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El tema de este trabajo es el problema de estimación pun-

tual en modelos estad́ısticos paramétricos. Los principales obje-

tivos que se persiguen son los siguientes: (i) Analizar dos métodos

de construcción de estimadores, a saber, la técnica de verosimili-

tud máxima y el método de momentos, (ii) Proporcionar ilustra-

ciones detalladas y completas sobre ideas básicas en la teoŕıa, como

insesgamiento, consistencia y normalidad asintótica, y (iii) Presen-

tar una deducción detallada de la distribución ĺımite de cuantiles

muestrales. La principal contribución de este trabajo se ubica en

el último de estos objetivos, proporcionando una demostración que
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This work concerns the problem of point estimation in para-

metric statistical models, and the three main objectives of this ex-

position are as follows: (i) To analyze two methods of construct-

ing estimators, namely, the maximum likelihood technique and the

method of moments, (ii) To provide detailed illustrations of basic

notion in the theory, as unbiasedness, consistency and asymptotic

normality, and (iii) To give a detailed derivation of the limit distri-

bution of sample quantiles. The main contribution of this note is

to present a complete derivation of this last result which, combines

the central limit theorem with the relation between the distribution

of an order statistic and binomial random variables.

iv



Contents

1. A Panoramic View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The Estimation Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Objectives and Main Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 The Project Behind This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 The Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Statistical Point Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Unbiasedness and Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 A Binomial Example and Factorial Moments . . . . . . . . . . . . . . . . . . . . 11

2.4 Additional Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3. Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Maximum Likelihood and the Invariance Property . . . . . . . . . . . . . . . 19

3.3 The Log-Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 The Maximum Likelihood Technique in Specific Examples . . . . . . . 21

3.5 A Non-smooth Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4. Method of Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.1 Moment Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Consistency of the Method of Moments . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

v



5. Quantile Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Population Quantiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Sample Quantiles and Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.3 Asymptotic Distribution of Sample Quantiles . . . . . . . . . . . . . . . . . . . . 56

5.4 Preliminary Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Proof of the Asymptotic Normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vi



Chapter 1

A Panoramic View

The objective of this chapter is to provide a general perspective of the

material presented in the subsequent development. The main goals and con-

tributions as well as the motivation behind this work are clearly stated, and

the organization and content of the following chapters is briefly described.

1.1. Introduction

This work is concerned with the problem of parametric point estimation,

which is pervasive and plays a central role in the theory and applications of

statistics. Indeed, point estimation lays in the core of the statistical method-

ology, and a major step in every analysis is the determination of estimates

(i.e., approximations) to some unknown quantities in terms of the observed

data, and every treatise on theoretical or applied statistics dedicates a good

amount of space to describe methods of constructing estimators and to ana-

lyze its properties; see, for instance, Dudewicz and Mishra (1988), Wackerly

et al. (2009), Lehmann and Casella (1999), or Graybill (2000).

The topics analyzed in the following chapters are mainly concentrated

on three aspects of the estimation problem:

(i) The construction of estimators via the maximum likelihood technique and

the method of moments;

1
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(ii) The study of particular models to illustrate the estimation procedures,

and to point out the technical difficulties to obtain explicit formulas.

(iii) The analysis of the estimators of the quantiles of the underlying popu-

lation.

These topics are briefly described below.

1.2. The Estimation Problem

In general, the purpose of a statistical analysis is to use the observed data

to gain knowledge about some unknown aspect of the process generating

the observations. The observable data X = (X1, X2, . . . , Xn) is thought of

as a random vector whose distribution is not completely known. Rather,

theoretical or modeling considerations lead to assume that the distribution

of X, say PX, belongs to a certain family ℱ of probability measures defined

on (the Borel class of) IRn:

PX ∈ ℱ . (1.2.1)

This is a statistical model, and in any practical instance it is necessary to

include a precise definition of the family ℱ . In this work, the main interest

concentrates on parametric models, for which the family ℱ can be indexed

by a k-dimensional vector µ whose components are real numbers; in such a

case the set of possible values of µ, which is referred to as the parameter

space, will be denoted be Θ and ℱ can be written as

ℱ = {Pµ ∣ µ ∈ Θ}.

