence the soil and plant behavior. The specific 

correlation values are shown on Table 5:  

 

Figure 45. Interpolated database (ECa vs Yield) 
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Figure 46. Interpolated database (altitude vs yield) 

 

 

Figure 47. Interpolated database (Seeding rate vs yield) 
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Table 5. Variables’ correlation with yield 

Variables Correlation 

ECa – Yield 0.44 

Altitude – Yield -0.07 

Seeding rate - Yield 0.54 

4.1.1.2 Model predictions 

The best prediction results (r2 = 0.954) of the Dense ANN were achieved in 1200 epochs 

with 6 hidden layers of 6, 20,15,10,10, and 6 neurons respectively (Figures 48 and 49). 

After 1200 epochs, the error stayed relatively constant, so this number of epochs was 

specified to save computation time. The validation loss presented some noise, possibly 

due to important ANN weights adjusted in a “wrong” manner and thus increasing the error 

before correcting in the following epoch. Successful crop yield predictions have been done 

in the past in a similar manner. Dahikar et al. (2014) predicted yield from several crops 

using soil parameters like pH, nitrogen content, organic carbon, among others with one 

and two hidden layers. On the other hand, and with more similarities with this work, 

Ehsani et al. (2005) predicted corn yield based on ECa data and seeding rates with one 

hidden layer.  

 

Figure 48. Model loss (Mean Squared Error) progress during training. The error 

decreases as expected. Validation loss presents some noise 
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Figure 49. Yield prediction results by ANN (fields A, B, and C) 

 

Figure 50. Estimated yield map generated by regression (field D) 



61 

 

 

 

4.1.2 Field D (Fixed exponential model) 

The obtained yield map (Figure 50) has reasonable values that are close to the actual yield 

values (Table 6), although more samples are needed to fully validate it. A high-yielding 

belt is located at the center of the field, particularly in the southern end, which has the 

highest altitude. The average estimate yield is 26 t/ha of dry matter, with some outlier 

values reaching 44 t ha-1. Some spots presented poor plant vigor as indicated in the 

original NDVI raster and translated into the estimated yield map. Further research is 

needed to identify the precise causes for this phenomenon and prevent it from affecting 

larger areas in the field. 

 

Table 6. Comparison between actual yield values and estimated yield values 

Sample NDVI Actual yield 
(t/ha) 

Estimated 
yield (t/ha) 

1 0.75 13 12.9 

2 0.83 28 30.2 

3 0.84 34.5 33.6 

4 0.82 26.9 27.1 

 

 

4.2 Variable-rate recommendations 

4.2.1 Fields A, B, and C (ANN predictions) 

4.2.1.1 Derived from ANN1 

The prescriptions generated by the ANN1 presented a notable prediction variability 

between trainings, as shown on Figure 51. This situation makes them impractical and 

unreliable. The variability may be caused by the random initialization of the neuron’s 

weights and can be addressed by setting a fixed “random seed” (RS) value. It should be 

noted that RSs are values that are used in this case to initialize the weights of an ANN to 

get reproducible results and this concept has nothing to do with plant seeds. Nevertheless, 

if the training data presented a clear pattern, the predictions would be similar enough 

among trainings, but they are even contradictory in some zones, so there is no way to 
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know which trained model is the best, and therefore there is no good reason to use RSs.  

The plots on the right of Figure 52 were obtained by plotting the predicted yield for the 

seeding rate values between 0 and 1, while locking ECa and Altitude at 0.5.  

 

Figure 51. Model 1 response to variation in seeding rate during three different trainings. 

Notable variability is present in the models due to random initialization and no clear 

patterns in the data 

 

 

Figure 52. Seeding rate recommendations from Model 1. Notable differences are 

observed between maps 
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4.2.1.2 Recommendations from model 2 

The analysis that was manually carried out to find the seeding rate that maximizes yield 

resulted in the three models, one for each field, shown in Figure 53, those values were 

used to train the model.  

 

Figure 53. Optimized seeding rate functions for each field 

 

Figure 54. Model 2 Loss (Mean Squared Error) progress during training 
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Figure 55. Seed prediction results from model 2 

 

Figure 56. Seeding rate recommendations from model 2 (field B) The rest of the 

resulting maps can be found at annexes 4 and 5. 

