CORRELACION ENTRE SISTEMAS DE RIEGO, INDICE DE CRECIMIENTO Y
MORFOLOGIA DE LAS VIAS DE CIRCULACION DE AGUA EN NOGAL
PECANERO.

JORGE ARMANDO CHÁVEZ SIMENTAL

TESIS
PRESENTADA COMO REQUISITO PARCIAL
PARA OBTENER EL GRADO DE

DOCTOR EN CIENCIAS AGRARIAS

UNIVERSIDAD AUTÓNOMA AGRARIA
ANTONIO NARRO

Unidad Laguna
Dirección de posgrado

Asesor Principal: Ph. D. Vicente De Paul Alvarez Reyna.
Co-Asesor: Dr. Guillermo González Cervantes

Torreón, Coahuila, México.

JULIO DE 2010
UNIVERSIDAD AUTÓNOMA AGRARIA
ANTONIO NARRO
DIRECCIÓN DE POSGRADO

CORRELACION ENTRE SISTEMAS DE RIEGO, INDICE DE CRECIMIENTO Y MORFOLOGIA DE LAS VIAS DE CIRCULACION DE AGUA EN NOGAL PECANERO.

TESIS

JORGE ARMANDO CHÁVEZ SIMENTAL

Elaborada bajo la supervisión del comité particular de asesoría y aprobada como requisito parcial para obtener el grado de:

DOCTOR EN CIENCIAS AGRARIAS

Comité Particular.

Asesor principal
Ph. D. Vicente De Paul Alvarez Reyna

Co-asesor
Dr. Guillermo González Cervantes

Asesor
Ph. D. Arturo Pimiento Gil

Asesor
Ph. D. Angel Lagarda Murrieta

Asesor
Dr. Esteban Castelo Chávez

Dr. Jerónimo Landeros Flores
Director de Posgrado

M.C. Gerardo Arellano Rodríguez
Jefe del Departamento de Posgrado

Torreón, Coahuila, México.

JULIO 2010
COMENDIO.
CORRELACIÓN ENTRE SISTEMAS DE RIEGO, INDICE DE CRECIMIENTO Y
MORFOLOGÍA DE LAS VÍAS DE CIRCULACIÓN DE AGUA EN NOGAL
PECANERO

Por:

Jorge Armando Chávez Simental.

Asesor principal: Ph. D. Vicente De Paul Alvarez Reyna.

Co-Asesor: Dr. Guillermo González Cervantes

UNIVERSIDAD AUTÓNOMA AGRARIA “ANTONIO NARRO” Unidad Laguna

La Región Lagunera se caracteriza por su clima árido debido a la baja precipitación pluvial y veranos con temperatura elevada. Esta región forma parte de la zonas climáticas sub-húmeda, semi-árida y árida correspondiendo a la parte alta, media y baja de la Cuenca del Río Nazas respectivamente, donde la disponibilidad de agua para el sector agrícola es un factor limitante en la producción de los cultivos. La producción de nuez se concentra en la parte media y baja de la cuenca con 7,295 ha de nogal de las cuales 6,264 se encuentran en producción y 1,031 en desarrollo. En la parte baja de la cuenca considerada zona de consumo de agua se concentra 73.5% del total de la superficie cultivada de nogal. Con la finalidad de hacer un manejo sustentable del agua de riego para la producción de nuez, se utilizaron herramientas de
precisión como; sistema de información geográfica GPS, imagen de satélite, análisis de imagen y monitoreo de humedad en el suelo en el huerto nogalero del área experimental de la Universidad Autónoma Agraria Antonio Narro Unidad Laguna. Esto permitió caracterizar los estomas en foliolos y conductos anatómicos en tronco de nogal pecanero correlacionando su morfología con los diferentes sistemas de riego empleados en la productividad del nogal pecanero (gravedad, aspersión, micro-aspersión y goteo). Los resultados obtenidos del análisis de imagen muestran cambios en tamaño y distribución de los estomas en foliolos donde predominan los estomas de tamaño mediano (0.0025 a 0.0049 mm²) en todos los sistemas de riego. Sin embargo su distribución cambia de la parte apical hacia la parte basal de la rama conforme aumenta la eficiencia de aplicación en los sistemas de riego de 60 a 95% respectivamente. En tronco, el tamaño de los conductos anatómicos de circulación de agua en el sistema de riego por gravedad, presentó la densidad más baja con 20 conductos anatómicos. Los sistemas de riego por aspersión, goteo y micro-aspersión, presentaron una densidad de 39, 37 y 32 conductos anatómicos respectivamente, siendo estadísticamente iguales. La distribución de los conductos anatómicos en madera cambió al disminuir el volumen de suelo humectado, con tendencia de mayor a menor tamaño, por lo que, en el sistema de riego por gravedad predominaron los conductos anatómicos de tamaño grande (> 0.10 mm²) con una cantidad de 7 conductos, seguido por el sistema por aspersión donde sobresalen los conductos anatómicos de tamaño mediano (0.05 a 0.09 mm²) con 18 conductos y finalmente los sistemas de riego por
micro-aspersión y goteo destacando los conductos anatómicos de tamaño pequeño (< 0.049 mm²) con 15 y 21 conductos respectivamente.

Los resultados anteriormente descritos muestran el movimiento ascendente de agua al interior del árbol desde un medio de mayor porosidad, como el suelo donde el tamaño de los poros varía entre 0.019 y 2 mm². El diámetro de los conductos anatómicos en madera disminuye en función de la altura del árbol donde se presentan poros de 0.05 a 0.1 mm², lo que permite el ascenso del agua del suelo a la hoja donde se realiza el proceso de transpiración por medio de los estomas donde el tamaño varía entre 0.0025 y 0.005 mm².

El uso de sistemas de riego presurizado permitió manejar eficiencias de distribución y aplicación del agua de riego que variaron de 75 a 80% para el sistema de riego por aspersión y micro-aspersión. Si se utiliza riego por goteo la eficiencia se incrementa hasta 97% lo que significa que se perderían solamente 3 litros de cada 100 aplicados. La utilización de éste sistema permite un ahorro de 69% en la lámina de riego aplicada al nogal. Considerando que en la parte baja de la cuenca alrededor de 1,360 ha son regadas bajo éste sistema aplicando 13.6 millones m³ de agua al año, con la implementación del sistema de riego por goteo se aplicarían 4.2 millones m³ año⁻¹, ahorrando 9.4 millones m³ de agua al año.

Palabras clave: Carya Illinoensis Koch, manejo de agua, sistemas de información geográfica, análisis de imagen, conductos anatómicos, estomas.
ABSTRACT
CORRELATION BETWEEN IRRIGATION SYSTEMS, GROWTH INDEX AND THE WATER CIRCULATION PATHWAYS MORPHOLOGY IN WALNUT TREES.

By:

Jorge Armando Chávez Simental.

Principal Adviser: Ph. D. Vicente De Paul Alvarez Reyna.

Co-Adviser: Dr. Guillermo González Cervantes.

UNIVERSIDAD AUTÓNOMA AGRARIA “ANTONIO NARRO” Unidad Laguna

The Región Lagunera is characterized for an arid climate due to the lowest precipitation and high temperature in summer. This region constitute part of the climatic sub-humid, semi-arid and arid zones, corresponding to the high, half and low part of the Río Nazas watershed respectively, where the water availability for the agricultural sector is a limiting factor in the crops production. The walnut production is concentrated at the half and low watershed part with 7,295 ha of walnut tree of the ones 6,264 are in production and 1,031 in developing. At the low watershed part considerate as a water consumption zone, concentrates 73.5 % of total area under walnut tree crop. With the purpose to do a sustainable irrigation water management for the walnut production, there were used precise tools like; geographic information system, GPS, satellite images, image analysis and monitoring soil moisture in the walnut
trees experimental orchard of the Universidad Autónoma Agraria Antonio Narro Unidad Laguna. This permitted to characterize the stomas in folioles and anatomic conducts in the trunk of walnut tree correlating his morphology with the different irrigation systems used in walnut tree productivity (surface, sprinkler, micro- sprinkler and dripping). The results obtained from the image analysis evidence changes in size and distribution of stomas in folioles where the middle-sized stomas (0.0025 to 0.0049 mm²) predominate in all irrigation systems. However the distribution changes from the apical part toward the basal part of the branch according the application efficiency increases in the irrigation systems from 60 to 95 % respectively. In trunk, the size of anatomic conducts of water circulation presented the lowest density with 20 anatomic conducts in the surface irrigation system. The irrigation systems for sprinkler, dripping and micro-sprinkler, they presented a density of 39, 37 and 32 conducts respectively, being equal statistically. The distribution of wood anatomic conducts changed when the soil moisture volume decreased, for that, in the surface irrigation system the anatomic conducts large size (0.10 mm²) with a quantity of 7 conducts, followed for the asperision system where the middle-sized anatomic conducts (0.05 to 0.09 mm²) with 18 conducts and finally the irrigation systems for micro-sprinkler and dripping predominating the anatomic conducts of small size (0.049 mm²) with 15 and 21 conducts respectively. The results previously described support the ascendant water movement inside of the tree from a medium of largest porosity, like the soil where the pores size ranged from 0.019 to 2 mm². The wood anatomic conducts diameter decreases as function of the tree height where they presented pores from 0.05 to 0.1 mm², which it permits
the ascendant water movement from the soil toward the leaf where is realized the transpiration process through the stomas where the size ranged from 0.0025 to 0.005 mm².

The use of pressurized irrigation systems permitted to manage the distribution and application efficiencies of irrigation water that varies from 75 to 80 % for the irrigation system for sprinkler and micro-sprinkler. If the dripping irrigation is used, the efficiency increases until 97 % which means that 3 liters would miss out on only each 100 applied. The utilization of dripping system permits saving 69 % of the irrigation depth applied to the walnut tree. Consideration that in the low watershed part around 1,360 ha are irrigated under surface irrigation system applying 13.6 million m³ of water per year, implementing the dripping irrigation system would apply 4.2 million m³ of water per year, saving 9.4 million m³ of water per year.

Key words: *Carya Illinoensis Koch*, water management, geographic information systems, image analysis, anatomic conducts, stomas.
AGRADECIMIENTOS

A la Universidad Autónoma Agraria Antonio Narro Unidad Laguna por haberme recibido para realizar mis estudios de Doctorado en sus instalaciones.

Al Consejo Nacional de Ciencia y Tecnología (CONACyT), por el apoyo económico otorgado durante estos tres años para la realización de los estudios de doctorado.

A Fundación Produce Coahuila por el apoyo económico otorgado para la realización la presente tesis doctoral.

Al Patronato para la Investigación y Producción de Nuez A. C. (PIPNAAC) por el apoyo económico para la realización del presente trabajo de investigación y tesis doctoral.

Al Ph. D. Vicente De Paul Alvarez Reyna por haber aceptado ser mi asesor principal en el desarrollo del proyecto de investigación, por su enseñanza, su colaboración, consejos y amistad.

Al Dr. Guillermo González Cervantes por ser Co-asesor y guía en mi proyecto de investigación, además por su valiosa colaboración en la elaboración de los artículos científicos, su enseñanza, consejos y amistad invaluable.
Al Ph. D. Arturo Palomo Gil, Ph. D. Ángel Lagarda Murrieta y Dr. Esteban Favela Chávez por formar parte de mi comité particular de tesis y por el apoyo incondicional otorgado para el desarrollo del presente trabajo.

Al personal administrativo de la UAAAN-UL en especial a Esther Peña y M. C. Gerardo Arellano Rodríguez por su apoyo y amistad incondicional.

Al personal del Departamento de Riego y Drenaje por su colaboración, amistad y confianza otorgada.

A los investigadores del INIFAP-CENID-RASPA por la valiosa colaboración en mi formación profesional.

A mis compañeros y amigos de posgrado por el apoyo recibido en diversas fases de mi formación y por su amistad.

GRACIAS!!
DEDICATORIAS

El presente trabajo va dedicado especialmente a las personas que forman parte importante de mi vida y son todo para mí, ya que sin ellas el camino a la obtención de grado hubiera sido muy difícil.

A Dios por guiar me en el camino del conocimiento y darme la fuerza, sabiduría, vida y salud necesaria para poder lograr una meta profesional más.

A mi esposa Abby, motivo e inspiración para seguir adelante sin dejarme vencer por las adversidades de la vida, por su amor, apoyo, consejos y confianza otorgada para la realización de mis estudios. Te Amo Abby.

A mi pequeño hijo Jorge Alberto, por su inocencia, su ternura y amor que sin saber me demuestra y por la enseñanza que me da día tras día a pesar de su corta edad, además de ser uno de los motivos más importantes por los cuales he de luchar sin desaliento toda mi vida. Te amo chiquitín!!.

A mis padres Celia y Armando, por haberme dado la oportunidad de vivir, por cuidarme en mi infancia, por apoyar mis decisiones, por inculcarme los valores más importantes y confiar siempre en mí.

A mis hermanos; Chelo, Luis, Nena, Lety y Paco, por su apoyo incondicional y compañía en todo momento.

A la familia Ortiz Sánchez por considerarme miembro de su familia, por el apoyo, confianza y compañía que son invaluables para mí.

ESTE TRABAJO LLEVA UNA PARTE DE CADA UNO DE USTEDES,

A TODOS ¡MUCHAS GRACIAS!
Índice

1. INTRODUCCIÓN 1
 1.1. Objetivo 5
 1.2. Hipótesis 5

2. REVISIÓN DE LITERATURA 6
 2.1 Aspectos generales del cultivo del nogal pecanero 6
 2.1.1 Origen del cultivo 6
 2.1.2 Cultivo en México 6
 2.1.3 Cultivo en la Región Lagunera 7
 2.1.4 Variedades de nogal en la Región Lagunera 8
 2.2 Ubicación geográfica de los huertos de nogal en
 la cuenca del Río Nazas 10
 2.3 Sistemas de información geográfica .. 12
 2.4 Morfología anatómica de la madera .. 14
 2.4.1 Dendrocronología 14
 2.4.2 Anatomía de la madera 15
 2.4.3 Planos anatómicos de corte 17
 2.4.4 Tejidos del tallo adulto 18
 2.4.4.1 Peridermis o corteza 18
 2.4.4.2 Floema 19
 2.4.4.3 Cambium vascular 21
 2.4.4.4 Xilema 21
2.4.4.5 Anillos de crecimiento .. 24
2.4.5 Conducción de agua ... 27
 2.4.5.1 Estructura de la madera de Latifoliadas
 (Angioespermab-Dicotiledoneas) 28
 2.4.5.2 Agrupamiento de los poros 28
 2.4.5.3 Disposición de poro; porosidad 29
 2.4.5.4 Disposición de poros; orientación 30
2.4.6 Aspectos ecológicos de la evolución del xilema 31
 2.4.6.1 Relación entre los caracteres anatómicos y el ambiente 32
2.5 Morfología estomática y fotosíntesis 35
 2.5.1 Estomas de foliolos .. 35
 2.5.2 Fotosíntesis y Respiración 36
 2.5.2.1 Importancia biológica de la fotosíntesis 38
 2.5.2.2 Factores que influyen en la fotosíntesis 39
2.6 Análisis de imagen .. 42

ARTÍCULO 1. Correlación entre eficiencia del agua de riego y
morfología estomática en foliolos de nogal pecanero 46

ARTÍCULO 2. Correlación entre los sistemas de riego y la
morfología estomática en foliolos de nogal pecanero 62

ARTÍCULO 3. (Por enviar) Anatomía de las vías de circulación de
agua en madera de nogal pecanero bajo diferentes sistemas de
riego ... 82
3. CONCLUSIONES GENERALES. ... 97
 3.1 Cuenca del Río Nazas. .. 97
 3.2 Modulo de riego. .. 99
 3.2.1 Foliolos. .. 99
 3.2.2 Conductos anatómicos de la madera. 100
4. LITERATURA CITADA GENERAL. 103
5. APÉNDICE. .. 111
 Anexo 1 Carta de recepción Revista Chapingo Serie Horticultura. . 112
 Anexo 2 Carta de recepción Revista Terra Latinoamericana. 113
1. INTRODUCCIÓN.

El nogal pecanero (Carya illinoensis Koch) es un cultivo de gran rentabilidad económica en México y algunos países del mundo, ya que su producción se estima en 210 mil toneladas anuales. Estados Unidos es el principal productor de nuez pecanera con 72% de la producción total mundial, donde destacan los estados de Georgia, Kansas, Louisiana, Missouri, Oklahoma y Texas. En segundo lugar se encuentra México con 25% de la producción mundial, donde la distribución natural del nogal se encuentra en catorce estados, siendo los centros más importantes de asociaciones nativas Nuevo León, Coahuila y Chihuahua (Orona et al., 2004; Ojeda et al., 2009).

Los estados con mayor producción de nuez en la República Mexicana son Chihuahua con 54,629 toneladas y rendimiento de 1.5 t ha$^{-1}$, seguido de Coahuila con una producción de 8,776 toneladas y rendimiento de 0.71 t ha$^{-1}$; Sonora con una producción de 7,075 toneladas y rendimiento de 1.06 t ha$^{-1}$; y Durango con una producción de 2,783 toneladas y rendimiento de 0.78 t ha$^{-1}$ (SAGARPA-SIAP, 2009).

