LA PROHEXADIONA-CA AUMENTA RENDIMIENTO Y CONTENIDO DE ANTIOXIDANTES EN VID CULTIVAR SHIRAZ

Tesis

Que presenta VICTOR MANUEL ALVAREZ MALDONADO

Como requisito parcial para obtener el Grado de MAESTRO EN CIENCIAS EN HORTICULTURA

Saltillo, Coahuila Diciembre 2015
LA PROHEXADIONA DE CALCIO AUMENTA RENDIMIENTO Y CONTENIDO DE ANTIOXIDANTES EN VID CULTIVAR SHIRAZ

Tesis

Elaborada por VICTOR MANUEL ALVAREZ MALDONADO como requisito parcial para obtener el grado de Maestro en Ciencias en Horticultura con la supervisión y aprobación del Comité de Asesoría

Dr. Homero Ramírez Rodríguez
Asesor Principal

Dr. Marcelino Cabrera de la Fuente
Asesor

Dr. Mario Ernesto Vázquez Badillo
Asesor

Dr. Alejandro Zenón González
Asesor

Dr. Alberto Sandoval Rangel
Subdirector de Posgrado

UAAAN

Saltillo, Coahuila
Diciembre 2015
Agradecimientos

En primer lugar quiero agradecer al Consejo Nacional de Ciencia y Tecnología (CONACYT) por el apoyo brindado durante los dos años de la maestría, apoyo sin el que no hubiera sido posible realizar este proyecto de vida; agradezco a la Universidad Autónoma Agraria Antonio Narro (UAAAN) por todo el aprendizaje que muy generosamente brinda a cualquiera que esté dispuesto a aprender, así mismo deseo manifestar también la importante labor social que realiza esta noble universidad y su papel indiscutible en el desarrollo del agro de este país.

Agradezco a los profesores y compañeros la disposición para compartir de forma generosa y desinteresada sus conocimientos adquiridos durante toda su vida profesional, de manera muy particular a aquellos que tienen amor por lo que hacen y que logran transmitir esa pasión por su trabajo a sus alumnos.

Por último pero no por ello menos importante quiero agradecer a dios, a mi familia y a todas aquellas personas que de manera directa o indirecta contribuyeron de forma alguna para finalizar esta etapa de mi vida profesional.
Dedicatorias

Esta tesis es dedicada a mi familia que siempre me ha apoyado en cualquier decisión tomada; también para aquellos maestros que me guiaron por el maravilloso camino de la investigación que nos abre la mente a tantas posibilidades y aplicaciones de la ciencia.

A mis compañeros de generación que juntos supimos formar un equipo de camaradería y apoyo mutuo que espero siga prevaleciendo por mucho tiempo.

Finalmente y de manera muy especial al niño Ernesto Escobedo Álvarez quien se nos adelanto en el camino porque dios necesitaba de él. Y que en el breve lapso de su existencia demostró ser el más valiente de nosotros.
Lista de tablas

Tabla 1. Efecto de P-Ca sobre el tamaño de fruto en vid cultivar Shiraz13
Tabla 2. Efecto de P-Ca sobre el peso y número de racimos en vid cultivar Shiraz..14
Tabla 3. Efecto de P-Ca sobre el peso de frutos y rendimiento en vid cultivar Shiraz...14
Lista de figuras

Figura 1. Efecto de P-Ca sobre el contenido de procianidinas totales en el fruto maduro de uva cultivar Shiraz..15

Figura 2. Efecto de P-Ca sobre el contenido de polifenoles totales en el fruto maduro de uva cultivar Shiraz..16

Figura 3. Efecto de P-Ca sobre el contenido de antocianinas totales en el fruto maduro de uva cultivar Shiraz..17
Resumen

LA PROHEXADIONA-CA AUMENTA RENDIMIENTO Y CONTENIDO DE ANTIOXIDANTES EN VID CULTIVAR SHIRAZ

POR

VICTOR MANUEL ALVAREZ MALDONADO

MAESTRÍA EN CIENCIAS EN HORTICULTURA
UNIVERSIDAD AUTÓNOMA AGRARIA ANTONIO NARRO

DR. HOMERO RAMÍREZ RODRÍGUEZ -ASESOR-

Saltillo, Coahuila. Diciembre del 2015
El cultivo de vid se ha expandido notoriamente a nivel mundial en años recientes. En México, el interés por mejorar los sistemas de producción en esta especie es muy significativo. En particular cuando, además de mejorar el rendimiento se incrementa la demanda a producir uvas de mejor calidad en su contenido de antioxidantes. El retardante de crecimiento prohexadiona-ca (P-Ca) mejora la producción y calidad de frutos en frutales templados y hortalizas. Con esta referencia, P-Ca fue aplicada a un viñedo del cultivar Shiraz durante el ciclo 2014. La hormona fue asperjada en dos ocasiones en los tratamientos: 0 (agua-control), 100, 200 y 300 mg L⁻¹. La primera se aplicó en plena floración y la segunda, dos semanas después. Durante la cosecha, se evaluaron peso, tamaño de fruto y rendimiento; así como número y peso de racimos. La P-Ca, exceptuando producción, no modificó significativamente estos parámetros; el rendimiento por planta fue superior en la mayoría de los tratamientos con P-Ca en donde la dosis a. 300 mg L⁻¹ destacó al aumentar un 53%. Los análisis químicos en el fruto mostraron que P-Ca a 300 mg L⁻¹ en dos aplicaciones aumentó un 42% de polifenoles totales. El contenido de antocianinas se incrementó en un 68% con P-Ca a 200 mg L⁻¹ en dos aplicaciones; mientras que los niveles de procianidinas totales reflejaron incrementos sustanciales con P-Ca destacando el tratamiento a 300 mg L⁻¹, el cual aumentó 98% el contenido de esos antioxidantes en comparación con el testigo. Para el análisis estadístico se utilizó la prueba de tukey para un α≤0.05%.