In this context the model (1.2.1) ensures that there exists some parameter

µ∗ ∈ Θ such that PX = Pµ∗ , that is, for every (Borel) subset A of IRn

P [X ∈ A] = PX[A] = Pµ∗ [A]. (1.2.2)

The parameter µ∗ satisfying this relation for every (Borel) subset of IRn is the

true parameter value. Notice that the model prescribes the existence of µ∗ ∈
Θ such that the above equality always holds, but does not specify which is

the parameter µ∗; it is only supposed that µ∗ belongs to the parameter space

Θ, and the main objective of the analyst is to determine µ∗ using the value

attained by the vector X, say X = x. Indeed, the lack of exact knowledge

of µ∗ represents ‘the aspects that are unknown ’ to the analyst about the
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real process generating the observation vector X. On the other hand, in

any practical situation, µ∗ can not be determined exactly after observing the

value of X, so that the real goal of the analyst is to make an ‘educated guess’

about the true parameter value using the observed value of X; this means

that a function T (X) must be constructed so that, after observing X = x,

the value T (x) will represent ‘the guesse’ (approximation) of the analyst to

the true parameter value µ∗. More generally, the interest may be to obtain

an ‘approximation’ to the value g(µ∗) attained by some function g(µ) at the

true parameter value µ∗. The estimation problem consists in constructing a

function T (X) whose values will be used as approximations to g(µ∗) such that

the estimator T (X) has good statistical properties. As already mentioned,

this work analyzes methods to construct estimators.

1.3. Objectives and Main Contribution

The main goals of this work can be described as follows:

(i) To present a formal description of two important methods to construct

estimators, namely, the maximum likelihood technique, and the method of

moments;

(ii) To use selected examples to illustrate the construction of estimators in

models involving distributions frequently used in applications,

(iii) To show the usefulness of elementary analytical tools in the analysis of

basic notions in the theory of point estimation, as unbiasedness, consistency,

asymptotic normality and convergence in distribution.

On the other hand, this work is also concerned with the more specific

problem of estimating a quantile of a continuos distribution function, and

the main purpose in this direction is the following:

(iv) To provide a rigorous derivation of the asymptotic distribution of the

sequence of sample quantiles of a given order.

The analysis performed below to achieve this last objective represents

the main contribution of this work. In fact, the theorem on the limit distri-

bution of a sequence of sample quantiles is usually presented without proof

in intermediate level texts, and in the present exposition a serious effort has

been made to derive such a result in a clear and concise manner, highlight-
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ing the essential statistical and analytical tools that are used to establish the

theorem, and indicating clearly the basic steps of the argument.

1.4. The Project Behind This Work

This work stems form the activities developed in the project Mathemati-

cal Statistics: Elements of Theory and Examples, started on July 2011 by

the Graduate Program in Statistics at the Universidad Autónoma Agraria

Antonio Narro. The basic aims of the project are:

(i) To be a framework were statistical problems can be freely and fruitfully

discussed;

(ii) To promote the understanding of basic statistical and analytical tools

through the analysis and detailed solution of exercises.

(iii) To develop the writing skills of the participants, generating an orga-

nized set of neatly solved examples, which can used by other members of the

program, as well as by the statistical communities in other institutions and

countries.

(iv) To develop the communication skills of the students and faculty through

the regular participation in seminars, were the results of their activities are

discussed with the members of the program.

Presently, the work of the project has been concerned with fundamental

statistical theory at an intermediate (non-measure theoretical) level, as in the

book Mathematical Statistics by Dudewicz and Mishra (1998). When neces-

sary, other more advanced references that have been useful are Lehmann and

Casella (1998), Borobkov (1999) and Shao (2002), whereas deeper probabilis-

tic aspects have been studied in the classical text by Loève (1984). On the

other hand, statistical analysis requires algebraic and analytical tools, and

ne in these directions the basic references in the project are Apostol (1980),

Fulks (1980), Khuri (2002) and Royden (2003), which concern mathematical

analysis, whereas the algebraic aspects are covered in Graybill (2001) and

Harville (2008).

The examples presented in the following chapters reflect the work devel-

oped in the project, and it is a pleasure to thank to Alfonso Soto Almaguer,

by his generosity and clever discussions.
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1.5. The Organization

The remainder of this work has been organized as follows:

In Chapter 2 some basic concepts in the theory of point estimation

are introduced, presenting a description of the idea of parametric statisti-

cal model, and discussing the estimation problem of an unknown parametric

function. The presentation continues with the notions of unbiased estima-

tor and consistency of a sequence of estimators, and the related concept of

asymptotically unbiased sequence is also analyzed.