En la Región Lagunera existen dos tipos de productores diferenciados en cuanto a superficie establecida, manejo técnico del cultivo y forma de comercializar el producto: el ejido y la pequeña propiedad (Orona, et al., 2006). En esta región, la superficie en producción dedicada al cultivo de nogal es de
6,264 ha y 1,031 ha se encuentran en desarrollo, por lo que actualmente se tienen 7,295 ha de nogal pecanero donde predominan las variedades Western Schley y Wichita. De la superficie en producción 33.8% corresponde a terrenos ejidales y 66.2% a pequeña propiedad. La producción total en 2008 fue de 4,208.4 toneladas, con una derrama económica de 154.9 millones de pesos (SAGARPA-SIAP, 2008). Por lo anterior, el nogal es el segundo cultivo perenne en la Región Lagunera de gran importancia económica, después de la alfalfa que cuenta con una superficie de 39,532 ha bajo riego y que registró una producción de 3,088 millones de toneladas generando una derrama económica de más de 1,150 millones de pesos en el año 2008 (INEGI, 2009).

En zonas productoras de nuez, el factor más importante para la producción de este frutal es el agua, recurso que influye en las fases de crecimiento, desarrollo del fruto y todo su ciclo fenológico, incluyendo la dormancia. El nivel de disponibilidad de agua en el suelo, junto con el nivel de nutrimento, afecta la cantidad y calidad de la almendra y el potencial productivo en los siguientes años (Godoy, 1996; Worthington et al., 1992).

La disponibilidad de agua en México ha disminuido considerablemente ya que en los últimos 60 años ha pasado de 18,053 a 4,357 m3 hab$^{-1}$ año$^{-1}$, específicamente en el norte se cuenta con baja disponibilidad de agua per cápita que equivale a 1,753 m3 hab$^{-1}$ año$^{-1}$. Debido a esto, en el sector agrícola se ha impulsado la utilización de diferentes tecnologías para eficientar la
extracción, distribución y aplicación del agua a los cultivos por medio de sistemas de riego presurizado. Los avances tecnológicos en riego han permitido aumentar la eficiencia de esta práctica, aplicando mejor el agua en el cultivo y disminuyendo las pérdidas que ocurren en conducción (Ferreyra et al., 2005). Actualmente entre los sistemas de riego utilizados en la producción de nuez se encuentran los sistemas por gravedad, aspersión, micro-aspersión y goteo (estos tres últimos presurizados) con eficiencia de aplicación de 60, 70, 80 y 95% respectivamente. Sin embargo en las comunidades ejidales 56.3% utiliza el riego por gravedad y 43.7% riega con sistemas presurizados. Por otro lado los productores particulares utilizan el riego presurizado en sus diferentes modalidades en 62.9% de la superficie de pequeña propiedad y 37.1% restante continúa regando bajo el modo tradicional (SAGARPA-SIAP, 2008).

El nogal pecanero al igual que otros frutales caducifolios, presenta una distinción genética a través de formación de anillos producto del crecimiento radial anual de la madera. Anillos que contienen información almacenada en el árbol que muestra la interacción cambiante en tiempo y espacio de cuatro factores; 1) ambientales (radiación solar, temperatura, precipitación, humedad relativa, concentración de CO₂, etc.), 2) genético (nativo e inducido a través de variedades), 3) ubicación geográfica en la cuenca hidrológica (subdividida en tres partes: alta, media y baja) y 4) manejo del cultivo (riego, podas, fertilización, plagas, etc.).
Los frutales caducifolios presentan un sistema anatómico de conducción donde se transporta agua y solutos del suelo a las hojas que se denomina xilema. Este sistema es afectado por la interacción de los factores antes mencionados mostrando mayor o menor crecimiento de la madera manifestando un cambio morfológico (forma, tamaño y cantidad) (González et al., 2004). En las hojas de nogal se realizan los procesos de fotosíntesis y fotorrespiración, los cuales se llevan a cabo en los cloroplastos a través de pequeños poros en la superficie de la hoja, generalmente del envés llamados estomas. La principal función de los estomas es la fotosíntesis, pero también participan en el intercambio de gases con la atmósfera capturando el dióxido de carbono (CO$_2$) y liberando oxígeno (O$_2$) (Ponomarev, 2008; Mexal et al., 2003).

En base a lo antes expuesto, es importante realizar investigación que describa los procesos eco-físicos al interior de frutales caducifolios, caso nogal pecanero. Para ello se propone una aproximación de funcionamiento de circulación de agua en tronco, ramas y hojas de árboles de nogal, considerando la interacción de los diversos factores (condiciones ambientales, genética del árbol, ubicación geográfica y manejo) que puedan potenciar la productividad del cultivo. Sin embargo la variable de estudio es la forma de aplicación del agua de riego mediante cuatro sistemas; Gravedad, aspersión, micro-aspersión y goteo.
1.1 Objetivo.

El objetivo de esta investigación fue caracterizar los conductos anatómicos en tronco y estomas en foliolos de nogal pecanero, y correlacionar su morfología con los diferentes sistemas de riego: gravedad, aspersión, micro-aspersión y goteo.

1.2 Hipótesis.

La morfología de los conductos anatómicos de la madera de tronco y la morfología estomática de los foliolos de nogal pecanero, no se ve afectada por el sistema de riego utilizado.
2. REVISIÓN DE LITERATURA

2.1 Aspectos generales del cultivo del nogal pecanero.

2.1.1 Origen del cultivo.

El cultivo del nogal pecanero es originario del norte de México y sureste de Estados Unidos de Norteamérica (Medina y Cano, 2002). Los españoles llamaron nogal, al árbol pecanero y a su fruto, la pecanera, la llamaron nuez.

El nombre pecana o pecanera es derivado del vocablo indígena Algonquín, que le da el nombre “Pakan” que significa “nuez tan dura que se necesita una piedra para quebrarla” (Brison, 1976). En miles de años la nuez fue uno de los principales alimentos de los indios americanos. Actualmente el nogal es cultivado en el sur de Estados Unidos y Norte de México.

2.1.2 Cultivo en México.

La superficie dedicada al cultivo de nogal pecanero se ha incrementado en un 33.3% en la última década, pasando de 60 mil has en el año de 2000 a 80 mil has que se tienen actualmente. El 97.19% de la superficie de nogal en México lo ocupan los principales estados productores de nuez, que son: Chihuahua 48,
535 ha, Coahuila 14,184 ha, Sonora 7,304 ha, Nuevo León 3,989 ha y Durango 3,789 ha. En el 2.81% del área restante participan otros 14 estados en menor proporción. Los mejores rendimientos se han obtenido en Chihuahua 1.5 t ha$^{-1}$, Sonora 1.06 t ha$^{-1}$, Durango 0.78 t ha$^{-1}$, Coahuila 0.71 t ha$^{-1}$ y Nuevo León 0.36 t ha$^{-1}$. La derrama económica nacional generada en 2008 fue de más de 2,960 millones de pesos, lo que ubica al cultivo entre los más rentables de México (SAGARPA-SIAP, 2009).

2.1.3 Cultivo en la Región Lagunera.

Las primeras plantaciones de nogal en la Región Lagunera se establecieron en el año de 1948. Las variedades introducidas fueron: Western, Wichita, Burkett, San Saba Improved, Stuart, Barton y Mahan, predominando Western y Wichita. Actualmente, el nogal ocupa uno de los primeros lugares en importancia dentro de los frutales cultivados. En 1979, una encuesta realizada en 300 huertas (90% del total) reveló que existían 3,579 hectáreas; de las cuales 1,325 en producción y 2,254 en desarrollo (Medina, 1980). El 27% de nogales en producción se estaba rehabilitando con injerto de copa para cambio de variedad. La edad de los árboles era: de 1 a 2 años 16%; de 3 a 6 años 35%; de 7 a 10 19%; de 10 años o más, 30% (Medina, 1980).

En 1997, la superficie de nogal en producción en la Región Lagunera, era de 4,668 ha, de las cuales 1,823 ejidales y 2,845 pequeña propiedad. En 1997, se
reportaron 1,537 ha de nogal en desarrollo, que sumadas a las 4,903 en producción en 1999, llegaron a un total de 6,440 ha de nogal pecanero en la Región. En 18 años (1982-1999) la superficie de nogal en producción se triplicó aumentando de 1,648 a 4,903 ha y la producción total de nuez se incrementó 2.5 veces; sin embargo el rendimiento promedio por hectárea ha sido de 0.95 toneladas, con un mínimo de 0.64 y máximo de 1.22 t ha\(^{-1}\) (Medina y Cano, 2002).

Actualmente, la superficie dedicada a este importante cultivo en la Región Lagunera, cuenta con 6,264 ha en producción, de las cuales 2,117 corresponden a terrenos ejidales y 4,147 a pequeña propiedad. A esta superficie se suman 1,031 ha que se encuentran en desarrollo, dando así un total de 7,295 ha. La producción total en 2008 fue de 4,208.4 toneladas con un rendimiento promedio de 0.98 t ha\(^{-1}\), generando una derrama económica de 154.9 millones de pesos (SAGARPA-SIAP, 2008).

2.1.4 Variedades de nogal en la Región Lagunera.

Western Schley.

Es el árbol más popular y preferido por los productores en el estado de Coahuila y otras regiones del norte de México. Selección nativa de gran adaptación a las zonas desérticas y semidesérticas. Muestra cierta tolerancia a
las deficiencias de zinc, sin embargo necesita aplicaciones de éste elemento menor para un buen desarrollo. Regularmente precoz en la maduración del fruto. Necesita de la presencia de la variedad Wichita para una buena polinización. Árboles vigorosos con buena ramificación con buen ángulo de apertura (Thompson y Young, 1985).

Wichita.

Variedad de buena adaptación en zonas desérticas y semidesérticas, susceptible a la roña y otras enfermedades fungosas: es por esto que no es recomendada para regiones húmedas. La liberación de polen coincide en gran parte con la receptibilidad de las flores hembras de la variedad Western Schley (Núñez, 2001).

Extremadamente precoz en su producción, de buen follaje de color verde oscuro, hojas grandes y una buena producción de nueces y de gran calidad. Los ángulos de las ramas son cerradas por lo que necesitan una buena poda para proporcionar una propia estructura del árbol para evitar desgajamiento de ramas. Ruezno grueso y atractivo para el gusano barrenador de la envoltura, en esta variedad el fruto es una nuez mediana de excelente rendimiento. Tiene el rendimiento de carne o almendra de nuez más alto de todas las variedades, rinde entre 58 y 62% de corazón y entre 52 y 60 nueces por libra.
2.2 Ubicación geográfica de huertos de nogal en la cuenca del Río Nazas.

La Cuenca del río Nazas se localiza al norte-centro de la república mexicana, se extiende en una superficie de 94,372 km2 abarcando algunos municipios de la Región Lagunera del estado de Durango y de Coahuila (Figura 1). La cuenca del río Nazas y Aguanaval de manera conjunta forman la Región Hidrológica No 36 (RH-36).

El Río Nazas nace en la parte alta de la Sierra Madre Occidental en el Municipio de Indé del estado de Durango. Anteriormente éste río desembocaba en la parte baja de la cuenca en la Laguna de Mayrán en el estado de Coahuila después de recorrer aproximadamente 400 km. Actualmente el río es alimentado artificialmente por la presa captadora de agua “Lázaro Cárdenas (El Palmito)” y la presa derivadora y reguladora “Francisco Zarco (Las Tórtolas)”.

Figura 1. Localización geográfica de la Región Hidrológica 36 al norte de México.
La cuenca del río Nazas se delimita en tres subregiones, donde las condiciones climáticas son totalmente diferentes: parte alta, media y baja (Figura 2).

a). Parte alta: en esta parte de la cuenca se capta el agua que llueve y escurre en la Sierra Madre Occidental abasteciendo la presa “Lázaro Cárdenas”. La precipitación media anual es superior a los 500 mm, por lo que se clasifica como una zona sub-húmeda de producción y almacenamiento de agua de lluvia en la presa la cual tiene una capacidad total de 3,336 millones de metros cúbicos. El 3.6% de la superficie total dedicada al nogal en la Región Lagunera se desarrolla en ésta parte de la cuenca.

b). Parte Media: Se ubica la presa “Francisco Zarco” que tiene una capacidad total de 438 millones de metros cúbicos. Esta presa recibe el agua que llega a través del río Nazas desde la presa “Lázaro Cárdenas”. En esta zona la precipitación media anual es entre 300 y 500 mm, y se considera como zona semi-árida de almacenamiento, conducción y aprovechamiento del agua hacia la parte baja de la cuenca. Aquí se ubica el 22.3% de la superficie total de nogal en la Región Lagunera.

c). Parte Baja: en esta parte el río Nazas desemboca en la Laguna de Mayrán, la precipitación media anual es inferior a 300mm. Se clasifica como zona árida con un consumo de agua proveniente de la parte alta y media de la cuenca,
además de las extracciones de pozos profundos. En esta parte se concentra el 74.1% de la superficie sembrada de nogal.

Figura 2. Subregiones de la Región Hidrológica 36.

2.3 Sistemas de Información Geográfica.

Un Sistema de Información geográfica (SIG o GIS en inglés) particulariza un conjunto de procedimientos sobre una base de datos no gráfica o descriptiva de objetos del mundo real que tienen una representación gráfica y que son susceptibles de algún tipo de medición respecto a su tamaño y dimensión relativa a la superficie de la tierra. Además de la especificación no gráfica el SIG cuenta también con una base de datos gráfica con información geo-
referenciada o de tipo espacial y de alguna forma ligada a la base de datos descriptiva (Carmona y Monsalver, 2010).

En un SIG se usan herramientas de gran capacidad de procesamiento gráfico y alfanumérico, herramientas dotadas de procedimientos y aplicaciones para captura, almacenamiento, análisis y visualización de la información georreferenciada (Carmona y Monsalver, 2010).

La mayor utilidad de un sistema de información geográfica está íntimamente relacionada con la capacidad que posee éste de construir modelos o representaciones del mundo real a partir de las bases de datos digitales, esto se logra aplicando una serie de procedimientos específicos que generan aún más información para el análisis. Un SIG permite resolver una variedad de problemas del mundo real. El SIG puede manipularse para resolver los problemas usando varias técnicas de entrada de datos, análisis y resultados (Carmona y Monsalver, 2010).

Un SIG permite determinar la existencia de algo en un sitio en particular. Para ello se deben especificar las condiciones. Esto se hace especificando la localización de un objeto o región para la cual se desea información. El uso de esta tecnología permitió ubicar los huertos de nogal en la Región Lagunera dentro de la Región Hidrológica 36 (Figura 3), y partiendo de una base de
datos, se pudo agregar información puntual en cada huerto, obteniendo las imágenes que ubican los huertos y el sistema de riego empleado en el lugar.

Figura 3. Localidades productoras de nuez pecanera en la cuenca del Río Nazas.

2.4 Morfología anatómica de la madera.

2.4.1 Dendrocronología.

La dendrocronología basa su estudio en la secuencia de anillos generada por el árbol durante su crecimiento. Fenómeno complejo en el que intervienen factores internos (genéticos) y externos (clima, enfermedades, competencia, etc), que se
interrelacionan y producen una respuesta variable en cada árbol. Entre estos factores nuestro interés se centra en los factores climáticos por su capacidad de generar respuestas similares en árboles más o menos distantes entre sí, tanto en el espacio como en el tiempo (Rodríguez, 1997).

La datación dendrocronológica se basa, por lo tanto, en el estudio de una señal climática y sus posibilidades dependerán de la calidad de la misma. Si las variables climáticas (pluviosidad, temperatura, etc.) actúan cerca del límite o umbral de crecimiento del árbol, la respuesta será operativa o sensible, pero si las condiciones son menos críticas, el árbol puede dar una respuesta complaciente, con un exceso de ruido debido a factores no climáticos, y esto podrá ser perjudicial para la datación. En condiciones extremas la respuesta llegará a ser hipersensible y surgirán anomalías, tales como anillos ausentes, dobles, etc, lo que con frecuencia hace también inviable la datación (Rodríguez, 1997).

2.4.2 Anatomía de la madera.

La anatomía de madera es la rama de la Biología que estudia el xilema, leño o madera con el fin de:

- Conocerlo y darle un uso correcto.
- Determinar especies.
- Predecir usos adecuados.
- Prever el comportamiento del leño en procesos industriales.
- Evaluar la aptitud tecnológica de la madera.

La madera (del lat. materia), xilema (del griego significarse) o leño (del lat. Lignum) es la parte sólida de los árboles por debajo de la corteza. Es el conjunto de elementos lignificados, lo mismo tráqueas o traqueidas. En sentido estricto, en cuanto al periodo de su formación, toda parte de tejido secundario producido por el cambium hacia el interior del mismo (Hughes, 1973).

El principal objetivo de la investigación anatómica es verificar la relación existente entre las características estructurales y su posterior aplicación. Variaciones que pueden explicarse a través de variables dendrométricas físicas y anatómicas (Hughes, 1973).

Existe una jerarquía de variaciones de los caracteres estructurales vinculada al ambiente, especie, individuos dentro de cada especie y la a posición de la muestra dentro de cada ejemplar. La estructura de la madera es el resultado de la influencia de factores intrínsecos (genéticos) y extrínsecos (ambientales). La naturaleza e intensidad de la influencia de estos factores sobre los elementos anatómicos puede diferir según la especie o el género (Zobel y Van Buijtenen, 1989).
2.4.4 Tejidos del tallo adulto

Al observar la sección transversal de un tallo adulto se pueden distinguir las siguientes partes: peridermis o corteza, floema, cambium, xilema, anillos de crecimiento y duramen (Figura 5).

Figura 5. Tejidos del tallo adulto.

2.4.4.1 Peridermis o corteza.

La peridermis (Figura 6) es el tejido muerto que protege los tejidos interiores de la desecación, del daño mecánico, de insectos y otros herbívoros. Ocurre también en dicotiledóneas herbáceas, en las partes más viejas de tallos y raíz. Es la corteza externa del tronco (Mauseath, 1989).
La peridermis es el conjunto de:

1) **el felógeno**, el meristema secundario también llamado cámbium suberógeno.