Palabras clave: Antocianinas, Flavonoides, Polifenoles, Prohexadiona-Ca, vid
Abstract

PROHEXADIONE CA INCREASES YIELD AND ANTIOXIDANTS CONTENT IN GRAPE CULTIVAR SHIRAZ

BY

VICTOR MANUEL ALVAREZ MALDONADO

MASTER OF SCIENCE IN HORTICULTURE

UNIVERSIDAD AUTÓNOMA AGRARIA ANTONIO NARRO

DR. HOMERO RAMÍREZ RODRÍGUEZ -ADVISOR-

Saltillo, Coahuila. December 2015
Grapevine cultivation has grown worldwide in recent years. In Mexico, it is of a great interest to improve its production systems, in particular when besides yield, the increment in fruit antioxidants is of main concern. Prohexadione-Ca (P-Ca) is a growth retardant which increases yield and fruit quality on vegetables and fruit crops. On this basis, P-Ca was applied in 2014 to a vineyard plot growing the cultivar Shiraz. The hormone was sprayed in two occasions at 0 (water-control), 100, 200 and 300 mg L⁻¹ The first application was conducted at full bloom; whereas the second was applied two weeks later. At harvest, size and fruit weight; yield; weight and raquis fruit number were evaluated. With the exception of yield, the mentioned parameters were not affected by P-Ca. Yield per plant increased in most P-Ca treatments, where the dosage at 300 mg L⁻¹ increased 53%. With regard fruit antioxidant analysis, P-Ca at 300 mg L⁻¹ increased 42% the content of total polyphenols. P-Ca at 200 mg L⁻¹ in two applications caused an increment of 68% in total anthocyanins; whereas the content of procyanidins showed substantial increases, in particular at 300 mg L⁻¹ which increased 98% their content in comparison to fruit controls. For the statistical analysis was used the tukey test $\alpha \leq 0.05\%$.

Key words: Anthocyanins, Flavonoids, Grape, Polyphenols, Prohexadione-Ca.
Introducción

El uso de nuevas tecnologías en el manejo de cultivos hortícolas es obligado para enfrentar las condiciones adversas que ha provocado el cambio climático (Ramírez et al. 2005). En la actualidad se busca enfrentar esta problemática mediante el uso de alternativas que propicien un manejo adecuado de cultivos (Ramírez et al. 2010). Aunado a lo anterior, en el mercado actual están cambiando los parámetros con los que se determina la calidad de los frutos, ya que ahora no solo se busca que estos tengan buena apariencia; sino que también se toma en cuenta las propiedades organolépticas como sabor, olor, sólidos solubles y niveles de antioxidantes. Estos requerimientos por lo tanto exigen la permanente búsqueda de tecnologías dirigidas al mejoramiento del cultivo de la vid que permita capitalizar las inversiones que este frutal demanda (Lo Guidice et al. 2004). El hombre ha domesticado la vid con fines de explotación comercial del fruto o en forma procesada como vino, lo que le confiere una importancia económica considerable (Lo Guidice et al. 2003; Adsule, 2014). El estudio del manejo óptimo del cultivo es de gran importancia, ya que de este deriva un buen aprovechamiento y por ende una buena producción, ya sea, de fruta fresca, en conserva en forma de pasas o fermentada como bebida en vino (Adsule, 2014).

Los compuestos más importantes para la calidad de las uvas negras son los polifenoles, los cuales se encuentran en los hollejos, estos son responsables del color, la astringencia, el amargor y cuerpo de los vinos (Vaquero-Fernández et al. 2014)

Prohexadiona de Calcio (P-Ca) es un biorregulador que inhibe la biosíntesis de giberelinas bloqueando las dioxigenasas, las cuales requieren al 2-oxoglutarato como co-substrato, resultando en un crecimiento celular menor y una reducción en el desarrollo vegetativo de las plantas. Los niveles de giberelinas son reducidos por un periodo de tres a cuatro semanas. P-Ca es absorbido a través de las hojas y su acción va dirigida al desarrollo meristematico apical. P-Ca
tiene un movimiento de translocación predominantemente acropétalo, mientras que el movimiento basipétalo es limitado (Evans et al. 1999; Rademacher, 2000). P-Ca tiene un corto tiempo de vida en el ambiente, además no tiene efecto sobre organismos y no presenta riesgo en los consumidores (Rademacher, 2000). El uso de P-Ca en vid ha demostrado una mejora en el manejo del cultivo en algunas variedades; en otras, ha disminuido el tamaño del fruto y número de racimos (Vaquero-Fernández et al. 2014) y en algunas más ha incrementado las propiedades organolépticas del fruto cosechado, tales como antocianinas y polifenoles (Lo Guidice et al. 2004)

El propósito de la presente tesis fue conocer y estudiar el efecto de P-Ca en el cultivo de vid cv. Shiraz en el crecimiento y propiedades orga

objetivos

Conocer la influencia del biorregulador Prohexadiona de Calcio (P-C-a) sobre el crecimiento y propiedades antioxidantes del fruto de la vid (vitis vinífera) cultivar Shiraz.