The best results were obtained in 15 epochs with six hidden layers of 5, 20, 15, 10, 10, 

and 6 neurons respectively. Figure 54 shows that above 15 epochs, the error stays almost 

the same. The recommended seeding rate was plotted for each field (Figure 55). 
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On contrast with the ANN1, the ANN2 generated more consistent results, as shown on 

Figure 56. This was achieved because the training data was pre-processed and generalized 

to obtain polynomial functions (Figure 53), whose clear patterns are easily recreated by 

the ANN. The most noticeable differences from the original map are the continuous nature 

of the new prescriptions, and the absence of the control strips, which were added manually 

by the farm’s advisor.  

 

Figure 57. Yield and seeding differences between original values and generated 

prescription (field B). The rest of the resulting maps can be found at annexes 6 and 7. 

The ANN1 was used to predict the yield that would be obtained using the 

recommendations of model 2 (Figure 30). The original yield and seeding rates were 

compared to the predicted yield and the recommended seeding rate (Table 7 and Figure 

57). Despite the desired consistency in the seeding rate predictions, the overall differences 

in yield and seeding rate are not good enough. Results show that the average yields and 

seeding rate changes are close to 0%. In some zones, the predicted yield increased as 

desired, but decreased in other zones. The same situation applies to the seeding rates, the 

fundamental difference is that for seeding rate, a reduction is the desired effect. Given the 

wide range of values that compensate each other, the total effect is very little. Possible 
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causes for this wide variation in the predicted values include inaccuracies in the original 

data or while digitizing the images. There may be factors that were not considered, like 

pest incidences, which can notably affect yield. Further research is needed to optimize the 

models and find a way to keep the desired datapoints while avoiding the undesired ones, 

or at least keep the original values (Δ = 0) to prevent their negative effects. 

Table 7. Prescription results compared to original data 

 Field A Field B Field C 

Average Δ Yield +0.56% +1.39% +0.35% 

Max yield increase +15% +40% +75% 

Max yield decrease -20% -35% -75% 

Average Δ Seeding Rate +0.015% -1.03% +0.4% 

Max Seeding Rate increase +4% +12% +80% 

Max Seeding Rate decrease -2% -15% -80% 

4.2.2 Field D (Linear model) 

The map obtained from applying the Nitrogen Rate model (Equation 2) was classified into 

9 management zones and plotted as shown in Figures 58 and 59. 

 

Figure 58. Screenshot of urea prescription in AgStat 
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Figure 59. Comparison between nitrates distribution and urea prescription 
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4.3 AgStat application 

 

 

Figure 60. AgStat’s main menu 

AgStat is deployed in a Jetson nano © board from NVIDIA (2021) with a 7” generic 

compatible touchscreen display. When executed, the main menu is shown (Figure 60) and 

the user can select between the four options offered  

• Analysis: 

o Prescription generation: Guides the user through an easy-to-follow 

process (Figure 61) to generate a variable rate nitrogen prescription 

according to the field’s attributes and equation 2. The seed 

recommendation models were not added to the application since their 

current state is not optimal. The application’s system automatically 

predicts the input rate for each point in the grid, classifies them into nine 

equally spaced values, and generates the polygons. A preview map with 

the surface assigned to each rate and an economic estimate is shown to 

the user to assess the savings achieved by variable rate. Finally, the ESRI 

shapefile is exported to an external USB drive to transfer it to the variable 

rate equipment in the field. 
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Figure 61. Prescription generation process screens 

o Data visualization: Provides users with a friendly interface to visualize 

their field's data. The plots are generated with the interpolated RG 

database. 

▪ Maps: Provides the user with a visualization of the spatial 

distribution of their field’s soil attributes, classified in 5 equally 
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spaced ranges. This classification facilitates map interpretation, by 

displaying two high ranges, two low ranges, and a middle range 

(Figure 62, screen 2).  

▪ Histogram: Single variable distribution plot, the user can select 

the number of bins from a dropdown menu, ranging from 4 to 200 

(Figure 62, screen 3). 

▪ Scatter and regression plots: Displays the interaction between two 

soil attributes. AgStat offers polynomial regression from orders 1 

to 5, which the user selects (Figure 62, screens 4 and 5). 

 

 

Figure 62. Data visualization screens 



71 

 

 

 

• Acquisition: Functionalities in this section (Figure 63) were developed to assist 

the user to add external databases to the system. In this way, the folder-file 

structure and required objects to analyze and display the data are created 

properly. 