2) **el súber o corcho o felema**, tejido protector formado por el felógeno hacia afuera, con células muertas a su madurez,

3) **la felodermis**, tejido parenquimático vivo formado por el felógeno hacia adentro

![Diagrama de la primera peridermis en transcorte](image)

Figura 6. Esquema de la primera peridermis en transcorte

2.4.4.2 **Floema.**

El floema es el tejido conductor encargado del transporte de nutrientes orgánicos, especialmente azúcares, producidos por la parte aérea fotosintética
y autótrofa, hacia las partes basales subterráneas, no fotosintéticas, heterótrofas de las plantas vasculares (Fahn, 1990).

Se reconocen dos tipos de floema: primario y secundario. En el vástago, el floema primario se encuentra asociado al xilema primario constituyendo los haces vasculares (Fahn, 1990).

El floema primario, igual que el xilema primario, se origina a partir del procambium. Se diferencia en protofloema y metafloema. El primero madura en las partes de la planta que aún están creciendo en extensión, y sus elementos cribosos pronto se vuelven inactivos. El metafloema se diferencia más tarde, completa su maduración después que el órgano ha terminado su crecimiento en longitud. En las plantas que no poseen crecimiento secundario, constituye el floema funcional de los órganos adultos (Mauseth, 1991).

El floema secundario, igual que el xilema secundario, se origina en el cambium, ubicado hacia la periferia de tallo o raíz. Posee un sistema axial y un sistema radial, que se continúa con el del xilema secundario a través del cambium (Mauseth, 1991).
2.4.4.3 Cambium vascular.

Es un meristemo lateral formado por una monocapa cilíndrica de células situado en aquellos tallos y raíz que van a sufrir engrosamiento secundario. Sus células son de dos tipos: iniciales fusiformes e iniciales radiales, y se dividen en un plano tangencial al tallo o raíz: las fusiformes dan lugar hacia el interior a células que se diferencian como xilema secundario y hacia el exterior a células que se diferencian como floema secundario. El cambium vascular del tallo se origina de dos formas: a partir de células de procambium presentes entre el xilema primario y el floema primario, dando lugar al cambium fascicular, bien por desdiferenciación de células parenquimáticas de los radios medulares, dando lugar al cambium interfascicular (Philipson, 1971).

2.4.4.4 Xilema.

El xilema primario generalmente está asociado con el floema, tejido conductor de sustancias elaboradas en la fotosíntesis. Su nombre deriva del griego xylon que significa madera. El flujo en el xilema es unidireccional. El xilema del cuerpo primario de la planta, también llamado xilema primario, se forma por la diferenciación continua de nuevos elementos a partir del procambium. Este se diferencia ya en el embrión, y se produce continuamente a partir de los meristemas apicales (Arbo, 2006).
El xilema primario consta generalmente de una parte temprana, el protoxilema (del griego protos: antes), que se diferencia en las partes primarias del cuerpo de la planta que no han completado su desarrollo, y el metaxilema (del griego meta: después), que madura luego que se ha completado el alargamiento del cuerpo primario (Arbo, 2006). En muchas plantas, después de producido el crecimiento primario, se desarrollan tejidos secundarios.

El término madera designa al xilema secundario. El xilema secundario es el tejido conductor de agua y solutos desde la región de absorción a la de evaporación. Es el xilema del cuerpo secundario de la planta y se diferencia del primario, fundamentalmente, en su origen: procede de la actividad del cambium vascular (Torres, 2001). La estructura característica del xilema secundario incluye dos sistemas de elementos que difieren en la orientación de sus células (Peichotó, et al., 2000).

a) **Sistema vertical o axial:** son células o filas de células con el eje mayor orientado en sentido longitudinal.

b) **Sistema horizontal o transversal:** son grupos de células orientados radialmente y se encuentra formado, principalmente, por células parenquimáticas de los radios.
El sistema axial incluye células de naturaleza parenquimática (parénquima axial) y células prosenquimáticas (fibras, vasos, traqueidas). En el sistema horizontal se encuentran las células parenquimáticas de los radios y, en algunas gimnospermas, se pueden encontrar células prosenquimáticas denominadas traqueidas radiales (Peichoto, et al, 2000).

El xilema secundario es esencial para el incremento en altura del árbol el cual guía a la dominancia ecológica del ambiente aéreo. Esto se debe a dos propiedades importantes del xilema o madera: la innata resistencia y la habilidad para transportar agua a través de largas distancias (Webb, 2000).

En el xilema secundario se llevan a cabo las siguientes funciones:

a) Conducción de agua y sales minerales a través de los vasos y/o traqueidas.

b) Soporte o resistencia mecánica a través de las fibras y traqueidas.

c) Almacenamiento de sustancias de reserva a través de células de parénquima axial y radial.

Los elementos de conducción son células muertas en su madurez y sirven para conducir agua y sales minerales de la raíz a las hojas. Pueden ser de dos tipos:
elementos vasculares y traqueidas. Las traqueidas son las más primitivas de los dos tipos de células, se encuentran en las gimnospermas y angiospermas primitivas. Son células alargadas, ahusadas y con extremos cerrados. Los elementos vasculares aparecen en las Angiospermas, el amplio grupo vegetal de más reciente evolución; son células cortas, anchas, con extremos perforados con una abertura (platina de perforación simple) o varias aberturas (platina de perforación múltiple). En los registros fósiles primero aparecieron las traqueidas y, posteriormente, los elementos vasculares (González, et al., 2000).

2.4.4.5 Anillos de crecimiento.

Normalmente, en zonas de clima templado, los anillos de crecimiento representan un incremento anual del árbol. Cada año se forma un anillo, razón por la que son llamados anillos anuales. Estos determinan la edad del árbol. Un análisis de los anillos de crecimiento, nos indica si el árbol tuvo un crecimiento rápido (anillos bien espaciados), o lento (pequeño espacio entre anillos); o aquellos años que han sido desfavorables para la planta (espacios menores), o más beneficiosos (espacios mayores). Un rápido crecimiento bajo condiciones favorables en el entorno del árbol da como resultado una mayor amplitud del anillo. En contraste, condiciones desfavorables para el desarrollo vegetativo del árbol trae como consecuencia una amplitud más reducida (Fahn, 1962).
La información de los anillos de crecimiento contribuye con la Meteorología, por permitir estimar la precipitación acaecida durante un período de actividad vegetativa o descubrir variaciones climáticas de épocas pasadas (Fahn, 1962).

Un anillo de crecimiento típico consta de dos partes

- Madera temprana (de primavera o inicial)
- Madera tardía (de verano o de otoño)

La madera temprana corresponde al crecimiento del árbol al inicio del período vegetativo, normalmente en primavera, época en que las plantas reinician su actividad vital con toda intensidad luego de un período de dormancia. Las células producidas en este período presentan las paredes delgadas, lumen grande y adquieren en conjunto una coloración clara (Giménez, 1998)

A medida que se aproxima el fin del período vegetativo, las células van disminuyendo su actividad vital, y consecuentemente las paredes se tornan mas espesas y sus lúmenes menores, tomando el conjunto un aspecto más oscuro, constituyendo la madera tardía. Esta alternancia de colores se observa normalmente en los anillos de crecimiento de numerosas especies.

Además de las características propias de la especie, los árboles que crecen en regiones con estaciones del año marcadas, presentan anillos de crecimiento
bien nitidos, mientras que las que crecen en lugares donde las condiciones climáticas se mantienen constantes durante gran parte del año, tienen anillos de crecimiento poco notables (Giménez y Moglia, 1993).

Es común encontrar en troncos, anillos de crecimiento discontinuos o llamados falsos anillos de crecimiento, que dificultan la determinación exacta de la edad de un árbol y cuya formación puede atribuirse a causas externas que alteran el funcionamiento normal del cambium vascular. Los anillos discontinuos, ocurren principalmente en árboles que presentan copa asimétrica. Algunas regiones del tronco permanecen en dormancia durante una o varias estaciones de crecimiento, provocando discontinuidad en los anillos. Las causas de la presencia de falsos anillos de crecimiento pueden ser: heladas tardías, caída temporaria de hojas, defoliación y fluctuaciones climáticas en general (Fahn, 1962).

El ancho de los anillos de crecimiento varía de una fracción de mm hasta algunos cm, esto depende de la especie y otros factores: duración del período vegetativo, temperatura humedad, calidad del suelo, insolución y tratamiento silvicultural (espaciamiento, raleos, etc.).

La distribución de anillos de crecimiento es una característica que permite una rápida apreciación de la clase y calidad de la madera. En árboles caducifolios la madera temprana tiene elementos de paredes delgadas y lumen grande, ya que
su función primordial es la conducción. La madera tardía, más densa, formada por células de paredes espesas y lumen pequeño, tiene como función principal la de sustentación (Moglia, 2000).

2.4.5 Conducción de agua.

Las sustancias que se absorben por los pelos radicales (agua o minerales) ascienden en forma de savia bruta por la albura. Al llegar a las hojas, que poseen clorofila estas sustancias se transforman por el proceso de fotosíntesis en sustancias nutritivas (azúcares, almidones, etc.) que descienden por las regiones internas de la corteza (floema) alimentando al árbol (Figura 7) (Zimmermann, 1983).

Figura 7. Conducción de agua en el árbol vía xilema del suelo a la atmósfera
2.4.5.1 Estructura de la madera de Latifoliadas (Angioespermias-Dicotiledoneas)

La estructura interna de las Latifoliadas es más especializada y compleja que las Coníferas. Debido a su mayor complejidad estructural ofrece una gran variedad de aspectos que mucho auxilian a su identificación (Hughes, 1973).

Las células del cambium de Latifoliadas, son menores que las de las Coníferas y también las células que las originan. Esta diferencia de longitud va a ser la razón por la cual el papel realizado a partir de Latifoliadas es, normalmente, de inferior calidad que el de Coníferas (Jane, 1970).

2.4.5.2 Agrupamiento de los poros

La Figura 8, muestra la forma de agruparse los poros que pueden ser de diferentes tipos:

- Solitarios
- Múltiples: Múltiples radiales Múltiples tangenciales Múltiples diagonales Múltiples racemiformes (sin dirección definida)
2.4.5.3 Disposición de poro; porosidad.

La disposición de los poros en la madera puede ser (Figura 9):

A) DIFUSA:
- Uniforme: dispersos uniformemente a lo largo de los anillos de crecimiento.
- No Uniforme: dispersos desigualmente a lo largo de los anillos de crecimiento.

B) EN ANILLOS:
Concentración o dimensión especial de poros en el inicio del periodo vegetativo.
- En Anillos Circular: brusca disminución del diámetro de poros dentro del anillo de crecimiento
- En Anillos Semicircular: disminución gradual del diámetro de los poros en el anillo de crecimiento
2.4.5.4 Disposición de poros; orientación.

Además de estos agrupamientos y disposición de los poros hay maderas que se destacan por una organización u orientación marcada de estos elementos (Figura 10).

A) Dendrítica o Flamiforme: arreglo de los vasos en un patrón ramificado, siguiendo la dirección de los radios (Bulnesia sarmientoi, Bumelia obtusifolia).

B) En Bandas Tangenciales o Ulmoide: arreglo de los vasos en bandas tangenciales cortas o largas orientadas en forma perpendicular a los radios y siguiendo los anillos de crecimiento. Las bandas pueden ser rectas u ondeadas.
C) Diagonal y/o Radial: vasos radialmente dispuestos o en forma oblicua a los anillos de crecimiento.

![Diagonal](image1)
![Radial](image2)
![Tangencial](image3)

Figura 10. Orientación de los poros de la madera.

La abundancia de poros (poros mm\(^{-2}\)) o frecuencia, forma (oval o cuadrangular), espesor de sus paredes, presencia de tilosis y contenidos, son detalles muy importantes en la identificación de madera (Moglia y Giménez, 1998).

2.4.6 Aspectos ecológicos de la evolución del xilema

La diversidad estructural del xilema que presentan las plantas vivas es el resultado de adaptaciones a diversos hábitats. Estos cambios evolutivos se llevaron a cabo por presión selectiva en diferentes ambientes en los que se desarrollaron los diferentes taxones. Así se contempla entonces la adaptación de los rasgos anatómicos del leño como relacionados con la disponibilidad de
humedad, transpiración y requerimientos de resistencia. La gran longitud de los segmentos traqueales con placas perforadas escalariformes reducen la resistencia al paso del agua; los miembros de vasos cortos y estrechos, con paredes gruesas, aumentan la resistencia al paso del agua por presión negativa, tal como ocurre en los ambientes áridos (Giménez et al., 1994). Las plantas con perforaciones escalariformes se consideran desventajosas al compararlas con las simplemente perforadas debido a la resistencia que ofrecen a la circulación del agua. La madera con perforaciones escalariformes es raro en plantas de lugares áridos y no se ha encontrado en plantas que crezcan en los desertos. En ambientes mesofíticos la madera con esta característica no parece factor limitante para su éxito evolutivo, debido a la poca velocidad del agua en sus vasos (Carlquist, 1988).

2.4.6.1 Relación entre los caracteres anatómicos y el ambiente.

Los factores ambientales han sido estudiados desde el siglo pasado como codeterminantes en la diversidad y especialización de la madera. La naturaleza adaptativa del sistema conductivo de las dicotiledóneas está mejor estudiada en las áreas con un marcado estrés en regiones cálidas y secas donde se encuentran más delineados, de cómo el estrés de agua tiene una influencia adaptativa en el xilema secundario.
En 1975 se encontraron correlaciones positivas entre la estructura de la madera y la ecología, y se formularon importantes relaciones que reinterpretan la diversidad de los vegetales como un resultado de una evolución funcionalmente adaptativa. Se estableció que existe una clara correlación entre la morfología de los elementos traqueales (especialmente vasos) y aumento de la presión negativa al aumentar la aridez (Baas, 1982).

En los últimos años hubo un incremento del interés por estudiar las adaptaciones ecológicas con el propósito de entender los mecanismos responsables de las mayores tendencias evolutivas filogenéticas en el xilema. El énfasis se puso en la dependencia de los caracteres de la madera con respecto a la disponibilidad de agua y la relación entre la temperatura, estacionalidad, altitud y distribución geográfica con características anatómicas cuantitativas. (Carlquist, 1988).

Muchos estudios anatómicos se llevaron a cabo en áreas con marcado estrés hídrico o en zonas muy frías. En las zonas áridas, el problema principal que deben enfrentar los árboles es la alta presión negativa y altos riesgos de bloqueo de la conducción debido a la cavitación y embolias. En la conducción por vasos influye el diámetro, el tipo de placa de perforación, la longitud y las puntuaciones de las paredes laterales. Los miembros de vasos, en función de la aridez, decrescen en diámetro y largo, aumentan su número por mm²; aumentan la pared celular, y se agrupan para prevenir el colapso bajo las condiciones de

Diversos autores estudiaron la variación de algunas estructuras anatómicas en función de la disponibilidad de agua. En este sentido se ha estudiado la variación de caracteres anatómicos cualitativos de madera en diversas especies y en relación con la disponibilidad de agua, plantando especies de zonas áridas en lugares húmedos. Los resultados muestran que la porosidad cambia de circular a difusa cuando disminuye la disponibilidad de agua. Se observó que la producción de poros solitarios es mayor en las especies áridas que se trasplantaron a lugares más húmedos. También se encontró una reducción en la producción de poros solitarios bajo condiciones más secas.

El ancho y longitud de los vasos leñosos son parámetros indicadores de la eficiencia y seguridad en la conducción del agua. Cuanto más anchos y largos los vasos resulten, más alto y efectivo es el transporte de agua. Analizando dos muestras de diferentes sitios que proveniente uno de un lugar con buena disponibilidad de agua hídrica y otro con menor disponibilidad hídrica se notaba un aumento del número de vasos pequeños (múltiples), y también una reducida área basal por anillo de crecimiento. Los poros pequeños son menos eficientes en el transporte de agua pero mucho más seguros y resistentes a las fuertes presiones negativas que ocurren.
2.5 Morfología estomática y fotosíntesis

El nogal cuenta con hojas de tipo compuesto formadas por 5 a 19 foliolos (Figura 11). Las hojas contribuyen directamente en el desarrollo de la nuez y proveen de reservas alimenticias que son almacenadas en tallo y raíz, las cuales servirán para el crecimiento del árbol y desarrollo de la nuez al año siguiente. Estas reservas son producto de la actividad fotosintética que se lleva a cabo en los cloroplastos a través de los estomas (Camargo, 2001).

![Figura 11. Esquema de una hoja compuesta de nogal.]

2.5.1 Estomas de foliolos.

Los estomas son pequeños poros en la superficie de la hoja, generalmente del envés, su principal función es la fotosíntesis (Figura 12). El intercambio gaseoso consiste en la interacción que se lleva a cabo entre ambiente-planta, la cual libera oxígeno (O_2) y captura dióxido de carbono (CO_2) de la atmósfera a través...
de los estomas (Mexal, et al., 2003). Los estomas dentro de su composición anatómica, están constituidos por un par de células guarda y oclusivas rodeadas de células acompañantes, la separación que se produce entre éstas dos células se denomina "ostiolo", éste regula la apertura y tamaño total del poro (morfología del estoma). El ostiolo está regulado por factores ambientales como tiempo, intensidad lumínica, concentración de CO₂ y disponibilidad de agua (Ball, 1987). En casos de sequía (estrés hídrico) los estomas se cierran impidiendo la pérdida de agua en la planta. Sin embargo, también imposibilita el intercambio de gases y, consecuentemente, la entrada de CO₂ atmosférico disminuyendo el rendimiento fotosintético (Daily et al., 1997).