Next, in Chapter 3 the method of maximum likelihood estimation is

introduced, which is based on the intuitive idea that, after observing the

data, the estimate of the unknown parameter µ is the value µ̂ in the parameter

space that assigns highest probability to the observations. Then, Chapter

4 is concerned with the method of moments and, finally, in Chapter 5 the

estimation of sample quentiles is studied.

As already mentioned, all of the notions introduced in this work are

illustrated by carefully analyzed examples.



Chapter 2

Statistical Point Estimation

In this chapter some basic concepts in the theory of point estimation

are introduced. The exposition begins with a brief description of the idea of

parametric statistical model, and then the estimation problem of an unknown

parametric function is discussed. The presentation continues with the notions

of unbiased estimator and consistency of a sequence of estimators, and the

related concept of asymptotically unbiased sequence is also analyzed. All

of the concepts introduced in this chapter are illustrated using fully solved

examples. A detailed presentation of the material in this chapter can be

found, for instance, in Dudewicz and Mishra (1998), Mood et al. (1988) or

Wackerly et al. (2009) at a level similar to the one in this work; a more

advanced perspective is given in Lehmann and Casella (1998), Borobkov

(1999) or Shao (2010).

2.1. Introduction

Given an observable vector Xn = (X1, X2, . . . , Xn), a parametric statistical

model for X prescribes a family {Pµ}µ∈Θ of probability distributions for X.

The set of indices Θ is referred to as the parameter space and is a subset

of an Euclidean space IRk. The essence of a statistical model is that the

distribution of X is supposed to be Pµ for some parameter µ ∈ Θ, but the

6
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‘true’ parameter value—the one which corresponds to the distribution of the

observation vector X—is unknown. The statistical model is briefly described

by writing

X ∼ Pµ, µ ∈ Θ.

Alternatively, if X has a density or a probability function fX(x; µ), the model

can be specified as

X ∼ fX(x; µ), µ ∈ Θ.

On the other hand, frequently the components X1, X2 . . . , Xn of the random

vector X are independent and identically distributed with common density

or probability function f(x; µ), and in this case the model will be written as

Xi ∼ f(x; µ), µ ∈ Θ,

where it is understood that the involved variables are independent with the

common distribution determined by f(x; µ).

The main objective of the analyst is to determine, at least approxi-

mately, the value of the true parameter or, more generally, the value of a

function g(µ) at the true parameter. To achieve this goal, the components

of the observation vector X are combined in some way to obtain a function

Tn ≡ Tn(X) = Tn(X1, X2, . . . , Xn)

and, after observing X = x = (x1, x2, . . . , xn), the function Tn is evaluated

at x to obtain Tn(x) = Tn(x1, x2, . . . , xn), a value that is used as an ‘approx-

imation’ of the unknown quantity g(µ). The random variable Tn is called an

estimator of g(µ) and Tn(x) is the estimate corresponding to the observation

X = x. Notice that this idea of estimator is quite general; indeed, an esti-

mator is an arbitrary function of the available data whose values are used

as an approximation of the unknown value of the parametric quantity g(µ);

thus, some criteria are needed to distinguish among diverse estimators and

to select one with desirable properties.

2.2. Unbiasedness and Consistency

In this section the ideas of bias of an estimator and consistency of a sequence

of estimators are introduced. In general, after obtaining the data, the cal-

culated value of the estimator will not coincide with the unknown quantity
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g(µ). The unbiasdness property requires that, if the estimator is computed

repeatedly, then the average of the calculated values converge to g(µ). On the

other hand, the notion of consistency concerns the method used to generate

the estimations: The idea is that, as the sample size increases, the estimators

converge (in probability) to the unknown quantity being estimated.

Definition 2.2.1. An estimator Tn of g(µ) based onX1, X2, . . . , Xn is unbiased

if

Eµ[Tn] = g(µ)

for every µ ∈ Θ; notice that the subindex µ in the expectation operator is

used to indicate that the expected value is computed under the condition

that µ is the true parameter value.

In general, the value attained by an estimator Tn = Tn(X1, X2, . . . , Xn)

of g(µ), does not coincide with the quantity g(µ). However, if the estimator

Tn is unbiased, and the experiment producing the sample X is repeated,

obtaining the estimators Tn 1, Tn 2, Tn 3, . . . at each trial, it follows from the

law of large numbers that the average

Tn 1 + Tn 2 + Tn 3 + ⋅ ⋅ ⋅+ Tnk

k

converges to g(µ) as the number k of repetitions increases (Loève, 1984,

Dudewicz and Mishra, 1998). Thus, on the average, the estimator Tn ‘points

to the correct quantity’ g(µ).