 

Figure 63. Data acquisition screens 

 

o Scattered data: Processes the data with the interpolation algorithm and 

adds the new variable(s) to the database. 

o Interpolated data: When a third-party source has already interpolated the 

data, AgStat only adjusts the data points to match the standard grid and 

adds them to the database 
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o Field survey: Provides the user with a simple and intuitive interface 

(Figure 1d) for georeferenced data acquisition via punctual sampling or 

on-the-go sampling. The required hardware to acquire the interest 

variable, like sensors, signal processing circuitry, and the GNSS with 

RTK correction, are connected via USB and GPIO connectors of the 

Jetson nano board. The data is then processed by the DAA and added to 

the database. 

 

• Files: If the user wants to extract specific files or folders from the system, it can 

be done with this friendly interface (Figure 64), which shows folder structure as 

a tree hierarchy. The user selects the source and destination folder and makes the 

transference with the press of a button.  

 

Figure 64. File management screen 

For all data operations, the user must specify the client, farm, field, and agricultural 

cycle of interest. That selection remains the same across the different sections of the 

application (visualization, prescription generation, survey) unless the user selects 

another profile, farm, field, or cycle.  
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• Settings: Although the interface of this section was designed (Figure 65), its 

functionality is still under development.  

 

Figure 65. Settings section menu 

4.4 Discussion 

Automatic data processing applications for precision agriculture have been developed in 

recent years. Some are designed to define management zones and their statistical insights 

(Paccioretti et al., 2020; Albornoz et al., 2018), and generate thematic maps, like 

AgDataBox (Borges et al., 2020; Dall’Agnoll et al., 2020; Michelon et al., 2019). In 

general terms, the previously mentioned applications were designed to transform raw data 

into meaningful information layers to support farmers' management decisions. However, 

only GeoFis (Leroux et al., 2018) and the system developed by Albornoz et al. (2018) take 

the data to the decision layers.  GeoFis enables specialists to incorporate their knowledge 

via expert rules to process data layers and support decision making.  

This system allowed the GeoFis’s developers to create a ‘risk of having sub-optimal 

practices’ map of a vineyard. On the other hand, the application created by Albornoz et 

al. (2018) automatically generates ESRI shapefiles that contain the polygons of 
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management zones and offers a friendly interface to enter the input rate value for each 

zone. The latter methodology has great flexibility since any input can be prescribed using 

the same interface. However, the user needs to have specific technical knowledge or have 

access to an expert to decide the proper input rates. A general overview of AgStat’s 

functionalities compared to similar applications is shown in Table 8.The use of ANNs 

applied to agriculture has been successfully implemented in many stages of agricultural 

production including production forecasting, pest and disease detection, and harvest 

quality control (Kujawa & Niedvala, 2021).  

Table 8. AgStat’s functionalities compared to similar applications’ 

 Leroux 

et al. 

(2018) 

Albornoz 

et al. 

(2018) 

Michelon 

et al. 

(2019) 

Paccioreti 

et al. 

(2020) 

AgStat 

(this 

work) 

Field surveying      

Automated global 

outlier’s removal 
     

Automated spatial 

outliers’ removal 
     

Thematic mapping      

Statistical plotting      

Spatial Clustering (ie. 

Fuzzy K means) 
     

Management zone 

generation  
     

Shapefile generation      

Expert fuzzy rules      

Automated rate 

assignation to shapefile 
     

 

Works using ANNs to recommend seeding rates were not found, however Ehsani et al. 

(2005) used seeding rates as an independent variable to predict yield. Dahikar et al. (2014) 

is another good example of agricultural yield prediction based on soil properties. In this 

particular work, the best results were obtained with a fixed nitrogen model adapted from 

Stanford (1973) in contrast of the ANNs’ poor results. ANNs have the advantage learning 

dynamically, improving by processing new datasets and have been successfully used in 

many research and practical areas. The low amount and accuracy of the data from the 

fields A, B, and C are possibly the root causes of the ANN results in this work. However, 
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the same algorithms used in this work can process a larger volume of better quality data 

in the future, improving results considerably and putting ANNs at direct service of the PA 

users. 

This work proposes a fully automated prescription-generation processing that decides the 

appropriate input rate for each site, based on the needs of the crop and the spatial 

distribution of the variable of interest (i.e., nitrogen). The AgStat's user does not need to 

be an expert to generate VR prescriptions. Instead, the user only enters the necessary 

information into the system and lets the application predict the rates, classify them into 

management zones, and export a ready-to-work shapefile. However, this approach is 

limited by the models and embodied knowledge available in the system. A nitrogen-only 

macronutrient prescription was adequate for this case study since phosphorus and 

potassium application was not advised due to high concentrations of those elements in the 

field. An expert in plant nutrition has supervised both models used for this work. They 

were approved since they followed the same logic as the expert's recommendation. 