Figura 12. Estoma en foliolo de nogal pecanero.

2.5.2 Fotosíntesis y Respiración.

El objetivo de la fotosíntesis es producir glucosa para proporcionar alimento a la planta. Se lleva a cabo en los cloroplastos de las hojas y consiste en una serie
de reacciones que requieren energía en forma de luz. La glucosa está formada por carbono, hidrogeno y oxígeno (Dejong y Ryugo, 1998).

Este proceso ocurre en dos etapas diferentes:

a) **FASE LUMÍNICA**: Las plantas absorben agua del suelo por la raíz y las llevan a los cloroplastos por medio de sistemas de transporte. El oxígeno del agua se libera a la atmósfera y la energía se almacena.

b) **FASE OSCURA**: La planta incorpora dióxido de carbono del aire y de esta forma se obtiene los dos elementos necesarios para formar la glucosa. Carbono y oxígeno.

La células oclusivas de los estomas tienen la capacidad de determinar la apertura o cierre del poro estomático (ostiolo) donde se regula la entrada y salida de gases. El dióxido de carbono ingresa por ahí y el oxígeno se libera, también, por los poros estomáticos (Coeleto, 1995).

El proceso de respiración celular es el proceso inverso a la fotosíntesis (Figura 13). La respiración tiene como objetivo obtener energía y utiliza oxígeno y un carbohidrato (por ejemplo la glucosa) para producir agua, dióxido de carbono y la energía deseada; en cambio la fotosíntesis utiliza agua, dióxido de carbono y energía (solar) para producir oxígeno y carbohidratos (Ninot, 1999).
Figura 13. Esquema de los procesos de fotosíntesis y respiración en la planta.

2.5.2.1 Importancia biológica de la fotosíntesis

La fotosíntesis es el proceso bioquímico más importante de la Biosfera por varios motivos:

1. La síntesis de materia orgánica a partir de la inorgánica se realiza fundamentalmente mediante la fotosíntesis; luego irá pasando de unos seres vivos a otros mediante las cadenas tróficas, para ser transformada en materia propia por los diferentes seres vivos.

2. Produce la transformación de la energía luminosa en energía química, necesaria y utilizada por los seres vivos.
3. En la fotosíntesis se libera oxígeno, que será utilizado en la respiración aerobia como oxidante.

4. La fotosíntesis fue causante del cambio producido en la atmósfera primitiva, que era anaerobia y reductora.

5. De la fotosíntesis depende también la energía almacenada en combustibles fósiles como carbón, petróleo y gas natural.

6. El equilibrio necesario entre seres autótrofos y heterótrofos no sería posible sin la fotosíntesis.

Se puede concluir que la diversidad de la vida existente en la Tierra depende principalmente de la fotosíntesis.

2.5.2.2 Factores que influyen en la fotosíntesis

En el rendimiento de la fotosíntesis influyen diversos factores, como la concentración de CO₂, concentración de O₂, escasez de agua, número de hojas de exposición, temperatura, tiempo de iluminación, intensidad lumínosa, el color de la luz y la altitud y exposición.
a) **Concentración de CO₂.** Si la intensidad luminosa es elevada y constante, el proceso fotosintético aumenta en relación directa con la concentración de CO₂ en el aire, hasta llegar a un cierto límite, en el cual se estabiliza.

b) **Concentración de O₂.** Cuanto mayor es la concentración de oxígeno en el aire, menor es el rendimiento fotosintético, debido a los procesos de fotorrespiración.

c) **Escasez de agua.** La escasez de agua en el suelo y de vapor de agua en el aire disminuye el rendimiento fotosintético. Así, ante la falta de agua se cierran los estomas para evitar la desecación, y la entrada de CO₂ es menor.

d) **Número de hojas de exposición.** Aunque cualquier tejido contenga clorofila en sus células puede realizar fotosíntesis, las hojas son los órganos principales para ello. Una exposición óptima en el máximo de hojas, normalmente genera mayor producción de materia seca. De ahí una de las importancias de la poda en nogal.

e) **Temperatura.** Cada especie está adaptada a vivir dentro de un intervalo de temperatura. Dentro de ese intervalo, a mayor temperatura, mayor eficacia de las enzimas y, por tanto, mayor rendimiento fotosintético. Si se sobrepasan los límites de temperatura, se produce alteración enzimática y el rendimiento disminuye. Si se llega a producir la
desnaturalización de las proteínas, sobreviene la muerte de la planta. La máxima actividad fotosintética se consigue entre 15 y 30°C (Dejong y Ryugo, 1998).

f) *Tiempo de iluminación.* Hay especies en las que, a más horas de luz, mayor rendimiento fotosintético. Otras, en cambio, precisan de períodos nocturnos.

g) *Intensidad luminosa.* Cada especie está adaptada a vivir dentro de un intervalo de intensidad de luz. Hay especies de penumbra y especies fotófilas. Dentro de cada intervalo, a mayor iluminación, mayor rendimiento, hasta superar ciertos límites, en los que se produce la foto-oxidación irreversible de los pigmentos fotosintéticos.

h) *Color de la luz.* La clorofila a y clorofila b absorben energía lumínica en la región azul y roja del espectro; los carotenos y xantofilas, en la azul; las ficocianinas, en la naranja; y las ficoeritrinas, en la verde. Todos estos pigmentos pasan la energía a las moléculas diana. La luz monocromática menos aprovechable en los organismos que carecen de ficocianinas y ficoeritrinas es la luz verde. En las cianofíceas, que sí las poseen, la luz roja estimula la síntesis de ficocianina, y la luz verde, la de ficoeritrina.
i) *Altitud y exposición.* Este factor está ligado a otras variables climáticas, principalmente temperatura y humedad relativa, de forma que, a más de 800 metros de altura, los riesgos de helada aumentan enormemente. Sin embargo, a pesar que se cita que el nogal está limitado a una altura máxima de 1000 metros sobre el nivel del mar, existen huertos que se han desarrollado satisfactoriamente en alturas superiores a los 1,200 metros, caso particular de la Región Lagunera que donde la altura es de 1,139 msnm.

2.6 Análisis de imagen.

El análisis de imagen es una técnica que se basa en la adquisición y digitalización de una imagen captada mediante un objetivo óptico (cámara fotográfica o video, microscópico, etc.). La digitalización convierte la imagen grabada en una matriz de puntos, que son identificados en soporte informático en función de sus coordenadas, entre otras, de posición, de luminosidad y de color. De esta forma, en la imagen digitalizada, se podrán realizar múltiples mediciones de longitudes, perimetros o áreas, contajes de células o partículas, medidas de color, de densidad, etc. Toda la información que proporciona la imagen permite numerosas aplicaciones dentro de diversos campos como la patología vegetal, agronomía, protección vegetal, fisiología vegetal, ingeniería forestal, producción animal entre otras (Mendizábal y Goñi, 2001).
Para desarrollar un método adecuado de análisis de imagen es necesario disponer de un equipo mínimo que conste de: un sistema óptico conectado a una cámara de vídeo o fotográfica encargada de enviar una parte del campo de visión a un sistema informático. La Figura 14 muestra los componentes de un laboratorio de imagen. El programa informático a través de un sistema de análisis de imagen, procesa y convierte la imagen en una imagen binaria a partir de la que mide y cuenta el número de píxeles que conforman el borde de la proyección de la partícula, los multiplica por un factor de escala (calibración) obteniendo así el perímetro o longitud del objeto. De igual modo también cuenta los píxeles “atraptados” dentro de ese perímetro para calcular el área (Almeida et al., 2003).

Figura 14. Componentes del laboratorio de imagen
El cálculo de otro tipo de dimensiones como son los diferentes diámetros de las partículas depende del programa de análisis de imagen empleado. En general existen tres modalidades de trabajo:

a) Recuento y determinación de las coordenadas de situación de los pixeles que componen la imagen binaria de la proyección de la partícula.

b) Trazado de cuerdas radiales que pasan por el centro de masas de la imagen de la partícula a diferentes ángulos que interceptación su perímetro.

c) Determinación de diferentes diámetros de la partícula mientras va girando todas sus coordenadas (Almeida et al., 2003).

La caracterización morfológica de los conductos anatómicos en la madera de nogal pecanero, se realizó a partir de imágenes digitalizadas a partir de muestras tomadas del tronco trabajando bajo una micro-escala, siguiendo la metodología de un sistema de análisis de imagen antes descrita (Figura 15).

De igual manera en la caracterización morfológica de los estomas de nogal pecanero, las imágenes empleadas fueron a dos escalas, macro para determinar el área del foliólo, y micro para realizar determinar la densidad estomática y área de los estomas (Figura 16). Tanto en madera como en
estomas, se realizó el muestreo en función de los diferentes sistemas de riego que abastecen de humedad al suelo.

Figura 15. Caracterización de los conductos anatómicos de circulación de agua (xilema) en tronco de nogal pecanero.

Figura 16. Caracterización estomática en foliolos de nogal pecanero.
ARTÍCULO I. CORRELACIÓN ENTRE EFICIENCIA DEL AGUA DE RIEGO Y MORFEOLOGÍA ESTOMÁTICA EN FOLIOLOS DE NOGAL PECANERO.
J. A. Chávez-Simental¹; G. González-Cervantes²; V. P. Álvarez-Reyna³; J. G. Arreola-Ávila⁴; J. G. Contreras-Martínez¹; A. R. Ramírez-Seañez¹.

1. Estudiante de Doctorado UAAAN-UL
2. INIFAP CENID RASPA
3. Departamento de Riego y Drenaje UAAAN-UL.
4. Universidad Autónoma de Chapingo Unidad Regional en Zonas Áridas

RESUMEN.

La metodología utilizada fue el análisis de imagen para caracterizar los estomas de foliolo de nogal pecanero bajo diferentes sistemas de riego y su eficiencia. Para ello se seleccionaron nogales irrigados con diferentes sistemas gravedad, aspersión, micro-aspersión y goteo, obteniendo foliolo representativos. En el laboratorio se determinó el área foliar, densidad y tamaño de los estomas. De lo anterior se concluye que los nogales irrigados por gravedad y goteo presentan una densidad estomática de 157 con un tamaño de mediano (de 0.0025 a 0.0049 mm²) a grande (> 0.0050 mm²) y una distribución abundante en los foliolo medios del peciolo.

Palabras clave: Carya illinoensis, sistemas de riego, análisis de imagen, caracterización estomática.

ABSTRACT.

The used methodology was the image analysis to characterize the folioles pecan stoma under different irrigation systems and its efficiency. There were selected irrigated trees under different irrigation systems surface, sprinkler, micro-sprinkler and drip. The foliar area, density and size of stomatas were
determined at the laboratory. According the before mentioned the conclusion is that trees irrigated by surface and drip irrigation system have a stomatic density of 157 which had a medium size (from 0.0025 to 0.0049 mm2) to large (0.0050 mm2) and an abundant distribution at the petiole half foliules.

Key Words: *Carya illinoensis*, irrigation system, image analysis, stomatal characterization.

INTRODUCCIÓN.

En México la superficie de nogal pecanero (*Carya illinoensis koch*) bajo condiciones de riego es de 75 mil hectáreas (SAGARPA-SIAP, 2008), y su rentabilidad es superior a la de muchos cultivos anuales. En los últimos años, en la Comarca Lagunera se ha incrementado tanto la superficie como el valor de su producción (Orona et al., 2006). Las primeras plantaciones de nogal en la región se establecieron en 1948. Actualmente el valor de la producción de nuez ocupa el primer lugar entre los frutales de la región, con un valor aproximado de 200 millones de pesos (SAGARPA-SIAP, 2008). Otros estados productores importantes son Chihuahua, Nuevo León y Sonora, que junto con Coahuila y Durango representan el 98% de la producción nacional.

Sin embargo, existen limitantes para su producción por lo que el rendimiento medio a nivel nacional es bajo, menos de 1.3 t ha$^{-1}$ (SAGARPA, 2005). Entre estas limitantes se encuentra la eficiencia de aplicación de agua de riego al suelo a través de diferentes sistemas de riego. Los procesos que determinan la necesidad hídrica en nogal involucran el intercambio de gases (CO$_2$ y O$_2$) con el aire circundante tales como fotosíntesis, fotorespiración (Taiz y Zeiger, 2006) los cuales se llevan a cabo a través de cloroplastos y estomas de los foliolo respectivamente.
Los foliolas mediante la fotosíntesis captan y utilizan la energía de la luz para transformar la materia inorgánica de su medio externo en materia orgánica que utiliza para su crecimiento y desarrollo (Ponomarev, 2008).

Los estomas son pequeños poros en la superficie de la hoja, generalmente del envés, su principal función es la fotosíntesis. En el intercambio gaseoso, sale el oxígeno (O₂) y entra dióxido de carbono (CO₂) (Mexal, et al., 2003). Están constituidos por un par de células guardia y oclusivas rodeadas de células acompañantes, la separación que se produce entre éstas dos células se denomina "ostiolo", éste regula la apertura y tamaño total del poro (morfología del estoma). El ostiolo está regulado por factores ambientales como tiempo, intensidad luminica, concentración de CO₂ y disponibilidad de agua (Ball, 1987). En casos de sequía (estrés hídrico) se cierran los estomas impidiendo pérdida de agua en la planta. Sin embargo, también imposibilita el intercambio de gases y, consecuentemente, la entrada de CO₂ atmosférico disminuyendo el rendimiento fotosintético (Daily et al., 1997).

La disponibilidad de agua en el suelo depende en gran parte de los sistemas utilizados para la aplicación del agua de riego, los cuales juegan un papel muy importante en las funciones fisiológicas de la planta determinadas por la eficiencia de aplicación del agua (Garratt, 1992).

De ahí la importancia de generar investigación que correlacione la eficiencia de aplicación de agua a través de diferentes sistemas de riego utilizados en el país como el de gravedad, aspersión, micro-aspersión y goteo en la morfología estomática de los foliolas de la planta.

El objetivo de esta investigación fue la caracterización estomática según tamaño y cantidad en foliolas de nogal pecanero utilizando una técnica basada en el análisis de imagen, que permite digitalizar los estomas para su análisis
morfológico correlacionando a los diferentes sistemas de riego, gravedad, aspersión, micro-aspersión y goteo.

MATERIALES Y MÉTODOS

Esta investigación se realizó en la huerta de nogal pecanero ubicada en el campo experimental de la Universidad Autónoma Agraria Antonio Narro Unidad Laguna (UAAAN-UL) en el Municipio de Torreón del Estado de Coahuila, México, región conocida como Comarca Lagunera, localizada entre los meridianos 102° 22' y 104° 47' longitud oeste, y paralelos 24° 22' y 26° 23' latitud norte con una altura media sobre el nivel del mar de 1,139 m.

Los sistemas de riego utilizados en la Comarca Lagunera para suministrar el agua al nogal son gravedad (45.16 %) y presurizados (54.84 %). El experimento se desarrolló en el módulo de riego instalado en al año 2005, en la huerta de nogal de la (UAAAN-UL) y representa dichos sistemas de riego.

El módulo de riego está conformado por 11 hileras de 5 árboles cada una, logrando un total de 55 árboles en el sistema de riego por gravedad, en el sistema de riego presurizado 12 hileras de 8 árboles cada una para dar un total de 96 árboles. El área de estudio seleccionada la cual tiene una superficie de 0.25 has en riego por gravedad, (5 hileras de 5 árboles) y en riego presurizado se tomaron 12 hileras de 4 árboles para un total de 0.48 ha. En ésta última, la superficie de cada sistema de riego (aspersión, micro-aspersión y goteo) tiene 0.16 ha cada una, conformada por 4 hileras de 4 árboles cada sistema. Se seleccionaron árboles sanos variedad western donde la edad supera los 20 años en el sistema de riego por gravedad y 16 años en los sistemas de riego presurizado. Figura 1.
Figura 1. Diseño espacial del área experimental y huerto nogalero de la UAAAN UL.

Análisis estadístico.

En la comparación de los nogales a diferente forma de aplicar el agua, se uso un arreglo factorial en el que los factores y niveles fueron: sistema de riego (gravedad, aspersión, micro-aspersión y goteo). En el árbol se seleccionaron tres peciolos en diferente posición de la rama, el foliolo en tres posiciones en el peciólo (basal, media y apical). Con un diseño experimental bloques al azar y tres repeticiones. El muestreo de foliolas se llevó a cabo durante el mes de julio del 2009, en un horario de 11:00 a 17:00 hr. Se seleccionó esta fecha por ser la etapa fisiológica del nogal más crítica en condiciones ambientales, demandante de agua y llenado de almendra. Posterior al muestreo los foliolas se depositaron en un recipiente seco para su traslado al laboratorio de análisis de imagen.
Análisis de imagen.

En la obtención y tratamiento de las imágenes sobre la superficie de los foliolos se realizó con ayuda de una cámara digital Olympus CCD de 4 megapíxeles. Se colocó papel milimétrico bajo la lente del microscopio para usarlo como guía de medición y tomarla de referencia o cuadro base. Todas las imágenes se capturaron a la misma distancia para obtener un igual número de píxeles y área del papel milimétrico bajo la forma de una matriz rectangular de 2.5 X 2 mm, o sea 5mm², con una resolución espacial de 1μm por pixel, iluminando los foliolos con luz visible para la descripción de los estomas. El tratamiento de imagen se realizó con ayuda de un analizador Image Pro Plus® versión 4.5 (Media Cibernética Maryland, USA) bajo micro computadora personal.

Área foliar y características de los estomas.