Hipopésis

Prohexadiona de calcio modifica el crecimiento y las propiedades organolépticas del fruto de la vid cultivar Shiraz.

Prohexadiona de calcio modifica la ruta metabólica de síntesis de flavonoides de la planta de la vid cultivar Shiraz.
Revisión de Literatura

Generalidades del cultivo de la vid

La vid es una planta cuyos orígenes se remontan al medio oriente, se cree que esta parte del mundo es su centro de origen (García-Trujillo y Mudarra-Prieto, 2008). Existen múltiples prácticas culturales que inciden en la calidad de la producción de uvas para vino, entre las que se pueden mencionar: El sistema de tutoreo (Reynolds y Van Heuvel, 2009), las podas (Kok et al. 2013), la utilización de portainjertos, la selección de las variedades adecuadas al tipo de clima y suelo, el manejo de la nutrición, el sombreo de la copa (Haselgrove et al. 2000) y la temperatura (Yamane et al. 2006). Este cultivo tiene importancia económica por el fruto que produce, el cual puede ser utilizado para consumo en fresco, como bebida fermentada en vino y como uva pasa (Sagarpa, 2014). El cultivo de vid fue introducido a México en la época de la conquista española y se considera que el país fue de los primeros en América en implementar este cultivo (Font et al. 2009), sin embargo el desarrollo de esta actividad agrícola tuvo un desarrollo significativo hasta un buen número de años posteriores (Excélsior, 2014). En la actualidad, la superficie destinada a la producción de esta especie en México es de aproximadamente 3500 hectáreas. La zona de producción de uva del país está ubicada entre los 22 y 23° de latitud norte en el centro-norte, esta región se caracteriza por la presencia de suelos arcillosos con una elevada retención de humedad factor que propicia el óptimo desarrollo del cultivo (Sagarpa, 2014). Los principales estados productores son: Sonora, Baja California, Coahuila, Zacatecas y Aguascalientes, que en conjunto producen aproximadamente el 95% del total de producción nacional (Sagarpa, 2013). Existe un rendimiento promedio de 11 Ton/Ha, el 75% del volumen producido es consumido como fruta, un 22% se procesa ya sea en bebidas o mermeladas y un 3% en forma de uva pasa (Financiera Rural, 2014). El país exporta entre un 45 y 60% (130-175 mil tons.) de uva fresca y su principal destino es EE.UU., sin embargo es mucho mayor el nivel de importación (290mil tons), principalmente de EE.UU. y Chile.
En años recientes han sido impulsadas políticas gubernamentales con una meta al año 2020 tendiente al abastecimiento del 50% del mercado local que se encuentra en expansión. El aumento en las áreas destinadas al cultivo de vid es principalmente en especies vinícolas (Excélsior 2014), sin embargo, si se quiere competir en el mercado internacional se requiere utilizar la tecnología apropiada para poder tener un producto competitivo (Font et al. 2009).

La utilización del biorregulador Prohexadionia de Calcio en vid ha incrementado los parámetros de calidad de frutos (Lo Guidice et al. 2004), tales como antocianinas, taninos y polifenoles. Estos compuestos antioxidantes inciden directamente en la calidad del vino final (Vaquero-Fernández et al. 2006) por lo que este producto ha surgido como una herramienta que puede tener aplicación para la industria vinícola de calidad (Avizcuri-Inac et al. 2013).

Uva Cultivar Shiraz

La variedad Shiraz o también llamada Syrah es reconocida por producir frutos de coloración oscura intensa, este cultivar es utilizado en la producción de vinos tintos de sabor intenso, puede ser utilizado solo o combinado para la producción de vino, el fruto produce aromas ahumados y chocolateados, presenta una maduración más temprana que otras variedades. Debido a su concentración elevada de taninos y por su intensa coloración esta variedad puede tenerse en añejamiento hasta 15 años para producir vinos de calidad (Karibasappa, 2014)

Biorreguladores

Los biorreguladores son sustancias que modifican el crecimiento y desarrollo de las plantas mediante el bloqueo o activación de algunas rutas metabólicas y bioquímicas propias de su desarrollo (Weaver, 1996; Jankiewicz, 2003), estos ejercen un efecto temporal sobre genes, incrementando la síntesis de compuestos útiles para los parámetros de calidad de frutos (Ramírez et al. 2010), de tal manera que mediante un empleo adecuado, estas sustancias pueden ser magníficas herramientas en el manejo de cultivos hortícolas (Ramírez et al. 2005).
Prohexadiona de Calcio

Prohexadiona-Ca (P-Ca) ;(3-oxido-4-propionil-5-oxo-3-ciclohexanocarboxilato) es un inhibidor de la biosíntesis de giberelinas biológicamente activas con baja toxicidad y limitada persistencia en el tejido vegetal (Evans et al., 1999; Rademacher, 2004). La estructura de P-Ca es similar al ácido 2-oxoglutarico, el cual es co-substrato para las dioxigenasas que catalizan la hidroxilación involucrada en las etapas posteriores de la síntesis de giberelinas (Rademacher, 2000). Su modo de acción es mediante el bloqueo de la síntesis de las giberelinas por medio de la ruta metabólica de biosíntesis de la GA\textsubscript{12} aldehído un precursor importante en la formación de la giberelina A\textsubscript{1} biológicamente activa .El modo de acción de P-Ca es la hidroxilación 3-β de la GA\textsubscript{20} hacia la GA\textsubscript{1}, lo cual provoca una acumulación temporal de la GA\textsubscript{20} biológicamente inactiva (Evans et al. 1999; Lo Guidice et al. 2002). Prohexadiona de Calcio ha sido utilizada con efectos favorables en el control del crecimiento vegetativo de manzano (Lo Guidice et al. 2002), además también ha tenido un efecto indirecto en la protección contra agentes patógenos como la bacteria Erwinia Amylovora. (Yoder et al. 1999) mediante la producción de flavonoides y la reducción de la densidad de cobertura de área foliar.