Remark 2.2.1. It must be noted that not all of the parametric quanti-

ties of interest admit an unbiased estimator. For instance, suppose that

X1, X2, . . . , Xn is a sample from the Bernoulli (µ) distribution, where µ ∈
Θ = [0, 1], and assume that Tn = Tn(X1, X2, . . . , Xn) is an unbiased estima-

tor for g(µ). Since

Pµ[X1 = x1, X2 = x2, . . . , Xn = xn] = µ
∑

i
xi(1− µ)n−

∑
i
xi

when the xis are zero or one, it follows that

Eµ[Tn] =
∑

x1,...,xk=0,1

T (x1, x2, . . . , xn)µ
∑

i
xi(1− µ)n−

∑
i
xi
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is a polynomial of degree less than or equal to n, so that Eµ[Tn] = g(µ)

for all µ ∈ Θ can not be satisfied for functions that are not polynomials,

as g(µ) = eµ or g(µ) = sin(µ), or even for polynomial functions with degree

larger that n, as g(µ) = µn+1. Thus, the unbiasedness property may be too

restrictive, and it is is possible to have that an unbiased estimator does not

exists in some cases of interest. ⊔⊓

Definition 2.2.2. The bias function of an estimator Tn of g(µ) is defined by

bTn(µ):= Eµ[Tn]− g(µ), µ ∈ Θ,

so that Tn is unbiased if bTn(µ) = 0 for every µ ∈ Θ.

To compute the bias of an estimator Tn it is necessary to compute the

expected value Eµ[Tn], and usually this task requires to know the density

or probability function of Tn. However, occasionally, symmetry conditions

may help to simplify the computation; this comment will be illustrated in

the examples below.

Definition 2.2.3. A sequence {Tn}n=1,2,... of estimators of g(µ) is asymptoti-

cally unbiased if

lim
n→∞

bTn(µ) = 0, µ ∈ Θ.

Notice that the above property is equivalent to the requirement that,

for each parameter µ ∈ Θ, Eµ[Tn] → g(µ) as n → ∞. The following notion

also concerns the behavior of the whole sequence of estimators {Tn} or,

equivalently, the method used to generate the estimators.

Definition 2.2.4. A sequence {Tn}n=1,2,... of estimators of g(µ) is consistent

if for each " > 0,

lim
n→∞

Pµ[∣Tn − g(µ)∣ > "] = 0, µ ∈ Θ,

that is, the sequence {Tn} always converges in probability to g(µ) with re-

spect to the distribution Pµ. The above convergence will be alternatively

written as

Tn
Pµ−→ g(µ).
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There are three main tools to show consistency of a sequence of estima-

tors, which are briefly discussed in the following points (i)–(iii):

(i) The strong law of large numbers: Assume that the quantity g(µ) is the

expectation of a random variable Y = Y (X1), that is,

g(µ) = Eµ[Y (X1)]

In this case, if the variables X1, X2, . . . , Xn, . . . are independent and identi-

cally distributed, setting

Tn =
Y (X1) + Y (X2) + ⋅ ⋅ ⋅+ Y (Xn)

n
,

the law of large numbers yields that Tn
Pµ−→ g(µ), that is the sequence {Tn}

of estimators of g(µ) is consistent.

(ii) The continuity theorem. Roughly, this result establishes that consistency

is preserved under the application of a continuous function and is formally

stated as follows:

Suppose that the parametric functions g1(µ), g2(µ), . . . , gr(µ) are estimated

consistently by the sequences {T1n}, {T2n}, . . . , {Tr n}, that is

Ti n
Pµ−→ gi(µ), i = 1, 2, . . . , r.

Additionally, consider a function G(x1, x2, . . . , xr) which is continuous at

each point (g1(µ), . . . , gr(µ)), where µ ∈ Θ. Within this framework, the new

sequence {G(T1n, T2n, . . . , Tr n)} of estimators of G(g1(µ), g2(µ), . . . , gr(µ))

is consistent, i.e.,

G(T1n, T2n, . . . , Tr n)
Pµ−→G(g1(µ), g2(µ), . . . , gr(µ)).

(iii) The idea of convergence in the mean. If p is a positive number, a

sequence of random variables {Tn} converges in the mean of order p to g(µ)

if

lim
n→∞

Eµ[∣Tn − g(µ)∣p] = 0, µ ∈ Θ.