El área foliar de los foliolos fue determinada en base a imágenes capturadas donde se visualiza el foliolo completo con la finalidad de conocer el área total en mm². La caracterización de estomas se realizó a partir de un parámetro morfológico: el tamaño de los poros, expresado por el área de su sección sobre la imagen descrita por la ecuación 1 (Coster y Chermant, 1985) y que agrupa tres clases de tamaño: Pequeños, medianos y grandes.

\[4\pi \times \text{área} \] \hspace{1cm} (1)

Figura 2: Digitalización de los estomas para su análisis.
RESULTADOS Y DISCUSIÓN.

Área foliar total de la rama.

La Figura 3 presenta los valores del área foliar media aritmética y desviación estándar. El área foliar fue similar ya que no se detectó diferencia estadística entre sistemas de riego, lo que indica que la forma de aplicar el agua al suelo no impacta en el tamaño de la hoja. Sin embargo al observar los valores de desviación estándar en sistemas de riego, resaltan los árboles regados por micro-aspersión seguida de los nogales regados bajo el sistema de aspersión que presentan un rango de dispersión con una variabilidad más amplia con respecto a su media aritmética, lo que indica que en éste rango puede haber foliolos muy pequeños o foliolos muy grandes y esto es muy similar en árboles del sistema por gravedad y goteo, solo que la dispersión en los datos de área foliar es menor.

![Gráfica de área foliar en mm²]

Figura 3. Comparación de medias entre área foliar total y sistemas de riego.

Lo anterior condujo a realizar el siguiente análisis a través del área foliar en el pecíolo, es decir, la rama seccionada en tres puntos (basal, media y apical) y corresponde a un pecíolo por cada punto (Cuadro 1).
Cuadro 1. Comparación de medias entre posición del peciolo en la rama y sistema de riego.

<table>
<thead>
<tr>
<th>Riego</th>
<th>Basal</th>
<th>Media</th>
<th>Apical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravedad</td>
<td>1806</td>
<td>A</td>
<td>2202</td>
</tr>
<tr>
<td>Aspersión</td>
<td>1328</td>
<td>A</td>
<td>1769</td>
</tr>
<tr>
<td>Micro-aspersión</td>
<td>1803</td>
<td>A</td>
<td>1767</td>
</tr>
<tr>
<td>Goteo</td>
<td>1985</td>
<td>A</td>
<td>1840</td>
</tr>
<tr>
<td>C. V. %</td>
<td>39.94</td>
<td>37.04</td>
<td></td>
</tr>
</tbody>
</table>

*Medidas seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).

El Cuadro 1 no muestra diferencia estadística entre pecíolos basales ni pecíolos medios. Sin embargo, en pecíolos apicales se encontró diferencia estadística entre árboles del sistema de riego por aspersión y el resto. Esto indica que los árboles del sistema de riego por aspersión tienen pecíolos de mayor área foliar en la parte apical de la rama, que el resto de los árboles.

Al encontrar diferencia estadística en pecíolos de la parte apical de la rama, se procedió a realizar el análisis estadístico de folíolos en tres puntos del pecíolo (basal, medio y apical), donde se tomó un folíolo por cada punto del pecíolo. (Cuadro 2).

Cuadro 2. Comparación de medias entre posición de folíolo en el pecíolo y sistema de riego.

<table>
<thead>
<tr>
<th>Riego</th>
<th>Basal</th>
<th>Medio</th>
<th>Apical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravedad</td>
<td>712</td>
<td>C</td>
<td>2462</td>
</tr>
<tr>
<td>Aspersión</td>
<td>958</td>
<td>C</td>
<td>2305</td>
</tr>
<tr>
<td>Micro-aspersión</td>
<td>920</td>
<td>C</td>
<td>2121</td>
</tr>
<tr>
<td>Goteo</td>
<td>810</td>
<td>C</td>
<td>2144</td>
</tr>
<tr>
<td>C. V. %</td>
<td>56.65</td>
<td>37.63</td>
<td></td>
</tr>
</tbody>
</table>

*Medidas seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).
El análisis no detectó diferencia estadística entre nogales de los diferentes sistemas de riego con respecto a posición del foliolo en el peciolo, sin embargo, entre posiciones con respecto a los sistemas de riego, existe diferencia significativa, es decir, en la parte basal del peciolo se encuentran los foliolas más pequeños, y en forma ascendente hasta la parte apical del peciolo donde se encuentran los foliolas más grandes en árboles de todos los sistemas de riego.

Morfología estomática.

En ésta variable se realizaron dos tipos de análisis tratando de correlacionar el cambio morfológico de los estomas en función al sistema de riego del nogal. El primer análisis corresponde a la densidad estomática entre árboles de los diferentes sistemas de riego, y el segundo análisis corresponde a la clasificación de estomas basándose en tres tamaños (pequeño, mediano y grande) y su distribución en cada sistema de riego correspondiente.

Densidad estomática.

La Figura 4 presenta la cantidad de estomas en el área de estudio (15 mm²), sus valores medios y su desviación estándar contra los sistemas de riego usados en nogal.
Figura 4. Comparación de medias entre cantidad de estomas en función al sistema de riego.

El análisis encontró diferencia significativa entre tratamientos, siendo los árboles de los sistemas de riego por gravedad y goteo estadísticamente iguales con mayor densidad estomática en el folíolo, nogales bajo el sistema de aspersión y micro-aspersión con densidad estomática menor al resto de los sistemas resultan estadísticamente iguales entre ellos. Sin embargo, el rango de dispersión muestra amplia variabilidad con respecto a la media de los árboles regados bajo sistemas de riego por gravedad y goteo, lo que indica que puede haber entre 100 estomas más o 100 estomas menos aproximadamente en el área de estudio. El grado de variabilidad de los árboles en los sistemas de aspersión y micro-aspersión es más compacto, esto significa que hay una distribución más homogénea de la cantidad de estomas en el área de estudio.

Resultado de las diferencias encontradas, se realizó el análisis a peciolos (Cuadro 3) y a folíolos (Cuadro 4) en función a la posición del peciolo en la rama y a posición del folíolo en el peciolo respectivamente, con la finalidad de identificar en cual sistema de riego y posición del peciolo se encuentra la diferencia más marcada.
Cuadro 3. Comparación de medias de la densidad estomática en pecíolos en función al sistema de riego.

<table>
<thead>
<tr>
<th>Riego</th>
<th>Basal</th>
<th>Medio</th>
<th>Apical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravedad</td>
<td>132</td>
<td>A,B</td>
<td>160</td>
</tr>
<tr>
<td>Aspersión</td>
<td>123</td>
<td>B</td>
<td>110</td>
</tr>
<tr>
<td>Micro-aspersión</td>
<td>128</td>
<td>B</td>
<td>136</td>
</tr>
<tr>
<td>Goteo</td>
<td>165</td>
<td>A</td>
<td>146</td>
</tr>
<tr>
<td>C. V. %</td>
<td>25.68</td>
<td>26.27</td>
<td>33.52</td>
</tr>
</tbody>
</table>

*Medias seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).

En el Cuadro 3 se observa diferencia estadística en los pecíolos de la parte basal y parte media de la rama, destacando los árboles de los sistemas de riego por gravedad y goteo con mayor densidad estomática, marcando igualdad estadística entre ellos. En la parte apical no se presentó diferencia estadística, lo que indica que en esta parte de la rama la forma de aplicación del agua de riego no afecta la densidad estomática entre los árboles bajo diferentes sistemas de riego.

Cuadro 4. Comparación de medias de la densidad estomática en foliolas en función al sistema de riego.

<table>
<thead>
<tr>
<th>Riego</th>
<th>Basal</th>
<th>Medio</th>
<th>Apical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravedad</td>
<td>153</td>
<td>A</td>
<td>162</td>
</tr>
<tr>
<td>Aspersión</td>
<td>136</td>
<td>A</td>
<td>118</td>
</tr>
<tr>
<td>Micro-aspersión</td>
<td>138</td>
<td>A</td>
<td>125</td>
</tr>
<tr>
<td>Goteo</td>
<td>157</td>
<td>A</td>
<td>150</td>
</tr>
<tr>
<td>C. V. %</td>
<td>28.21</td>
<td>27.85</td>
<td>33.85</td>
</tr>
</tbody>
</table>

*Medias seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).
de gravedad y goteo, ya que en promedio tienen 157 estomas cada uno. Sin embargo la distribución en base a tamaño es diferente. Los árboles del sistema de riego por gravedad la tendencia son de menor a mayor número de estomas de la parte basal hacia la parte apical de la rama. En los árboles del sistema de riego por goteo el mayor número de estomas se encuentra en el peciolo de la parte basal, y de menor densidad en el peciolo de la parte media de la rama. En los nogales de ambos sistemas predominan los estomas de tamaño mediano siendo muy homogénea su distribución. Los árboles del sistema de microaspersión muestra una distribución muy homogénea entre las posiciones del peciolo en la rama, teniendo un promedio de 132 estomas en el área de estudio destacando los estomas de tamaño mediano seguido muy de cerca por los de tamaño grande. Los nogales irrigados bajo el sistema por aspersión muestran un incremento en la densidad estomática en los peciolos de la parte apical y una menor densidad en la parte media de la rama con un promedio de 125 estomas que al igual que el resto de los sistemas, predominaron los estomas medianos.

La correlación que existe entre los nogales bajo los diferentes sistemas de riego y morfología estomática de los peciolos (Cuadro 5), presenta variación en área foliar y en densidad estomática con la clasificación en base a tamaño en función del volumen de suelo humectado y eficiencia de aplicación de agua.
Cuadro 5. Correlación entre la eficiencia del agua de riego y la morfología estomática en peciolos.

<table>
<thead>
<tr>
<th>Sistema de riego</th>
<th>Volumen humectado (m³)</th>
<th>Ef. de aplic. (%)</th>
<th>Área foliar (mm²)</th>
<th>Densidad estomática</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P.*</td>
</tr>
<tr>
<td>Gravedad</td>
<td>10,000</td>
<td>60</td>
<td>1,982</td>
<td>11</td>
</tr>
<tr>
<td>Aspersión</td>
<td>7,000</td>
<td>70</td>
<td>2,074</td>
<td>8</td>
</tr>
<tr>
<td>Micro-aspersión</td>
<td>5,600</td>
<td>80</td>
<td>1,903</td>
<td>8</td>
</tr>
<tr>
<td>Goteo</td>
<td>3,100</td>
<td>95</td>
<td>1,824</td>
<td>19</td>
</tr>
</tbody>
</table>

*Clasificación en tamaño de estomas P=Pequeños, M=Medianos y G=Grandes

**Número total de estomas en 15 mm².

CONCLUSIONES.

La búsqueda de la relación entre la eficiencia de aplicación de agua y la densidad estomática en foliolo de nogal pecanero, condujo a establecer una caracterización estomática mediante al análisis de imagen. Esta caracterización según tamaño y cantidad, permitió establecer una morfología estomática de foliolo de nogal bajo diferentes sistemas de riego.

Los nogales con riego por gravedad y goteo presentan una morfología estomática con igualdad estadística en cantidad con 157 estomas cada uno, seguidos de los árboles del sistema por micro-aspersión y aspersión con 132 y 125 respectivamente.

Sin embargo, la densidad estomática en base a tamaño es estadísticamente diferente en árboles del sistema de riego por gravedad donde la distribución de los estomas se ubican en foliolo de la parte media y basal de los peciolos con un tamaño mediano (de 0.0025 a 0.00499 mm²) a grandes (≥ 0.0050 mm²). A diferencia cuando los nogales son regados por goteo presentan una densidad
estomática de tamaño mediano a grande y generalmente abundantes en folíolos apicales. En los árboles de los sistemas por aspersión y micro-aspersión presentan una densidad estomática menos abundante con una distribución muy similar de estomás en folíolos de las tres posiciones en el pecíolo.

La comparación de los valores de área foliar no permitió relacionar las diferencias encontradas entre la aplicación del riego y su eficiencia, por el contrario, la caracterización estomática en base a tamaño y distribución, permitió describir un cambio en la morfología de los estomás al incrementar la eficiencia de aplicación del agua de 60 % para gravedad a 95 % en goteo.

REFERENCIAS

Service Guide H-654. College of Agriculture and Home Economics. New México State University. Las Cruces NM.

Ponomarev Y. 2008. Climate change increases need for studies of gas Exchange between plants and the air. (http://spie.org/B1#B1).

ARTÍCULO II. CORRELACION ENTRE LOS SISTEMAS DE RIEGO Y LA MORFOLOGÍA ESTOMÁTICA EN FOLIOLOS DE NOGAL PECANERO

Correlation between the irrigation systems and the stomatal morphology in walnut trees folioles.

J. A. Chávez-Simental1; G. González-Cervantes2; V. P. Alvarez-Reyna3; I. Sanchez-Cohen2 J. L. González-Barrios2.

1 Estudiante de doctorado UAAAN-UL, 2 INIFAP CENID RASPA, 3 Departamento de riego y drenaje UAAAN-UL. Autor de correspondencia (gonzalez.guillermo@inifap.gob.mx)

RESUMEN.

En México, el agua de los mantos acuíferos para consumo humano se ha convertido en un problema por diversos aspectos como la disponibilidad y calidad de agua debido a la sobre-exploitación de los mismos. La tecnología y herramientas actuales, permiten hacer modificaciones en los sistemas de producción para eficientar el manejo del agua. El objetivo fue generar información que correlacione la morphología estomática de los foliolos de nogal con la disponibilidad de agua en el suelo en base a tensión a través de diferentes sistemas de riego (gravedad, aspersión, micro-aspersión y goteo). La técnica de análisis de imagen fue empleada para la caracterización estomática en foliolos de nogal pecanero, determinación del área foliar, densidad y tamaño de estomas en función al contenido de humedad en el suelo que proporcionaron los diferentes sistemas de riego. En base a lo anterior se concluye que los nogales irrigados por gravedad y goteo presentaron una densidad estomática de 157 con un tamaño mediano (de 0.0025 a 0.0049 mm2) y distribución abundante en los peciolos medios de la rama. A medida que el volumen de suelo húmedo disminuye y la eficiencia de aplicación aumenta, la concentración de estomas cambia de posición con tendencia de la parte apical hacia la parte basal de la rama. Aunque no hubo diferencia significativa entre la lámina de riego aplicada en gravedad (10 000 m3) y goteo (3100 m3), el árbol no se vio afectado en las funciones
fisiológicas que desarrolla para su sobrevivencia y reproducción, pero si refleja un ahorro del 69 % en el agua que se aplica al cultivo.

Palabras Clave: Carya Illinoensis Koch, análisis de imagen, caracterización estomática, tensión, humedad del suelo.

SUMMARY.

In Mexico, the water from the water-bearing mantles for human consumption has become a problem for several aspects like availability and quality of water owed to over-exploitation. The actual technology and tools, permits to make modifications in the production systems to make more efficient the water management. The objective of the study was to generate information that correlate the stomatal morphology of walnut trees folioles with the soil water availability on the basis of soil moisture tension at different irrigation systems (surface, sprinkler, micro-sprinkler and dripping). The image analysis technique used for the stomatic characterization of walnut trees folioles and the foliar area, stomas size and density were determined in function of the humidity content on the ground provided by different irrigation systems. For the above mentioned, it’s concluded that the walnut trees irrigated by gravity an dripping present a stomatic density of 157 with a medium size (from 0.0025 to 0.0049 mm²) and abundant distribution in the branch’s half petioles. As the volume of humidified ground diminishes and the application efficiency increases, the stomas concentration changes of position from the apical part toward the basal part of the branch. Although there was no significant difference among the irrigation deep applied in gravity (10 000 m³) and dripping (3100 m³), apparently the tree physiological functions that it develops for the survival and reproduction, was not affected but it shows a saving of the 69 % in the water that is applied to the crop.
INTRODUCCIÓN.

En México la superficie de nogal pecanero (*Carya illinoensis Koch*) bajo riego es de 75 mil hectáreas (SAGARPA-SIAP, 2008), y su rentabilidad es superior a la de muchos cultivos anuales. En los últimos años, la Comarca Lagunera ha incrementado tanto la superficie como el valor de su producción (Orona et al., 2006). Las primeras plantaciones de nogal en la región se establecieron en 1948. Actualmente el valor de la producción de nuez ocupa el primer lugar entre los frutales de la región, con un valor aproximado de 200 millones de pesos (SAGARPA-SIAP, 2008). Otros estados productores importantes son Chihuahua, Nuevo León y Sonora, que junto con Coahuila y Durango representan el 98% de la producción nacional.

Sin embargo, existen limitantes para su producción por lo que el rendimiento medio a nivel nacional es bajo, menos de 1.3 t ha⁻¹ (SAGARPA, 2005). Entre estas limitantes se encuentra la eficiencia de aplicación y disponibilidad de agua en el suelo. El conocer la capacidad de almacenamiento del suelo del huerto, mediante el monitoreo de la humedad del mismo es prioritario para manejar eficientemente el agua según el sistema de riego, considerando el consumo hídrico requerido por el nogal en función de su desarrollo fenológico (Herrera, 2004).