La aplicación de P-Ca en vid fue reportada por Lo Guidice et al. (2002) quienes encontraron que la etapa de aplicación tenía un papel importante, ya fuera pre o post floración en la determinación del número de frutos y de racimos, aunque los efectos varían dependiendo el cultivar, en general ocurrió una reducción en el tamaño de frutos. En cuanto a los parámetros de calidad, ocurrió un incremento en la actividad antioxidante particularmente en la biosíntesis de flavonoides.
Antioxidantes

Los antioxidantes son sustancias naturales o artificiales con capacidad para neutralizar y proteger a sistemas biológicos; su mecanismo de acción consiste en su capacidad de atrapar los radicales libres que inducen reacciones de iniciación de oxidación; inactivan iones metálicos; eliminan las especies reactivas de oxígeno como radicales libres; rompen la cadena de reacciones de iniciación y reducen los peróxidos para prevenir la formación de radicales libres (Rosa et al. 2002). Entre las enzimas más conocidas que funcionan como agentes biológicos antioxidantes se encuentran la catalasa, la peroxidasa, la superoxido dismutasa y el citocromo P₄₅₀ (Maldonado et al. 2010).

Flavonoides

Los flavonoides son compuestos de bajo peso molecular que comparten un esqueleto común de difenilpiranos (C₆-C₃-C₆), integrado por dos anillos de fenilos (A y B) ligados a través de un anillo C de pirano (heterocíclico). Los átomos de carbono en los anillos C y A se numeran del 2 al 8, y los del anillo B desde el 2' al 6'. La actividad de los flavonoides como antioxidantes depende de las propiedades redox de sus grupos hidroxifenólicos y de la relación estructural entre las diferentes partes de la estructura química. Los flavonoides son pigmentos naturales presentes en los vegetales y que protegen al organismo del daño producido por agentes oxidantes, como los rayos ultravioletas, la polución ambiental o sustancias químicas. El organismo humano no puede producir estas sustancias químicas protectoras, por lo que deben obtenerse mediante la alimentación o en forma de suplementos (Martínez-Flores et al. 2002). Los flavonoides son metabolitos secundarios que se generan a partir del aminoácido fenilalanina mediante la ruta metabólica del ácido shikimico, estos compuestos tienen la capacidad de quelatar metales como el hierro. El vino tiene un alto contenido en compuestos polifenólicos (Martínez-Flores et al. 2002), la mayoría de los cuales provienen de la uva y del proceso fermentativo, en la uva, estos compuestos se localizan en la piel, especialmente en las
células epidérmicas y en las semillas. Los principales compuestos antioxidantes de la uva son los polifenoles, los taninos y las antocianinas (Adams, 2006).

Polifenoles

Los polifenoles son constituyentes fundamentales del mundo vegetal. Se encuentran en todos los órganos de las plantas, desde las raíces a los frutos, en variadas formas de estructuras químicas. En la uva, los fenoles juegan un rol importante en la calidad, y la manera por la cual estas sustancias son transformadas durante la vinificación influye directa o indirectamente sobre la calidad de los vinos, confiriéndoles una gran parte de su estructura, su color y de sus propiedades sensoriales, tales como amargor, cuerpo y astringencia (Ojeda, 2007).

Procianidinas

También conocidos como Flavan-3-ol monómeros o taninos son los compuestos más abundantes en la uva (Adams 2006), responsables del amargor y la astringencia de los vinos (Yamane et al. 2006). Estos compuestos se encuentran en el vino principalmente en la forma de (+) catequina, (-) epicatequina y (+) epicatequina-3-O galato (Ojeda, 2007); investigaciones recientes han determinado que estos compuestos son especialmente elevados en las semillas de la uva (Karibassapa, 2014) Los taninos forman complejos con las proteínas y es el origen de sus múltiples propiedades, principalmente la sensación de astringencia percibida por el consumidor (Vaquero-Fernández et al. 2014).

Antocianinas

Las antocianinas son los principales pigmentos responsables del color de los vinos tintos. Están localizadas principalmente en la piel de las uvas (Ojeda et al. 2002). Los resultados de investigaciones han determinado que las antocianinas se producen durante la maduración del fruto y que la cantidad en el mismo es afectada por las prácticas culturales (Reynolds y Van Heuvel, 2009), las condiciones climáticas (Ojeda et al. 2002; Haselgrove et al. 2000) y la temperatura (Yamane et al. 2006). Su extracción durante la maceración se
incrementa justo antes de finalizar el proceso de fermentación e inmediatamente se reduce (Vaquero-Fernández et al. 2014).

Materiales y Métodos

Sitio de Estudio

La investigación se realizó durante el periodo 2014-2015 en los viñedos San Lorenzo ubicado en Parras de la Fuente, Coahuila, México, laboratorios de la Universidad Autónoma Agraria Antonio Narro y la Universidad Autónoma de Coahuila. Las coordenadas geográficas del predio experimental son 30° 30' 0.33" LN, 102° 11' 31.9" LO con altitud de 1505 msnm con un clima clasificado como seco semiárido y temperatura media anual de 14 a 18 °C; presenta régimen de lluvia en los meses de abril a octubre y precipitación promedio anual de 366 mm. Los vientos predominantes en esta localidad son provenientes del este todo el año. El tipo de suelo es de textura migajón-arcilloso con 50% arcilla, 26% limo, 24% arena, 1.98% materia orgánica y presenta un pH de 8.57.