Nevertheless, the actual effect on crop yield due to the prescriptions generated by the 

system needs to be quantified to validate the models fully. Additionally, the adequate 

execution of the prescriptions would depend on how precisely the variable-rate machinery 

responds to rate changes. With further development, prescription maps tailored to specific 

brands or models of VRT machinery can be made by storing the rate-change speeds of 

each model into the application. In this manner, the prescription would be executed in the 

field with improved precision.  

Although this work is aimed to be universal, for now the prescription generation scope it 

is limited to the models that were developed. The application resulting of this work needs 

further development and testing to optimize its processes and stability before launching it 

to the market. At the present stage, the developed PGA outputs single variable 

prescriptions (nitrogen). This approach has the advantage of managing each input 

precisely. However, it is limited when more generalized management zones want to be 

created (i.e., Fuzzy K-Means) to apply more than one input in one machinery pass (i.e., 

variable-rate NPK fertilization). Therefore, generalized management-zone models 
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(Paccioretti et al., 2020; Albornoz et al., 2018; Fridgen et al., 2003) are planned to be 

implemented, along with functionalities like spatial-outliers removal. 

With future research, numerous models can be developed and tested to predict optimum 

rates for a variety of inputs for different crops and conditions, including NPK and 

micronutrient formulas. Adding those models to the system would favor the adoption of 

information-intensive technology since it would not be very knowledge-demanding. The 

average PA user could take advantage of such tools with simple training.  
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5 CONCLUSIONS 

 

To address the lack fully automated prescription generation tools in PA, AgStat was 

designed and developed. The product was created as an integrated PA tool designed for 

intuitive and automated data processing, visualization, acquisition, and prescription 

generation for non-expert users. This tool can perform tasks from georeferenced data 

survey in the field, data cleaning, interpolation, to automatically apply expert knowledge 

to generate agronomic prescriptions. The system embodies the GIS operation skills and 

technical criteria a PA specialist needs to perform some of PA’s fundamental operations.  

During the development process, corn yield was modeled using both ANNs and regression 

analysis. ANNs were trained to prescribe corn seeding rates and a fixed model was used 

to prescribe nitrogen rates. Artificial Neural Networks were used to predict yield and 

optimum seeding rate for three fields. Yield predictions were adequate but seeding rate 

predictions were not due to datapoints with undesired results compensating for the desired 

ones. A larger volume of better data is needed to obtain a model that will truly optimize 

the seeding rate via a Deep Learning model. ANNs depend on a large amount of good 

quality data to produce adequate results, which unfortunately lacked in this case. But the 

main algorithms were designed properly and can be trained with better data in the future. 

In this way, the application will put the processing power of ANNs to the service of PA 

users. On the other hand, nitrogen recommendations obtained with the fixed model were 

appropriate and proved the adequate functionality of the application and internal 

algorithms, resulting in an easy-to-use and powerful tool. Farmers, advisors, and 

researchers can benefit from this application which can assist them from data collection 

to generating a ready-to-use prescription file.  

The reduced costs due to use of open-source software in AgStat’s development presents 

an advantage over commercial equipment, which can favor its adoption among farmers. 

Future research, model testing, and development are needed to improve the system's 

capabilities and add more advanced functionalities into an intuitive user experience. The 

author hope that products like AgStat and similar applications improve IIT adoption rates 

by PA users, leading to more sustainable and productive agricultural systems. 
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7 ANNEXES 

 

Annex 1. Original imagery (Field A) 
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Annex 2. Original Imagery (Field B) 

 

Annex 3. Original imagery (Field C) 
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Annex 4. Model 2 Seeding Rate recommendations (Field A) 

 

 

 

Annex 5. Model 2 Seeding Rate recommendations (Field C) 
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Annex 6. Yield and seeding differences between original values and genereated 

prescription (Field A) 

 

Annex 7. Yield and seeding differences between original values and genereated 

prescription (Field C) 
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Annex 8. Spatial distribution of soil properties (Field D) 
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Word  Abbreviation 

Menu me 

Analysis an 

Survey su 

Files fi 

Settings se 

Generate Prescription gRx 

Visualization vi 

Diagnosis maps dMa 

Distribution plot di 

Scatter plot sc 

Regression plot re 

Static sampling sSa 

On-the-go sampling oSa 

Estimate es 

Economic estimate ecEs 

 

Annex 9. List of abbreviations for AgStat’s object naming 

 