La disponibilidad de agua en el suelo depende de las características intrínsecas del mismo como estructura, textura y porosidad, manejo del agua lámina, frecuencia de riego y condiciones ambientales como temperatura, humedad relativa, radiación solar y velocidad y dirección del viento (Garratt, 1992). Los procesos que determinan la necesidad hídrica en nogal involucran el intercambio de gases (CO₂ y O₂) con el aire circundante tales como fotosíntesis, fotorespiración
(Taiz y Zeiger, 2006). Estos se llevan a cabo a través de cloroplastos y estomas de los foliolas respectivamente, estos últimos con una función principal que es la fotosíntesis (Mexal, et al., 2003), están constituidos por un par de células guardia y oclusivas rodeadas de células acompañantes, la separación que se produce entre éstas dos células se denomina "ostiolo", regula la apertura y tamaño total del estoma. El ostiolo está regulado por factores externos como; ambientales que involucren el intercambio de CO₂, O₂ y edáficos que incluye la tensión del agua retenida por los minerales del suelo (Ball, 1987). En caso de déficit hídrico en el suelo y elevadas temperaturas en el ambiente, el ostiolo da la señal de que el estoma se cierre cortando el flujo de agua del interior de la planta hacia el exterior además se imposibilita el intercambio de gases pero sobre todo se disminuye el rendimiento fotosintético (Daily et al., 1997).

El objetivo de ésta investigación fue generar información que correlacione la morfología estomática de los foliolas de nogal pecanero, como tamaño y cantidad de estomas con la disponibilidad de agua en el suelo generada a través de diferentes sistemas de riego utilizados como gravedad, aspersión, micro-aspersión y goteo, para lo cual se utilizó la técnica de análisis de imagen.

MATERIALES Y MÉTODOS

Esta investigación se realizó en la huerta de nogal pecanero ubicada en el campo experimental de la Universidad Autónoma Agraria Antonio Narro Unidad Laguna (UAAAN-UL) en el municipio de Torreón del Estado de Coahuila, México. Región conocida como Comarca Lagunera, localizada entre los meridianos 102° 22’ y 104° 47’ longitud oeste, y paralelos 24° 22’ y 26° 23’ latitud norte con una altura media sobre el nivel del mar de 1139 m.
Los sistemas de riego utilizados en la Comarca Lagunera para suministrar el agua al nogal son gravedad (45.16%) y presurizados (54.84%). El experimento se desarrolló en el módulo de riego instalado en el año 2005, en la huerta de nogal de la UAAAN-UL en la que tienen dichos sistemas de riego.

El módulo de riego está conformado por 11 hileras de cinco árboles cada una, logrando un total de 55 árboles en el sistema de riego por gravedad, en el sistema de riego presurizado 12 hileras de ocho árboles cada una para dar un total de 96 árboles. El área de estudio seleccionada tiene una superficie de 0.25 ha en riego por gravedad, (cinco hileras de cinco árboles), en riego presurizado se tomaron 12 hileras de cuatro árboles para un total de 0.48 ha. En ésta última, la superficie de cada sistema de riego (aspersión, micro-aspersión y goteo) tiene 0.16 ha cada una, conformada por cuatro hileras de cuatro árboles cada sistema. Se seleccionaron árboles sanos variedad western donde la edad supera los 20 años en el sistema de riego por gravedad y 16 años en los sistemas de riego presurizado. Figura 1.

![Diagrama del área experimental y huerto nogalero de la UAAAN-UL 2009.](image)

La determinación de humedad del suelo fue bajo el método gravimétrico que consistió en tomar la muestra de suelo con la barrera a tres diferentes profundidades (0-30, 30-60 y 60-90 cm) en tres ocasiones por sistema de riego y colocarlas en recipientes de aluminio previamente pesados. Una vez colocada la muestra en el recipiente, se pesó en húmedo usando una balanza de precisión para después trasladarlo a la estufa, dejando las muestras durante un lapso de 20 a 24 horas a una temperatura constante de 105 °C para que el agua de la muestra sea totalmente evaporada. La diferencia entre peso de suelo húmedo (PSH) y peso de suelo seco (PSS) fue el contenido de humedad expresado en porcentaje (ecuación 1).

\[
\frac{\text{PSH} - \text{PSS}}{\text{PSS}} \times 100 = \text{Contenido de Humedad (\%)}
\]

En la determinación del contenido de humedad en unidad volumétrica se involucró la densidad aparente (Da) en la ecuación anterior de la siguiente forma (ecuación 2).

\[
\left(\frac{\text{PSH}-\text{PSS}}{\text{PSS}} \times 100\right) (\text{Da}) = \text{Contenido de humedad (cm}^3/\text{cm}^3)\]

El muestreo se llevó a cabo durante el ciclo productivo del nogal partiendo del mes de marzo al mes de septiembre del 2009 con un total de 16 muestreos en cada sistema de riego (gravedad, aspersión, micro-aspersión y goteo).

Análisis estadístico.

En la comparación de los nogales a diferente forma de aplicar el agua, se uso un arreglo factorial en el que los factores y niveles fueron: sistema de riego (gravedad, aspersión, micro-aspersión y goteo). En el árbol se seleccionaron tres pecíolos en diferente posición de la rama, el foliolo en tres posiciones en el pecíolo (basal, media y apical). En un diseño experimental bloques al azar y tres repeticiones. El muestreo de foliolos se llevó a cabo durante el mes de julio del 2009, en
un horario de 11:00 a 17:00 hr. Se seleccionó esta fecha por ser la etapa fisiológica del nogal más crítica en condiciones ambientales, demandante de agua y llenado de almendra. Posterior al muestreo los foliolas se depositaron en un recipiente seco para su traslado al laboratorio de análisis de imagen.

Análisis de imagen.

La obtención y tratamiento de las imágenes sobre la superficie de los foliolas se realizó con ayuda de una cámara digital Olympus CCD de 4 megapíxeles. Se colocó papel milimétrico bajo la lente del microscopio para usarlo como guía de medición y tomarla de referencia o cuadro base. Todas las imágenes se capturaron a la misma distancia para obtener un igual número de píxeles y área del papel milimétrico bajo la forma de una matriz rectangular de 2.5 X 2 mm, o sea 5 mm², con una resolución espacial de 1μm por pixel, iluminando los foliolas con luz visible para la descripción de los estomas. El tratamiento de imagen se realizó con ayuda de un analizador Image Pro Plus® versión 4.5 (Media Cibernética Maryland, USA) bajo micro computadora personal.

Área foliar y características de los estomas.

El área foliar de los foliolas fue determinada en base a imágenes capturadas donde se visualiza el foliolo completo con la finalidad de conocer el área total en mm². La caracterización de estomas se realizó a partir de un parámetro morfológico: el tamaño de poros, expresado por el área de su sección sobre la imagen descrita por la ecuación 3 (Coster y Chermant, 1985), que agrupa tres clases de tamaño: Pequeños, medianos y grandes.

(Ecuación 3) \[4\pi X \text{Área} \]
RESULTADOS Y DISCUSIÓN.

La Figura 3 representa el ciclo fenológico del cultivo del nogal y manejo anual del agua a través de los diferentes sistemas de riego (gravedad, aspersión, micro-aspersión y goteo), presentando los valores obtenidos del contenido volumétrico de agua en el suelo a una profundidad de 60 cm, ya que es aquí donde se concentra el 80% de las raíces de nogal (Herrera, 2004). El eje de las Y lado izquierdo de la gráfica, muestra el contenido de humedad en el suelo en unidades volumétricas (cm³ de agua cm⁻³ de suelo) y el lado derecho la tensión del agua obtenida por la olla y membrana de presión en laboratorio en cuatro puntos: 0.3, 3, 9, y 15 atmósferas, donde el primer valor representa capacidad de campo (C.C) y el último el punto de marchitez permanente (PMP). Las líneas en cada punto marcan su correspondencia al contenido volumétrico de humedad donde resalta que el valor límite inferior permisible de abatimiento corresponde a 9 atm o 17 cm³ cm⁻³ de humedad. El eje de las X muestra las fechas en las cuales se realizaron los muestreos de suelo para la determinación del contenido de humedad.
Figura 3. Abatimiento de humedad en el suelo a 60 cm del huerto UAAAN-UL 2009.

El primer riego en gravedad se aplicó el 23 de febrero y en el sistema presurizado (aspersión, micro-aspersión y goteo) del 12 al 25 de marzo del 2009 por lo que en la etapa de crecimiento, brotación de hojas y floración, el árbol efectúa sus funciones fisiológicas sin existir estrés hídrico en los cuatro sistemas de riego. Esto se logró debido a que el contenido de humedad en el suelo se encontró entre las 0.3 y 3 atm lejos del límite inferior permisible de abatimiento (9 atm). El abatimiento de humedad en el suelo en esta etapa corresponde a la demanda de agua por el cultivo (consumo) para desarrollar las funciones fisiológicas antes mencionadas. La curva de abatimiento de humedad en el sistema de riego por goteo muestra un alto consumo aún y cuando se regó nuevamente del 6 al 14 de abril de 2009. Desde el mes de abril en este sistema, la humedad del suelo no se logró recuperar durante todo el ciclo ya que la tensión a la que está sometida el árbol fue entre las 9 y 15 atm rebasando el límite inferior permisible de abatimiento a excepción de un evento extraordinario en la última semana de junio.
En la etapa de crecimiento de la nuez y estado acuoso, los sistemas de riego por gravedad, aspersión y micro-aspersión llegaron a estar por debajo del límite inferior permisible de abatimiento, hasta la segunda semana de junio donde se observa un consumo alto en los cuatro sistemas, solo aspersión no logró sobrepasar el límite inferior permisible de abatimiento. Esta etapa considerada como la más crítica ya que el cultivo demanda la mayor cantidad de agua para el crecimiento de la nuez, por lo que se observa una diferencia en el consumo de agua entre los árboles bajo diferentes sistemas de riego. En la etapa de llenado de almendra, los árboles de los sistemas de riego por gravedad y aspersión se recuperaron y finalizaron el ciclo prácticamente sin estrés hídrico no así los nogales irrigados bajo los sistemas de micro-aspersión y goteo que estuvieron bajo estrés hídrico, lo que conlleva a un menor tamaño de la nuez cosechada.

Por lo anterior, la morfología del árbol se vio afectada por el manejo del agua de riego, incluso en la morfología estomática, ya que el muestreo de foliolos se efectuó en el mes de julio bajo un estrés hídrico severo.

Área foliar total de la rama.

En la Figura 4 se presentan los valores del área foliar media aritmética y desviación estándar. El área foliar fue similar ya que no se detectó diferencia estadística entre los árboles regados bajo los diferentes sistemas de riego, lo que indica que la forma de aplicar el agua al suelo no impactó en el tamaño de la hoja. Sin embargo al observar los valores de desviación estándar en sistemas de riego, resaltan los nogales de los sistemas de micro-aspersión seguidos de los árboles del sistema de aspersión que presentan un rango de dispersión con una variabilidad más amplia con respecto a su media aritmética, lo que indica que en éste rango puede haber foliolos muy
pequeños o foliolos muy grandes y esto es muy similar en gravedad y goteo, solo que la dispersión en los datos de área foliar es menor.

![Gráfica de área foliar para diferentes sistemas de riego](image)

Figura 4. Comparación de medias entre área foliar total y sistemas de riego UAAAN-UL 2009.

Lo anterior condujo a realizar el siguiente análisis a través del área foliar en el peciolo, es decir, la rama seccionada en tres puntos (basal, media y apical) y corresponde a un peciolo por cada punto (Cuadro 1).

Cuadro 1. Comparación de medias de área foliar entre sistema de riego en función de la posición del peciolo en la rama UAAAN-UL 2009.

<table>
<thead>
<tr>
<th>Riego</th>
<th>Basal</th>
<th>Medio</th>
<th>Apical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravedad</td>
<td>1806</td>
<td>a</td>
<td>2202</td>
</tr>
<tr>
<td>Aspersión</td>
<td>1328</td>
<td>a</td>
<td>1769</td>
</tr>
<tr>
<td>Micro-aspersión</td>
<td>1803</td>
<td>a</td>
<td>1767</td>
</tr>
<tr>
<td>Goteo</td>
<td>1985</td>
<td>a</td>
<td>1840</td>
</tr>
<tr>
<td>C. V. %</td>
<td>39.94</td>
<td>37.04</td>
<td>45.01</td>
</tr>
</tbody>
</table>

Medias seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).

El Cuadro 1 no muestra diferencia estadística entre pecíolos de la parte basal y parte media de la rama. Sin embargo, en pecíolos de la parte apical se encontró diferencia estadística entre el
sistema de riego por aspersión y el resto. Esto indica que los nogales del sistema de riego por aspersión tienen pecíolos de mayor área foliar en la parte apical de la rama.

Al encontrar diferencia estadística en pecíolos de la parte apical de la rama, se procedió a realizar el análisis estadístico de foliolos en tres puntos del peciolo (basal, media y apical), donde se tomó un foliolo por cada punto del peciolo. (Cuadro 2).

Cuadro 2. Comparación de medias de área foliar entre sistema de riego en función de la posición de foliolo en el peciolo UAAAN-UL 2009.

<table>
<thead>
<tr>
<th>Riego</th>
<th>Basal</th>
<th>Medio</th>
<th>Apical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravedad</td>
<td>712</td>
<td>c</td>
<td>2462</td>
</tr>
<tr>
<td>Aspersión</td>
<td>958</td>
<td>c</td>
<td>2305</td>
</tr>
<tr>
<td>Micro-aspersión</td>
<td>920</td>
<td>c</td>
<td>2121</td>
</tr>
<tr>
<td>Goteo</td>
<td>810</td>
<td>c</td>
<td>2144</td>
</tr>
<tr>
<td>C. V. %</td>
<td>56.65</td>
<td>37.63</td>
<td>45.28</td>
</tr>
</tbody>
</table>

Medias seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).

El análisis no detectó diferencia estadística entre los árboles regados bajo diferentes sistemas de riego con respecto a posición del foliolo en el peciolo, sin embargo, entre posiciones con respecto a los sistemas de riego, existe diferencia significativa, es decir, en la parte basal del peciolo se encuentran los foliolos más pequeños, y en forma ascendente hasta la parte apical del peciolo donde se encuentran los foliolos más grandes en los nogales de todos los sistemas de riego.

Morfología estomática.

En ésta variable se realizaron dos tipos de análisis tratando de correlacionar el cambio morfológico de estomas en función al sistema de riego. El primer análisis corresponde a la densidad estomática entre los árboles regados bajo diferentes sistemas de riego, y el segundo
análisis corresponde a la clasificación de estomas basado en tres tamaños (pequeño, mediano y grande) y su distribución en los árboles de cada sistema de riego.

Densidad estomática.

La Figura 5 presenta la cantidad de estomas en el área de estudio (15 mm²), sus valores medios y su desviación estándar contra los sistemas de riego.

![Gráfica de comparación de medias entre cantidad de estomas en función al sistema de riego](image)

Figura 5. Comparación de medias entre cantidad de estomas en función al sistema de riego UAAAAN-UL 2009.

El análisis encontró diferencia significativa entre tratamientos, siendo los árboles de los sistemas de riego por gravedad y goteo estadísticamente iguales con mayor densidad estomática en el folíolo, nogales irrigados por aspersión y micro-aspersión con densidad estomática menor al resto de los sistemas resultan estadísticamente iguales. Sin embargo, el rango de dispersión muestra amplia variabilidad con respecto a la media de los árboles regados por gravedad y goteo,
lo que indica que puede haber entre 50 estomas más o 50 estomas menos aproximadamente en el área de estudio. El grado de variabilidad de los árboles en los sistemas de aspersión y microaspersión es más compacto, esto significa que hay una distribución más homogénea de la cantidad de estomas en el área de estudio.

Resultado de la diferencia encontrada, se realizó el análisis a pecíolos (Cuadro 3) y a foliolos (Cuadro 4) en función a la posición del pecíolo en la rama y posición del foliolo en el pecíolo respectivamente, con la finalidad de identificar en cual sistema de riego y posición del pecíolo se encuentra la diferencia más marcada.

Cuadro 3. Comparación de medias de la densidad estomática entre sistemas de riego en función a la posición de pecíolos en la rama UAAAAN-UL 2009.

<table>
<thead>
<tr>
<th>Riego</th>
<th>Basal</th>
<th>Medio</th>
<th>Apical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravedad</td>
<td>132</td>
<td>a b</td>
<td>160 a</td>
</tr>
<tr>
<td>Aspersión</td>
<td>123</td>
<td>b</td>
<td>110 b</td>
</tr>
<tr>
<td>Micro-aspersión</td>
<td>128</td>
<td>b</td>
<td>136 a b</td>
</tr>
<tr>
<td>Goteo</td>
<td>165</td>
<td>a</td>
<td>146 a</td>
</tr>
<tr>
<td>C. V. %</td>
<td>25.68</td>
<td>26.27</td>
<td>33.52</td>
</tr>
</tbody>
</table>

Medias seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).

En el Cuadro 3 se observa diferencia estadística en los pecíolos de la parte basal y parte media de la rama, destacando los árboles de los sistemas de riego por gravedad y goteo con mayor densidad estomática, marcando igualdad estadística entre ellos. En la parte apical no se presentó diferencia estadística, lo que indica que en esta parte de la rama la forma de aplicación del agua de riego no afecta la densidad estomática entre los árboles.

El análisis de foliolos con respecto a la posición en el pecíolo (Cuadro 4), se encontró diferencia estadística solo en la posición media del pecíolo, en la cual sobresalen árboles del sistema de riego por gravedad al igual que los nogales regados por goteo. En las posiciones basal y apical,
no existe diferencia significativa debido a que el rango de variabilidad no es muy amplio, sin embargo, existe incremento en la cantidad de estomas en los árboles del sistema de riego por goteo.

Lo anterior conduce a realizar la caracterización de los estomas de acuerdo al tamaño y distribución en el folíolo.

Cuadro 4. Comparación de medias de la densidad estomática entre sistemas de riego en función a la posición de folíolos en el peciolo UAAAN-UL 2009.