Material Vegetal

El material vegetal consistió de plantas de vid del cultivar Shiraz, clon 174, portainjerto 420 A11 de ocho años de edad. La plantación fue establecida en un marco de 1.5 m entre plantas y 2.5 m entre hileras, con una densidad de 2620 plantas/ha, el manejo del cultivo se llevó a cabo de acuerdo a los estándares de la casa Madero. Se seleccionaron cinco plantas por tratamiento. Las dosis evaluadas de prohexadiona de calcio (Apogee® con P-Ca al 27.5%) fueron: 0 (agua-testigo), 100, 200 y 300 mg /L⁻¹; agregando 2 cc del surfactante pegodel® por litro de solución. El biorregulador fue asperjado cuando las plantas presentaron plena floración, a punto de goteo temprano por la mañana el 11 de abril de 2014 con una mochila aspersora manual de 10 L de capacidad. Una segunda aplicación con P-Ca a las mismas concentraciones se realizó 15 días después. El experimento se estableció bajo un diseño estadístico
completamente al azar con cinco repeticiones por tratamiento y se utilizó el sistema de análisis estadístico (SAS 9.0) para Windows y los datos obtenidos se sometieron a una comparación de medias con la prueba de Tukey (p≤ 0.05).

Parámetros Evaluados

Tamaño y Peso de Fruto

Al momento de cosecha se midió con un vernier digital marca Caliper® escala de 0 a 10 cm el diámetro polar y ecuatorial de 50 frutos por planta localizados en racimos de la parte media de la misma. El peso de los frutos se realizó con una báscula modelo Ohaus modelo 3729 capacidad máxima 3000 g y resolución de 0.1 g.

Número y Peso de Racimos, Rendimiento

En cosecha, se determinó el número de racimos por planta; mientras que el peso por racimo y rendimiento se realizó con la báscula descrita.

Calidad de Fruto

Para determinar el efecto de P-Ca sobre calidad, se tomaron muestras de 50 frutos maduros por tratamiento y se congelaron en hielo seco (CO₂). Las muestras fueron llevadas al laboratorio y se mantuvieron en congelamiento a una temperatura de -20°C por un corto período.

Procianidinas Totales

La determinación de procianidinas totales se realizó con la técnica de HCl-butanol (Porter et al. 1986). Las muestras de uva se descongelaron, se pesó un gramo en una balanza analítica digital modelo Velab®, se colocó en tubo de ensayo con tapón de rosca, se agregaron 5 mL de metanol, se dejó reposar 12 horas y luego se filtró en papel Whatman No uno. De los extractos obtenidos se tomó una alícuota de 250 μL, se transfirió a un tubo de ensayo, se agregaron uno punto cinco mL de HCl-butanol al cinco % y 50 μL de reactivo férrico. La
mezcla se calentó en baño maría (Yamato®, wáter Bath, BM 400) por una hora a temperatura de 90°C y luego se tomó lectura en un espectrofotómetro marca Biomate® 3, Thermo spectronic a una longitud de onda de 550 nm. Los datos obtenidos fueron expresados como equivalentes del estándar de procianidina-1 (Sigma-Aldrich®). Para este estándar se elaboró una curva de calibración con las concentraciones 0, 100, 200, 300, 400, 500 y 600 mg L⁻¹.

Polifenoles Totales

El contenido de polifenoles totales se determinó por el método de Wong-Paz et al. (2014). Se tomó del extracto metanólico una alícuota de 20 μL y se mezcló con 20 μL de reactivo de Folin, se reposó la mezcla cinco minutos, se agregaron 20 μL de carbonato de sodio, se reposó cinco minutos, se diluyó con 125 μL de agua destilada y luego se tomó la lectura con un espectrofotómetro lector de microplaca (Epok, Biotek instruments, Inc; Winoosk. VT, USA) controlado con un software para el análisis de datos Gen 5. La máxima absorción de la longitud de onda fue determinada por un análisis en el rango UV-Vis del estándar de ácido gálico, posteriormente estos datos se graficaron y la longitud de onda seleccionada fue de 790 nm. Los niveles de polifenoles totales fueron expresadas en equivalentes del estándar de ácido gálico (Sigma-Aldrich®) por gramo de peso seco de acuerdo a una curva de calibración construida con las concentraciones de 0, 100, 200, 300, 400, 500 y 600 mg L⁻¹.

Antocianinas Monoméricas Totales

La determinación de antocianinas se realizó con el método de pH diferencial (Lee et al. 2005). Esta técnica se basa en la propiedad estructural que poseen estos compuestos para cambiar de acuerdo al pH en que se encuentran los pigmentos monoméricos de antocianinas, los cuales tienen un cambio reversible de coloración cuando se modifica su pH. La forma oxonio coloreada se expresa en pH 1.0, mientras que la forma hemiacetal incolora predomina en pH 4.5. La diferencia en la absorbancia de los pigmentos a una longitud de onda de 520 nm es proporcional a su concentración. La solución buffer de pH 1.0 se preparó de la siguiente manera: Se pesaron 1.86 g de cloruro de potasio
(KCl 0.025 M) y se diluyó hasta 980 mL ajustando el pH (± 0.05) con HCl (aproximadamente 6.3 mL). Posteriormente se pasó a un matraz y se aforó a un Litro con agua destilada. Para la preparación de la solución buffer de pH 4.5 se pesaron 54.43 g de acetato de sodio (CH₃CO₂Na 0.4 M) y se diluyeron hasta 980 mL ajustando el pH (± 0.05) con HCl (aproximadamente 20 mL), se transfirió a un matraz y se aforó a un Litro con agua destilada. La muestra metanólica se añadió en una proporción de uno a cuatro, el factor de dilución se determinó por dilución hasta que la absorbancia a 520 nm estuvo dentro del intervalo lineal del espectrofotómetro. Se prepararon dos diluciones de la muestra de ensayo, una con pH 1.0 y la otra con pH 4.5. Posteriormente se tomaron dos alícuotas de 50 μL del extracto de uva, se colocaron en celdas, a una se agregó 50 μL de solución a pH 1.0 y a otra 50 μL de solución a pH 4.5, luego se tomaron lecturas en el espectrofotómetro señalado a 520 y 700 nm y se compararon con la lectura de la celda en blanco. La cantidad de antocianinas presentes en las muestras del extracto fueron expresadas como equivalentes del estándar cianidina-3-glucósido (Sigma-Aldrich®). Para este estándar se elaboró una curva de calibración con las concentraciones 1000, 500, 250, 125, 62.5 y 0 mg L⁻¹.
Resultados

Tamaño de Fruto

La tabla 1 muestra que el diámetro ecuatorial del fruto no fue modificado por la P-Ca a ninguna dosis; sin embargo, el diámetro polar fue ligeramente menor en el tratamiento cuando se aplicó el retardante a 100 mg L⁻¹.

Se observó también un incremento superior al control del 3% en la concentración de P-Ca a 200 mg L⁻¹.

Tabla 1.- Efecto de P-Ca sobre el tamaño de fruto en vid cultivar Shiraz

<table>
<thead>
<tr>
<th>Diámetro</th>
<th>P-Ca mg L⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cm)</td>
<td>0 100 200 300 100X2x 200X2 300X2 C.V.%</td>
</tr>
<tr>
<td>Ecuatorial</td>
<td>1.26 a 1.25 a 1.32 a 1.27 a 1.28 a 1.28 a 1.27 a 5.25ns</td>
</tr>
<tr>
<td>Polar</td>
<td>1.33 ab 1.28 b 1.38 a 1.31ab 1.31 ab 1.35 ab 1.31 ab 4.73*</td>
</tr>
</tbody>
</table>

*: ns: significativo y no significativo a una p≤0.05; C.V. coeficiente de variación
: valores con la misma letra dentro de cada factor en cada línea son iguales (Tukey. p≤ 0.05). Y: media de 50 frutos. x: 2 aplicaciones.

Peso y Número de Racimos

En la tabla 2 se muestra que los tratamientos con prohexadiona-ca no modificaron estadísticamente (p ≤ 0.05) el peso y número de racimos por planta.
Tabla 2. Efecto de P-Ca sobre el peso y número de racimos en vid cultivar Shiraz

<table>
<thead>
<tr>
<th>P-Ca mg L⁻¹</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>100X2</th>
<th>200X2</th>
<th>300X2</th>
<th>C.V.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de racimos (grs)</td>
<td>126.40a²z</td>
<td>132.80a</td>
<td>159.10a</td>
<td>169.0a</td>
<td>149.80a</td>
<td>136.30a</td>
<td>132.40a</td>
<td>40.94ns</td>
</tr>
<tr>
<td>Número de racimos</td>
<td>77.20a</td>
<td>74.0a</td>
<td>68.40a</td>
<td>82.20a</td>
<td>72.60a</td>
<td>75.40a</td>
<td>81.40a</td>
<td>24.54ns</td>
</tr>
</tbody>
</table>

ns: no significativo a una p≤0.05; C.V.: coeficiente de variación; a: valores con la misma letra dentro de cada factor en cada línea son iguales (Tukey. p ≤ 0.05). Y: Media de 50 frutos. x: 2 aplicaciones.

Peso de fruto y Rendimiento

En la tabla 3 se observa que la aplicación de P-Ca a cualquier dosis no alteró el peso individual de frutos. El rendimiento fue incrementado un 53% en las plantas que recibieron el tratamiento con P-Ca de 300 mg L⁻¹

Tabla 3. Efecto de P-Ca sobre el peso de fruto y rendimiento en vid cultivar Shiraz

<table>
<thead>
<tr>
<th>P-Ca mg L⁻¹</th>
<th>0</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>100X2</th>
<th>200X2</th>
<th>300X2</th>
<th>C.V.%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso de frutos (g)</td>
<td>1.48a²z</td>
<td>1.30a</td>
<td>1.53a</td>
<td>1.34a</td>
<td>1.43a</td>
<td>1.39a</td>
<td>1.37a</td>
<td>13.31ns</td>
</tr>
<tr>
<td>Rendimiento (Kg/planta)</td>
<td>9.6bc</td>
<td>6.4c</td>
<td>11.7ab</td>
<td>14.7a</td>
<td>11.2ab</td>
<td>10.9ab</td>
<td>12.0ab</td>
<td>17.56*</td>
</tr>
</tbody>
</table>

*: significativo y no significativo a una p≤0.05; C.V.: coeficiente de variación; a: valores con la misma letra dentro de cada factor en cada línea son iguales (Tukey. p ≤ 0.05). Y: media de 50 frutos. x: 2 aplicaciones.
Procianidinas Totales

La prohexadiona de calcio causó un aumento significativo ($p \leq 0.05$) en el contenido de procianidinas totales en frutos maduros (Figura 1). Los tratamientos con P-Ca a 200 y 300 mg L$^{-1}$ aplicados en dos ocasiones provocaron incrementos en estos antioxidantes del 90 y 98 % respectivamente al compararse con el control. La dosis del retardante a 300 mg L$^{-1}$ aplicado una vez ocasionó un aumento del 45% de procianidinas totales.