<table>
<thead>
<tr>
<th>Riego</th>
<th>Basal</th>
<th>Medio</th>
<th>Apical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravedad</td>
<td>153 a</td>
<td>162 a</td>
<td>156 a</td>
</tr>
<tr>
<td>Aspersión</td>
<td>136 a</td>
<td>118 b</td>
<td>121 a</td>
</tr>
<tr>
<td>Micro-aspersión</td>
<td>138 a</td>
<td>125 b</td>
<td>132 a</td>
</tr>
<tr>
<td>Goteo</td>
<td>157 a</td>
<td>150 a b</td>
<td>164 a</td>
</tr>
<tr>
<td>C. V. %</td>
<td>28.21</td>
<td>27.85</td>
<td>33.85</td>
</tr>
</tbody>
</table>

†Medias seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).

Tamaño de estomas.

El análisis realizado para encontrar diferencia entre los tamaños establecidos en la clasificación estomática (pequeños, medianos y grandes), cuadro 5, encontró diferencia estadística entre ellos, sobresaliendo el tamaño mediano con un promedio de 97.22 estomas, seguido del tamaño grande con 33.59 y finalmente el tamaño pequeño con 11.80 estomas.

Cuadro 5. Comparación de medias de tamaño de estomas UAAAN-UL 2009.

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pequeños</td>
<td>11.80 c†</td>
</tr>
<tr>
<td>Medianos</td>
<td>97.22 a</td>
</tr>
<tr>
<td>Grandes</td>
<td>33.59 b</td>
</tr>
<tr>
<td>C. V. %</td>
<td>40.36</td>
</tr>
</tbody>
</table>

†Medias seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).
El Cuadro 6 presenta la caracterización estomática de los pecíolos en función de su posición en la rama comparando los nogales irrigados bajo diferentes sistemas de riego.

Cuadro 6. Clasificación de tamaño y número de estomas en foliolos de nogal pecanero en función a la posición del pecíolo en la rama UAAAN-UL 2009.

<table>
<thead>
<tr>
<th>Sistema de riego</th>
<th>Volumen humectado (m3)</th>
<th>Ef. aplicación</th>
<th>Tamaño del estoma</th>
<th>Posición.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravedad</td>
<td>10 000</td>
<td>60%</td>
<td>Pequeños</td>
<td>Basal: 13, Media: 10, Apical: 13‡</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medianos</td>
<td>Basal: 95, Media: 119, Apical: 124‡</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grandes</td>
<td>Basal: 23, Media: 32, Apical: 43‡</td>
</tr>
<tr>
<td>Aspersión</td>
<td>7000</td>
<td>70%</td>
<td>Pequeños</td>
<td>Basal: 10, Media: 7, Apical: 7‡</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medianos</td>
<td>Basal: 84, Media: 78, Apical: 95‡</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grandes</td>
<td>Basal: 29, Media: 25, Apical: 39‡</td>
</tr>
<tr>
<td>Micro-aspersión</td>
<td>5600</td>
<td>80%</td>
<td>Pequeños</td>
<td>Basal: 11, Media: 6‡, Apical: 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medianos</td>
<td>Basal: 84, Media: 84‡, Apical: 89</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grandes</td>
<td>Basal: 32, Media: 45‡, Apical: 36</td>
</tr>
<tr>
<td>Goteo</td>
<td>3100</td>
<td>95%</td>
<td>Pequeños</td>
<td>Basal: 28‡, Media: 13, Apical: 17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Medianos</td>
<td>Basal: 106‡, Media: 100, Apical: 108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Grandes</td>
<td>Basal: 30‡, Media: 32, Apical: 35</td>
</tr>
</tbody>
</table>

‡Tamaño sobresaliente entre los sistemas de riego.
‡Cantidad sobresaliente entre posiciones del pecíolo en la rama.

El Cuadro 6, el mayor número de estomas correspondió al tamaño mediano (de 0.0025 a 0.0049 mm3), resaltando el mayor número de estomas se encuentra en pecíolos de la parte apical en árboles de los sistemas de riego por gravedad y aspersión, en nogales de los sistemas de micro-aspersión los estomas se concentran en pecíolos de la parte media y en árboles del sistema por goceo en pecíolos de la parte basal de la rama.

Los árboles de los sistemas de riego por gravedad y goteo presentaron mayor densidad estomática, siendo estadísticamente iguales entre ellos (Cuadro 7), mostrando mayor cantidad de estomas de tamaño mediano, menor cantidad de tamaño grande y baja cantidad de tamaño pequeño. Los nogales bajo los sistemas de riego por aspersión y micro-aspersión son estadísticamente iguales entre ellos pero con menor cantidad de estomas con respecto a los anteriores.

<table>
<thead>
<tr>
<th>Sistema de riego</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravedad</td>
<td>52.42 a†</td>
</tr>
<tr>
<td>Aspersión</td>
<td>41.58 b</td>
</tr>
<tr>
<td>Micro-aspersión</td>
<td>43.86 b</td>
</tr>
<tr>
<td>Goteo</td>
<td>52.29 a</td>
</tr>
<tr>
<td>C. V. %</td>
<td>40.36</td>
</tr>
</tbody>
</table>

†Medias seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).

Lo anterior indica que al ser estadísticamente iguales los árboles de los sistemas de riego por gravedad y goteo, la lámina de riego aplicada y volumen de suelo humectado, no implica una variación en la actividad fotosintética del árbol, dado que ésta función se lleva a cabo en los cloroplastos a través de los estomas, pero permite hacer un uso más eficiente del agua de riego, ya que en el sistema de riego por goteo se aplica solamente el 31% de lo que se aplica en el sistema de riego por gravedad.

Al momento del muestreo de foliolos para la caracterización estomática (Figura 6), el huerto se encontraba bajo estrés hídrico severo, ya que la humedad del suelo oscilaba entre 9 y 15 atm. Aun así, la curva del contenido de humedad en el sistema de riego por goteo, muestra una estabilidad más uniforme que en el sistema de riego por gravedad, lo que demuestra la adaptabilidad del árbol a diferentes condiciones de humedad en el suelo.
Figura 6. Abatimiento de humedad a 60 cm en gravedad y goteo UAAAN-UL 2009.

La correlación que existe entre árboles irrigados bajo diferentes sistemas de riego y morfología estomática de los pecíolos (cuadro 8), presenta variación en área foliar y densidad estomática con la clasificación en base a tamaño en función del volumen de suelo humectado y eficiencia de aplicación de agua.

<table>
<thead>
<tr>
<th>Sistema de riego</th>
<th>Volumen humectado (m³)</th>
<th>Ef. de aplic. (%)</th>
<th>Área foliar (mm²)</th>
<th>Densidad estomática</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P. †</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M. †</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G. †</td>
</tr>
<tr>
<td>Gravedad</td>
<td>10,000</td>
<td>60</td>
<td>1,982</td>
<td>11 113 33</td>
</tr>
<tr>
<td>Aspersión</td>
<td>7,000</td>
<td>70</td>
<td>2,074</td>
<td>8 86 31</td>
</tr>
<tr>
<td>Microaspersión</td>
<td>5,600</td>
<td>80</td>
<td>1,903</td>
<td>8 86 38</td>
</tr>
<tr>
<td>Goteo</td>
<td>3,100</td>
<td>95</td>
<td>1,824</td>
<td>19 105 33</td>
</tr>
</tbody>
</table>

†Clasificación en tamaño de estomas P=Pequeños, M=Medianos y G=Grandes
††Número total de estomas en 15 mm².
CONCLUSIONES.

La búsqueda de la relación entre la eficiencia de aplicación de agua y densidad estomática en foliolos de nogal pecanero en función al contenido de humedad en el suelo, condujo a establecer una caracterización estomática mediante al análisis de imagen. Esta caracterización según tamaño y cantidad, permitió establecer una morfología estomática de foliolos de nogal bajo diferentes sistemas de riego.

Los nogales con riego por gravedad y goteo presentaron una morfología estomática con igualdad estadística en cantidad con 157 estomas cada uno, seguidos de micro-aspersión y aspersión con 132 y 125 respectivamente.

La densidad estomática en base a tamaño entre los sistemas de riego por gravedad y goteo, resultó estadísticamente igual y diferente en los sistemas de riego por aspersión y microaspersión predominando los estomas de tamaño mediano (de 0.0025 a 0.00499 mm²) en todos los sistemas. A medida que el volumen de suelo humectado disminuye y la eficiencia de aplicación aumenta, la concentración de estomas cambia de posición con tendencia de la parte apical hacia la parte basal de la rama. Sin embargo, al no tener diferencia significativa entre la lámina máxima de riego en gravedad (10 000 m³) y lámina mínima de riego aplicada en goteo (3100 m³), el árbol no se vio afectado en las funciones fisiológicas que desarrolla para su sobrevivencia y reproducción, pero sí refleja un ahorro del 69% en el agua que se aplica al cultivo.

La comparación de los valores de área foliar no permitió relacionar las diferencia encontrada entre la aplicación del riego y su eficiencia, por el contrario, la caracterización estomática en
base a tamaño y distribución, permitió describir un cambio en la morfología de los estomas al incrementar la eficiencia de aplicación del agua de 60% para gravedad a 95% en goteo.

LITERATURA CITADA.

Artículo 3 (Por enviar) ANATOMÍA DE LAS VÍAS DE CIRCULACIÓN DE AGUA EN MADERA DE NOGAL PECANERO BAJO DIFERENTES SISTEMAS DE RIEGO.

Pathways water circulation anatomy in walnut tree wood under different irrigation systems.

J. A. Chávez-Simental1; G. González-Cervantes2; V. P. Alvarez-Reyna3, A. Palomo-Gil4, A. Lagarda-Murrieta5, E. Favela-Chávez5

\begin{itemize}
\item 1Estudiante de doctorado UAAAN-UL,
\item 2INIFAP CENID-RASPA,
\item 3Dpto de Riego y Drenaje UAAAN-UL,
\item 4Dpto Fito-mejoramiento UAAAN-UL,
\item 5Dpto Horticultura UAAAN-UL
\end{itemize}

RESUMEN

Con el objetivo de clasificar el sistema de conducción de agua en madera de tronco de nogal pecanero, se utilizó la técnica de análisis de imagen para la caracterización de los conductos anatómicos de nogales irrigados bajo diferentes sistemas de riego como gravedad, aspersión, micro-aspersión y goteo. El experimento se realizó en el huerto nogalero del campo experimental de la Universidad Autónoma Agraria Antonio Narro Unidad Laguna en base a imágenes tomadas de muestras de madera de tronco al inicio del ciclo agrícola del cultivo en el mes de enero del 2010. Los resultados obtenidos en este experimento mostraron que los nogales irrigados mediante el sistema por aspersión presentaron la densidad de conductos anatómicos más alta con igualdad estadística a los árboles del sistema de goteo y micro-aspersión. Los conductos anatómicos menores a 0.049 mm2 sobresalen en los árboles regados bajo el sistema por goteo y micro-aspersión, mientras que los árboles irrigados mediante el sistema por aspersión destacó la presencia de los conductos anatómicos de tamaño mediano (entre 0.05 y 0.09 mm2), quedando los árboles del sistema por gravedad con los conductos anatómicos del orden mayor a 0.1 mm2 pero con menor densidad. Por lo anterior se concluye que el nogal tiene la capacidad de transformar su morfología en los conductos anatómicos de circulación de agua en función al cambio en el manejo de
agua de riego variando el volumen de suelo humectado a través de los diferentes sistemas de riego.

Palabras clave: *Carya Illinoensis Koch*, conductos anatómicos, morfología del xilema, análisis de imagen.

ABSTRACT.

With the objective to classify the water conduction system in walnut trunk wood, the image analysis technique was used for the walnut anatomical conducts characterization irrigated under different systems such as surface, sprinkler, micro-sprinkler and dripping. The experiment was conducted on the experimental field walnut orchard of the Universidad Autónoma Agraria Antonio Narro Unidad Laguna from the wood trunk samples images taken at beginning of the agricultural cycle in January 2010. The results obtained showed that the walnut trees irrigated through the sprinkler system presented the highest anatomic conducts density, with statistical equality to the dripping and micro-sprinkler systems walnut trees. The anatomic conducts minors to 0.049 mm2 projected on walnut trees irrigated under dripping and micro-sprinkler systems, while the walnut trees irrigated through sprinkler system have a medium size anatomic conducts (from 0.05 to 0.09 mm2), leaving the walnut trees irrigated through surface irrigation system with the big size anatomical conducts but in minor density. According the before mentioned it’s concluded that the walnut trees have the capacity to transform the anatomic conducts morphology in function to the management irrigation water change varying the soil moisture volume through the different irrigation systems.

Key Words: *Carya Illinoensis Koch*, anatomic conducts, xylem morphology, image analysis.
de crecimiento contribuye con la meteorología a estimar la precipitación acontecida durante un periodo de actividad vegetativa o descubrir variaciones climáticas de épocas pasadas (Fahh, 1962). Los anillos presentan un sistema de conducción de agua y solutos del suelo a través de la raíz, tronco y ramas hacia la parte aérea del árbol denominado xilema (Arbo, 2006). La estructura del xilema con respecto a la orientación de sus células se caracteriza mediante dos sistemas: El sistema vertical o axial que son células o filas de células con el eje mayor orientado en sentido longitudinal, lo que es esencial para el incremento de altura del árbol (Torres, 2001), y el sistema horizontal o transversal que son grupos de células orientados radialmente que da el crecimiento radial del tronco (Peichoto, et al., 2000). Estos sistemas pueden ser afectados por factores de manejo del cultivo y climáticos mostrando cambios morfológicos en forma, tamaño y densidad de los conductos anatómicos de circulación de agua y solutos (Mexal et al., 2003).

En base a lo antes expuesto el objetivo de la presente investigación fue caracterizar el sistema de conducción de agua en madera de nogal pecanero en base a tamaño y cantidad, bajo diferentes condiciones de humedad en el suelo inducidas a través de cuatro sistemas utilizados en la producción de nuez pecanera; gravedad, aspersión, micro-aspersión y goteo.

Materiales y Métodos.

La investigación se realizó en el huerto de nogal ubicado en el campo experimental de la Universidad Autónoma Agraria Antonio Narro Unidad Laguna (UAAAN-UL) en Torreón, Coahuila, México en la región conocida como Comarca Lagunera, localizada entre los meridianos 102° 22’ y 104° 47’ longitud oeste, y paralelos 24° 22’ y 26° 23’ latitud norte y una altura media sobre el nivel del mar de 1,139 metros.
La Figura 1 muestra el huerto nogalero que está conformado por un módulo de riego donde se encuentran los cuatro sistemas de riego que se manejan en nogal (gravedad, aspersión, micro-aspersión y goteo). La sección de riego por gravedad está conformada por 11 hileras de 5 árboles cada una, logrando un total de 55 árboles. La sección del sistema de riego presurizado lo conforma 12 hileras de 8 árboles cada una para dar un total de 96 árboles. El área de estudio seleccionada tiene una superficie de 0.25 ha en riego por gravedad, (5 hileras de 5 árboles) y en riego presurizado se tomaron 12 hileras de 4 árboles para un total de 0.48 ha. En ésta última, la superficie de cada sistema de riego (aspersión, micro-aspersión y goteo) tiene 0.16 has cada una, conformada por 4 hileras de 4 árboles cada sistema. Se seleccionaron tres árboles sanos variedad western por cada sistema donde la edad supera los 20 años en el sistema de riego por gravedad y 16 años en los sistemas de riego presurizado.

![Figura 1. Diseño del área experimental y huerto nogalero de la UAAAN-UL 2010.](image)

Análisis Estadístico.

La comparación de la anatomía de las vías de conducción de agua en el tronco del árbol, se realizó utilizando un arreglo factorial en el que los factores y niveles fueron: sistema de riego (gravedad, aspersión, micro-aspersión y goteo), Año (2005, 2006, 2007, 2008 y 2009) y tamaño de poro (Pequeño, mediano y grande). En el análisis estadístico del índice de crecimiento se utilizó el mismo arreglo pero solo se manejaron

Toma de muestras de madera.

Las muestras de tronco fueron tomadas con la barrena de Pressler a una profundidad de 7 cm aproximadamente y a una altura de 1 m del suelo, tratando de capturar los anillos correspondientes a partir del año 2005, año en el cual se instaló en sistema de riego presurizado (Figura 2). Se colectaron en total 12 muestras de madera, tres muestras de cada sistema. Posterior al muestreo, se colocaron en una viruta para después efectuar el pulido y acabado correspondiente que permitiera analizar las muestras en el laboratorio de imagen.

![Figura 2. Toma de muestras de madera de tronco de nogal pecanero (A) y muestra extraída de tronco para su análisis en el laboratorio de imagen (B) UAAAN-UL 2010](image)

Análisis de imagen.

En la obtención y tratamiento de las imágenes sobre la superficie de las muestras de madera se realizó con ayuda de una cámara digital Olympus CCD de 4 megapíxeles. Se colocó papel milimétrico bajo la lente del microscopio para usarlo como guía de
medición y tomarla de referencia o cuadro base. Todas las imágenes se capturaron a la misma distancia para obtener un igual número de pixeles y área del papel milimétrico bajo la forma de una matriz rectangular de 7.5 X 6.0 mm, o sea 45 mm2. El tratamiento de imagen se realizó con ayuda de un analizador Image Pro Plus* versión 4.5 (Media Cybernética Maryland, USA) bajo micro computadora personal.

Morfología de los conductos xilemáticos de la madera.

La caracterización de los conductos anatómicos fue determinada en base a las imágenes capturadas donde se visualiza la amplitud del anillo, comenzando por el anillo correspondiente al año 2009 hasta el año 2005, con la finalidad de conocer el tamaño, número de conductos anatómicos y amplitud del anillo de crecimiento radial anual (Figura 3).