Figura 1. Efecto de P-Ca sobre el contenido de procianidinas totales en el fruto maduro de uva cultivar Shiraz. Cada barra representa la media de diez repeticiones. Letras diferentes indican diferencias estadísticas (Tukey, $p \leq 0.05$).
Polifenoles Totales

El contenido de polifenoles totales en frutos se ilustra en la figura 2. La prohexadiono de calcio provocó aumento significativo ($p \leq 0.05$) de polifenoles totales en el fruto. El tratamiento con P-Ca a 300 mg L$^{-1}$ asperjado en una ocasión provocó un aumento del 42% de polifenoles; mientras que al aplicarse en dos ocasiones, el incremento fue del 21% al compararse con los frutos del control.

Figura 2.- Efecto de P-Ca sobre el contenido de polifenoles totales en el fruto maduro de uva cultivar Shiraz. Cada barra representa la media de diez repeticiones. Letras diferentes indican diferencias estadísticas (Tukey $p \leq 0.05$).
Antocianinas totales

En la figura 3 se observa el efecto de P-Ca en el contenido de antocianinas totales en fruto. El tratamiento con P-Ca a 200 mg L\(^{-1}\) en dos aplicaciones causó un incremento significativo (\(p \leq 0.05\)) de antocianinas del 67% al compararlos con los frutos del control. Los tratamientos con P-Ca a 300 mg L\(^{-1}\) asperjado en una ocasión y a 100 mg L\(^{-1}\) en dos aplicaciones provocaron un 32% de aumento en estos antioxidantes.

![Antocianinas totales](image)

Figura 3.- Efecto de P-Ca sobre el contenido de antocianinas totales en el fruto maduro de uva cultivar Shiraz. Cada barra representa la media de diez repeticiones. Letras diferentes indican diferencias estadísticas (Tukey \(p\leq0.05\)).
Discusión

La aplicación de prohexadiona de Calcio en diferentes especies hortícola causa una reducción en el crecimiento vegetativo como resultado de la inhibición temporal de las giberelinas A₁, A₄ y A₇ en el ápice de las plantas (Rademacher 2000, Ramírez et al. 2010). Este efecto con frecuencia se liga a una disminución en el número de yemas florales, frutos cuajados y en el crecimiento o tamaño final del fruto (Ramírez et al. 2010). La anterior se explica por la notoria reducción de tejido que en ocasiones P-Ca provoca, el cual se requeriría para formar nuevos órganos reproductivos (Ramírez et al. 2009). En el presente estudio con la variedad de uva Shiraz, P-Ca prácticamente no ocasionó reducción en el número y peso de racimos (Tabla 2), peso y tamaño de frutos (Tablas 1, 2). Estos efectos son de gran valía hortícola al no afectar esos parámetros y disponer de un fruto con características fenotípicas competitivas en el mercado o en la industria del vino (McCormick 2012). Estas modificaciones fenotípicas han sido también observadas en manzano (Costa et al. 2004) y en vid (Giacomelli et al. 2013). La etapa fenológica en la que P-Ca es aplicada influye directamente en el crecimiento del fruto. En el proceso fisiológico de este órgano Giacomelli et al. (2013) reportaron en vid durante antesis una actividad elevada en la síntesis de las giberelinas biológicamente activas A₁ y A₄. Es conocido que P-Ca inhibe la síntesis de esas hormonas (Rademacher, 2004); además cuando el retardante es aplicado en vid en prefloración, el resultado es la formación de frutos más pequeños (Lo Guidice et al. 2003, Lo Guidice et al. 2004) y racimos de uva más cortos (Kok et al. 2013). En el presente trabajo, P-Ca se asperjó en plena floración. Es probable que esta fase de aplicación contribuya a evitar una reducción en el tamaño del fruto; así como en el peso y número de racimos. Las citocininas son hormonas que también estimulan el crecimiento del fruto (Costa et al. 2004), y P-Ca es un biorregulador que incrementa la síntesis y traslado de citocininas de la hoja joven al fruto en desarrollo (Ramírez et al. 2010). Es posible que la aplicación de P-Ca en el cultivar Shiraz a través de las citocininas endógenas también contribuyera a evitar una disminución en el tamaño del fruto (Tabla 1), peso y
El desarrollo de racimos con uvas (Tabla 2). La relación entre P-Ca y citocininas fue también observada en tomate (Ramírez et al. 2008).

El rendimiento por planta fue incrementado por la mayoría de las dosis de P-Ca (Tabla 3). Este efecto es consistente con los reportes en vid (Lo Guidice et al. 2004), manzano (Costa et al. 2004), chile mirador (Ramírez et al. 2010) y en tomate (Ramírez et al. 2008). El rendimiento está primeramente basado en el número de flores que la planta es capaz de producir (Vasconcelos et al. 2009).

La P-Ca es un biorregulador que se caracteriza por estimular la inducción floral (Khurshid et al. 1992, Rademacher 2004). Este incremento, Ramírez et al. (2005) lo relacionan directamente a una disminución de giberelinas biológicamente activas y un aumento en citocininas en el tejido primordio, resultando en un notable aumento en la formación de yemas florales. En base a lo anterior, es probable que al aplicar el P-Ca en el cultivar de uva Shiraz, haya ocurrido este efecto. La P-Ca una vez en el tejido, modifica la dirección de translocación de asimilados (Rademacher 2000); condición que provoca que más fotosintatos y citocininas se trasladen a los frutos en desarrollo (Costa et al. 2004, Ramírez et al. 2005) y por lo tanto eviten un incremento en la caída y una reducción en el desarrollo de frutos (Tabla 3).

La aplicación de P-Ca resultó en incrementos importantes en los niveles de antioxidantes en los frutos maduros del cultivar Shiraz. El contenido de procianidinas (Figura 1), polifenoles totales (Figura 2) y antocianinas totales (Figura 3) aumentó significativamente (p≤ 0.05) con diferentes concentraciones del biorregulador. En la elaboración de vinos, los tres antioxidantes referidos contribuyen a producir un vino de mejor calidad (Lee et al. 2005). Las procianidinas son compuestos que proporcionan astringencia a los vinos, por lo que su contenido en los frutos que son utilizados en el proceso de fermentación influye directamente en la calidad final del vino (Vaquero-Fernández et al. 2006). Kok y Bal (2014) reportaron en la vid cultivar Gewürztraminer incrementos notables de monoterpenos en frutos cuando aplicaron P-Ca en las dosis de 200 y 300 mg L⁻¹, los cuales determinan el aroma del vino.
El aumento en polifenoles totales provocado por P-Ca (Tabla 2) se sustenta con los resultados similares obtenidos por Lo Guidice et al. (2004) y Kok et al. (2013) cuando aplicaron el retardante en vid a una concentración de 250 mg L\(^{-1}\) en prefloración. Vaquero-Fernández et al. (2006) encontraron un considerable aumento de polifenoles totales en el vino elaborado con la variedad Tempranillo previamente asperjada con P-Ca en prefloración. Avizcuri-Inac et al. (2013) por su parte, reportaron que la aplicación de P-Ca en las variedades Tempranillo y Granache incrementó la cantidad de polifenoles del vino elaborado con los frutos tratados. Este efecto también fue observado por Lo Guidice et al. (2004) en la variedad de uva Cabernet Franc cuando las plantas se asperjaron con P-Ca a 250 mg L\(^{-1}\). En el presente trabajo los tratamientos con P-Ca a 300 mg L\(^{-1}\); y, 100 y 200 mg L\(^{-1}\) en dos aplicaciones estimularon un aumento significativo (p\(\leq 0.05\)) en el contenido de antocianinas totales en los frutos cosechados (Figura 3). Es evidente que la presencia de antocianinas en uvas contribuye en la calidad final del vino elaborado (Kok et al. 2013, Vaquero-Fernández et al. 2006). El contenido de antocianinas en el cultivo de la vid se encuentra determinado por factores como la temperatura (Yamane et al. 2006), las prácticas culturales como el aclareo de racimos y las podas (Kok et al. 2013); y, la cantidad de radiación solar que recibe el fruto (Costa et al. 2004). Prohexadiona de calcio modifica la ruta metabólica de la síntesis de flavonoides mediante el bloqueo del 2-oxo-glutarato lo que conlleva a un incremento en la síntesis de los compuestos antocianos (Rademacher 2000) los cuales influyen en la estabilidad de la coloración del vino (Lo Guidice et al. 2004).

Kok et al. (2013) aumentaron la cantidad de antocianinas en vid cuando aplicaron 250 mg L\(^{-1}\) de P-Ca en prefloración. Los niveles de esos antioxidantes fueron similares cuando solamente realizaron podas y aclareo de racimos. Avizcuri-Inac et al. (2013) y Vaquero-Fernández et al. (2006) lograron incrementar el contenido de antocianinas en el vino producido con las variedades de uva Tempranillo y Granache cuando aplicaron prohexadiona de calcio a las plantas en prefloración. Con los resultados obtenidos en esta investigación es posible considerar el uso de P-Ca como una alternativa viable.
para elevar en el cultivar de vid Shiraz los niveles de los antioxidantes procianidinas, polifenoles y antocianinas, los cuales son importantes en la elaboración de vinos de alta calidad. El mecanismo a través del cual la P-Ca estimula la producción de estos antioxidantes no se conoce en detalle. Rademacher (2000) ha propuesto que P-Ca influye directamente en la síntesis de los flavonoides y de enzimas ligadas a su metabolismo. Esta acción resulta en la producción de antioxidantes específicos como vitamina C en manzano y pera (Rademacher, 2004), licopeno en tomate (Ramírez et al. 2008) y capsaicina en chile jalapeño (Ramírez et al. 2009). Por lo tanto, las futuras investigaciones sobre el tema deberán dirigirse a estudiar con mayor profundidad el modo de acción de P-Ca en el metabolismo de los tres antioxidantes.
Conclusiones

La prohexadiona de calcio aplicada en plena floración y quince días después al cultivar de vid Shiraz no altera el tamaño y peso del fruto, peso y número de racimos; incrementa el rendimiento y contenido de procianidinas, polifenoles y antocianinas totales en frutos maduros.
Referencias

Periódico Excélsior consulta: Marzo 2014 disponible en:

SAGRARPA Agronegocios consulta: junio 2015 disponible en:

Financiera Rural Sector Rural consulta: Marzo 2015 disponible en:
http://www.financierarural.gob.mx/informacionsectorrural/Panoramas/Panorama%20Uva%20(abr%202014) pdf.