![Diagrama de conductos xilemáticos](image)

Figura 3. Anatomía del xilema en tronco de nogal pecanero UAAAN-UL 2010.

La Figura 3 muestra las dimensiones de la imagen (A), amplitud o crecimiento anual del anillo (B) y los tratamientos realizados a la imagen a partir de la imagen real (C), que consisten en lo siguiente: la imagen en escala de grises (D) es procesada y manejada con diferentes filtros que permiten hacer ajustes en la intensidad de luz que recibe la
imagen, con la finalidad de eliminar todo objeto que no sea de interés para el análisis, dejando lo más visible posible los conductos anatómicos del xilema en una imagen binaria (E). Finalmente con diferentes comandos del software, se realiza el conteo y auto-clasificación de los poros, permitiendo diferenciar el tamaño de los conductos anatómicos (F). Los datos obtenidos fueron exportados a una hoja de cálculo para posteriormente procesarlos en el paquete estadístico Statistical Analysis System (SAS) versión 9.0.

RESULTADOS

El resultado de la caracterización de poros anatómicos en madera de tronco de nogal pecanero, clasificó el tamaño de los conductos anatómicos en tres categorías: pequeño (< 0.049 mm²), mediano (0.05 a 0.09 mm²) y grande (> 0.1 mm²), con lo que se logró identificar la distribución de los conductos anatómicos en el tronco correspondiente a cada sistema de riego arrojando los siguientes resultados:

El análisis estadístico realizado a la morfología de los conductos anatómicos se muestra en el Cuadro 1 comparando las medias en la densidad de los mismos entre los sistemas de riego y en el Cuadro 2 comparando las medias entre tamaño de los conductos anatómicos.

Cuadro 1. Comparación de medias de la densidad de conductos anatómicos entre sistemas de riego en madera de tronco de nogal pecanero UAAAN-UL. 2009.

<table>
<thead>
<tr>
<th>Sistema de riego</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravedad</td>
<td>6.622</td>
</tr>
<tr>
<td>Aspersión</td>
<td>12.91</td>
</tr>
<tr>
<td>Micro-aspersión</td>
<td>10.55</td>
</tr>
<tr>
<td>Goteo</td>
<td>12.27</td>
</tr>
<tr>
<td>C.V.</td>
<td>54.1</td>
</tr>
</tbody>
</table>

*Medias seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).
El análisis de la densidad de conductos anatómicos mostró igualdad estadística entre los árboles de los sistemas de riego por aspersión, goteo y micro-aspersión en tendencia de igual orden, es decir, los nogales del sistema por aspersión con mayor densidad de conductos anatómicos. Los árboles del sistema por gravedad presentaron diferencia estadística con el resto de los sistemas con una densidad menor.

Cuadro 2. Comparación de medias del tamaño de los conductos anatómicos en madera de tronco de nogal pecanero UAAAN-UL 2009.

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>Media</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pequeños</td>
<td>13.22</td>
<td>A</td>
</tr>
<tr>
<td>Medianos</td>
<td>12.80</td>
<td>A</td>
</tr>
<tr>
<td>Grandes</td>
<td>5.75</td>
<td>B</td>
</tr>
<tr>
<td>C.V.</td>
<td>54.1</td>
<td></td>
</tr>
</tbody>
</table>

Medias seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).

El Cuadro 2 muestra la superioridad de los conductos anatómicos de tamaño pequeño y mediano presentando mayor cantidad con igualdad estadística entre sí, los conductos anatómicos de tamaño grande se encuentran presentes en menor proporción con menor densidad.

Lo anterior llevó a realizar un análisis detallado para determinar la distribución de conductos anatómicos de madera de tronco en nogales de cada sistema de riego en función al tamaño (Cuadro 3).

En el Cuadro 3 se observa la diferencia estadística encontrada en el análisis de varianza de la densidad de los conductos anatómicos del tronco, comparando en sentido vertical las medias entre árboles bajo diferentes sistemas de riego y en sentido horizontal las
medias entre tamaño de los conductos anatómicos de madera de tronco de nogal en cada sistema de riego.

Cuadro 3. Comparación de medias de la densidad de los conductos anatómicos entre sistemas de riego (vertical) y tamaño de conductos anatómicos (horizontal) en madera de tronco de nogal pecanero UAAAN-UL 2009.

<table>
<thead>
<tr>
<th>Sistema</th>
<th>Pequeños</th>
<th>Medianos</th>
<th>Grandes</th>
<th>Total</th>
<th>C.V.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravedad</td>
<td>6.80</td>
<td>C</td>
<td>6.0</td>
<td>7.06</td>
<td>B</td>
</tr>
<tr>
<td>Aspersión</td>
<td>9.80</td>
<td>B</td>
<td>17.66</td>
<td>11.26</td>
<td>A</td>
</tr>
<tr>
<td>Micro-asp.</td>
<td>15.33</td>
<td>B</td>
<td>12.73</td>
<td>3.60</td>
<td>C</td>
</tr>
<tr>
<td>Goteo</td>
<td>20.93</td>
<td>A</td>
<td>14.80</td>
<td>1.06</td>
<td>C</td>
</tr>
<tr>
<td>Total</td>
<td>52.86</td>
<td>51.19</td>
<td>22.98</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medias seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).

En el análisis entre árboles irrigados bajo diferentes sistemas de riego detectó diferencia estadística en relación al tamaño, mostrando una mayor densidad de poros pequeños en nogales del sistema de riego por goteo, seguido por los árboles de los sistemas de micro-aspersión, aspersión y gravedad, siendo éstos dos últimos estadísticamente iguales con menor cantidad de conductos anatómicos. En los árboles del sistema de riego por aspersión presentaron mayor número de conductos anatómicos medianos al igual que los árboles del sistema por goteo resultando estadísticamente igual, y los árboles de éste último sistema a su vez con igualdad estadística con los nogales bajo el sistema de micro-aspersión, siendo los árboles del sistema por gravedad los de menor densidad mostrando diferencia estadística con respecto a los árboles de los demás sistemas. Los conductos anatómicos de tamaño grande sobresaliieron en los árboles del sistema de riego por aspersión, seguido por los
del sistema por gravedad, micro-aspersión y goteo con igualdad estadística entre los árboles de los dos últimos sistemas con menor cantidad de conductos anatómicos.

El análisis realizado para comparar las medias del tamaño de conductos anatómicos en árboles irrigados bajo los diferentes sistemas, no mostraron diferencia estadística en árboles del sistema por gravedad, sin embargo sobresale la cantidad de poros grandes (> 0.1 mm2). En los árboles del sistema de riego por aspersión predominan los poros de tamaño mediano (0.05 a 0.09 mm2), seguidos del tamaño grande y pequeño (< 0.049 mm2) con menor cantidad de conductos anatómicos siendo estadísticamente igual entre éstos. En los árboles de los sistemas de riego por micro-aspersión y goteo predominan los conductos anatómicos de tamaño pequeño (<0.049 mm2) coincidiendo la tendencia a disminuir en tamaño mediano y grande con menor densidad de conductos anatómicos.

El Cuadro 4 muestra la diferencia estadística de la densidad de conductos anatómicos de madera de tronco de nogal pecanero de los últimos cinco años utilizando los diferentes sistemas de riego.

Cuadro 4. Comparación de medias de la densidad de conductos anatómicos de madera de tronco de nogal pecanero de los últimos cinco años en función al sistema de riego UAAAN-UL 2009.

<table>
<thead>
<tr>
<th>Año</th>
<th>Gravedad</th>
<th>Aspersión</th>
<th>Micro-aspersión</th>
<th>Goteo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>8.11</td>
<td>20</td>
<td>9.11</td>
<td>16.55</td>
</tr>
<tr>
<td>2006</td>
<td>7.11</td>
<td>15.35</td>
<td>15.88</td>
<td>14.44</td>
</tr>
<tr>
<td>2007</td>
<td>6.33</td>
<td>10.11</td>
<td>9.55</td>
<td>8.66</td>
</tr>
<tr>
<td>2008</td>
<td>6.22</td>
<td>9.77</td>
<td>10.11</td>
<td>11.44</td>
</tr>
<tr>
<td>2009</td>
<td>5.33</td>
<td>9.33</td>
<td>8.11</td>
<td>10.22</td>
</tr>
<tr>
<td>C.V.</td>
<td>58.48</td>
<td>62.40</td>
<td>60.17</td>
<td>47.38</td>
</tr>
</tbody>
</table>

Medias seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).
Los árboles del sistema de riego por gravedad no presentaron diferencia estadística, únicamente mostraron una tendencia de mayor a menor densidad del año 2005 al 2009 respectivamente. Los nogales del sistema de riego por aspersión mostraron la misma tendencia que los del sistema por gravedad, sin embargo en 2005 y 2006 con mayor densidad no existe diferencia estadística, y del 2007 al 2009 estadísticamente iguales entre ellos pero con menor cantidad de conductos anatómicos. Los árboles del sistema de riego por micro-aspersión se presentaron una alta densidad de conductos anatómicos en el año de 2006 y 2008, variando en el orden de 2007, 2005 y 2009 con menor cantidad de conductos anatómicos. En los árboles del sistema por goteo en 2005, 2006 y 2008 presentaron la densidad de conductos anatómicos más alta, seguida por los años 2009 y 2007 respectivamente con menor cantidad de conductos anatómicos. La variación observada en los árboles de los sistemas de riego por micro-aspersión y goteo, condujo a analizar el índice de crecimiento radial anual de la madera del tronco en función al sistema de riego empleado (Cuadro 5).

Cuadro 5 Comparación de medias del índice de crecimiento en madera de tronco de nogal pecanero en función al sistema de riego. UAAAN-UL 2009.

<table>
<thead>
<tr>
<th>Año</th>
<th>Gravedad</th>
<th>Aspersión</th>
<th>Micro-aspersión</th>
<th>Goteo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005</td>
<td>5.20</td>
<td>A</td>
<td>13.08</td>
<td>A</td>
</tr>
<tr>
<td>2006</td>
<td>4.92</td>
<td>A</td>
<td>10.07</td>
<td>AB</td>
</tr>
<tr>
<td>2007</td>
<td>4.84</td>
<td>A</td>
<td>5.50</td>
<td>BC</td>
</tr>
<tr>
<td>2008</td>
<td>3.55</td>
<td>AB</td>
<td>4.48</td>
<td>C</td>
</tr>
<tr>
<td>2009</td>
<td>1.81</td>
<td>B</td>
<td>2.81</td>
<td>C</td>
</tr>
<tr>
<td>C.V.</td>
<td>30.52</td>
<td>35.46</td>
<td>17.12</td>
<td>32.75</td>
</tr>
</tbody>
</table>

Medias seguidas de la misma letra dentro de cada posición, son estadísticamente iguales. (DMS, P ≤ 0.05).
El Cuadro 5 muestra que los árboles de los sistemas de riego por gravedad y aspersión tiene un comportamiento similar de un mayor a un menor crecimiento del año 2005 al 2009 respectivamente. Los árboles del sistema de riego por gravedad presentaron igualdad estadística del 2005 al 2008 y los nogales del sistema presurizado comenzaron a presentar cambios a partir del año 2007, lo que indica que el árbol empieza a diferenciar la morfología de los conductos anatómicos de la madera por el efecto del cambio de volumen de agua a pesar de que el sistema fue instalado en el 2005. Existe una variación entre 2007 y 2008 en los árboles de los sistemas de riego por micro-aspersión y goteo en crecimiento y densidad de conductos anatómicos, siendo mayor en el 2008 que en 2007, posiblemente causado por alternancia del árbol, la cual coincide con la variación presentada en el Cuadro 4.

CONCLUSIONES

En base a los resultados obtenidos y bajo las condiciones manejo en este experimento, se concluye que:

Los árboles regados a través del sistema por aspersión resultó con la densidad de conductos anatómicos más alta presentado igualdad estadística con los árboles irrigados bajo los sistemas de goteo y micro-aspersión. Los árboles regados por gravedad presentaron la densidad más baja mostrando diferencia estadística con los árboles irrigados por el resto de los sistemas. Los conductos anatómicos sobresalientes en los árboles irrigados por goteo y micro-aspersión son del orden menor a 0.049 mm² clasificados como de tamaño grande, en los árboles del sistema por aspersión sobresalen los conductos anatómicos con un rango de 0.05 a 0.09 mm² clasificados como medianos, y en los árboles regados por gravedad abundan los conductos anatómicos mayores a 0.1 mm².
El año 2005 presenta la mayor densidad de conductos anatómicos en los árboles de todos los sistemas de riego a excepción de los irrigados bajo el sistema de micro-aspersión el cual presenta la mayor densidad de conductos anatómicos en el año 2006 mostrando 16 conductos. La densidad de conductos anatómicos más baja (5 conductos en gravedad, 9 en aspersión, 8 en micro-aspersión y 10 en goteo), se presentó en el año 2009 coincidiendo en los árboles de todos los sistemas de riego.

El mayor crecimiento se presentó en los árboles irrigados a través del sistema por goteo seguidos por los árboles de los sistemas de aspersión y micro-aspersión a diferencia de los árboles regados por gravedad los cuales presentaron menor crecimiento. Sin embargo, las diferencias encontradas en este experimento pueden ser atribuidas a la variación en la edad de los árboles y a la disponibilidad de agua en el sistema radicular del árbol, siendo el sistema por goteo el que concentra la humedad en esta zona más eficientemente. El año 2005 presentó la amplitud de anillo más larga y la menor amplitud se presentó en el año 2009 en los árboles irrigados bajo todos los sistemas.

Por lo anteriormente expuesto se concluyó que la anatomía de los conductos anatómicos de circulación de agua al interior de la madera del nogal pecanero, se ve afectada en función al sistema empleado para el riego, sin embargo por la adaptabilidad demostrada por los árboles al cambio de volumen de agua aplicado, las funciones fisiológicas no tienen efecto negativo para el desarrollo y productividad del cultivo.
LITERATURA CITADA

3. LITERATURA CITADA GENERAL.

Carlquist, S. 1985 Vasicentric tracheids as drought survival mechanism in the woody flora of southern California and similar regions; review of vasicentric tracheids. Aliso 11: 37-68.

Ferreyra E., Raúl; Sellés V., Gabriel; Ahumada B., Rodrigo; Maldonado B., Patricio; Gil M., Pilar. 2005. Manejo del riego localizado y fertirrigación. La Cruz, Chile. Instituto de Investigaciones Agropecuarias. Boletín INIA N° 126. 56 p.

99

Ninot i Cort A. 1999 El cultivo del nogal. Ecología de la especie. Su cultivo. IRTA-Centre Mas de Bové.

Rodríguez T. E. 1997. La dendrocronología y el carbono 14 en la datación de bienes culturales. Laboratorio de Dendrodatación. Centro de Investigación Forestal, INIA.

Thompson T. E. y Young F. 1985. Description of pecan cultivars. Pecan cultivars past and present by The Texas pecan growers association, INC. College Station, Texas.

4. APÉNDICE
Anexo 1. Carta de recepción de artículo a Revista Chapingo Serie Horticultura.

UNIVERSIDAD AUTÓNOMA CHAPINGO
COORDINACIÓN DE REVISTAS INSTITUCIONALES

602.8/006

ASUNTO: Se recibe artículo

DR. G. GONZÁLEZ CERVANTES
INSTITUTO NACIONAL DE INVESTIGACIONES
FORESTALES AGRICOLAS Y PECUARIAS
CENID RASPA
PRESENTE

Ha sido recibido y se someterá al proceso de doble arbitraje y edición para su posible publicación en la Revista Chapingo Serie Horticultura.

Se extiende la presente CONSTANCIA dieciocho días del mes de enero del año dos mil diez.

ATENTAMENTE

DR. GUSTAVO ALMAQUER VARGAS
EDITOR PRINCIPAL DE LA REVISTA CHAPINGO SERIE HORTICULTURA

C.c.p. Archivo de la Revista Chapingo
GAV@vms

Coordinación de Revistas Institucionales, Universidad Autónoma Chapingo, Chapingo, Ed. de México
Cubículo 113, Edificio Dr. Efraín Hernández, Km. 38.5 Carr. México-Texcoco. C. P. 56230. Tel. y Fax: (01595) 95-2-15-69. Correo-e: cori.uach@gmail.com; Página Web: www.chapingo.mx/revistas/
Anexo 2. Carta de recepción de artículo a Revista Terra Latinoamericana.

Revista TERRA LATINOAMERICANA
Órgano de difusión científica de la SMCS, A.C

Sociedad Mexicana de la Ciencia del Suelo

Torreón, Coahuila a 10 de abril de 2010

Por este conducto, notifico de recibido el manuscrito: CORRELACION ENTRE LOS SISTEMAS DE RIEGO Y LA MORFOLOGÍA ESTOMÁTICA EN FOLIOLOS DE NOGAL PECANERO, el cual ha quedado registrado con el número NEM284-6, para su posible publicación en la Revista TERRA Latinoamericana, en el número especial que saldrá publicado en el mes de Octubre del 2010, con motivo especial del XXXV Congreso Nacional de la Ciencia del Suelo a celebrarse en la ciudad de Mexicali, BC.

Agradecemos el envío del manuscrito.

Atentamente

Dr. Manuel Fortis Hernández
Coordinador del Comité Editorial del Número Especial de la Revista TERRA LATINOAMERICANA

c.c.p. Archivo

XXXV Congreso Nacional de la Ciencia del Suelo
25 – 29 de octubre 2010
Mexicali, BCN.