The notation Tn
Lp

−→ g(µ) will be used to indicate that this condition holds.

The most common instance in applications arises when p = 2, so that

Tn
L2

−→ g(µ) is equivalent to the statement that, for each µ ∈ Θ, Eµ[(Tn −
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g(µ))2] → 0 as n → ∞. When Tn
Lp

−→ g(µ) the sequence {Tn} of estimators

of g(µ) is referred to as consistent in the mean of order p. Suppose now that

Tn
Lp

−→ g(µ), and notice that Markov’s inequality yields that, for each " > 0,

Pµ[∣Tn − g(µ)∣ > "] ≤ Eµ[∣Tn − g(µ)∣p]
"p

→ 0 as n → ∞,

so that

Tn
Lp

−→ g(µ) ⇒ Tn
P−→ g(µ);

in words, if the sequence {Tn} of estimators of g(µ) is consistent in the mean

of order p, then {Tn} is consistent (in probability). This implication is useful,

since it is frequently easier to establish consistency in the mean of some order

p > 0, than to prove consistency directly. When considering consistency in

the mean of order 2, it is useful to keep in mind that the mean square error

Eµ[(Tn − g(µ))2], the variance and the bias function of Tn are related by

Eµ[(Tn − g(µ))2] = bTn(µ)
2 +Varµ(Tn).

2.3. A Binomial Example and Factorial Moments

In this section the construction of unbiased estimators will be illustrated

in an example involving the binomial distribution. In this case, and in sim-

ilar contexts where the specification of the underlying probability function

involves the factorial of an integer, the computation of expectation can be

eased by using the moment generating function of factorial moments, an idea

that will be introduced after the following example.

Exercise 2.3.1. Let the variables X1, X2, . . . , Xn be independent and iden-

tically distributed Bernoulli random variables with probability of success p,

and set Tn = X1 +X2 + ⋅ ⋅ ⋅+Xn, whereas Xn = Tn/n is the sample mean

of the sample. Show that

(a) Tn(Tn − 1)/cn with cn = n(n− 1) is an unbiased estimator of p2.

(b) Tn(Tn−1)(Tn−2)/dn with dn = n(n−1)(n−2) is an unbiased estimator

of p3.

(c) Investigate the consistency of the estimators in parts (a) and (b).
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(d) Find an unbiased estimator of p− q where, as usual, q = 1− p.

Solution. (a) It must be shown that Ep[Tn(Tn − 1)/[n(n− 1)]] = p for every

p ∈ [0, 1]. To compute the expectation, first notice that Tn ∼ Binomial (n, p),

so that Ep[Tn(Tn−1)] =
∑n

t=0 t(t−1)
(
n
t

)
ptqn−t. To evaluate this summation,

recall the identity (
n

t

)
=

n

t

(
n− 1

t− 1

)
, t ≥ 1, (2.3.1)

to obtain, after two successive applications of this relation, that

(
n

t

)
=

n

t

(
n− 1

t− 1

)
=

n

t
⋅ n− 1

t− 1

(
n− 2

t− 2

)
, t ≥ 2. (2.3.2)

Therefore,

Ep[Tn(Tn − 1)] =

n∑
t=0

t(t− 1)

(
n

t

)
ptqn−t

=

n∑
t=2

t(t− 1)
n

t
⋅ n− 1

t− 1

(
n− 2

t− 2

)
ptqn−t

= n(n− 1)

n∑
t=2

(
n− 2

t− 2

)
ptqn−t,

where (2.3.2) was used to set the last equality. Changing the variable t in

the last summation to r = t− 2, it follows that

Ep[Tn(Tn − 1)] = n(n− 1)

n−2∑
r=0

(
n− 2

r

)
pr+2qn−2−r

= n(n− 1)p2
n−2∑
r=0

(
n− 2

r

)
prqn−2−r

= n(n− 1)p2,

where the last equality used that
∑n−2

r=0

(
n−2
r

)
prqn−2−r is the sum of all no-

null probabilities in a Binomial (n− 2, p) distribution, so that the summation

equals to 1. Consequently, for n ≥ 2, Ep[Tn(Tn − 1)/cn] = p2, where cn =

n(n− 1), and then, since the parameter p ∈ [0, 1] is arbitrary, Tn(Tn − 1)/cn

is an unbiased estimator of p2.
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(b) The argument parallels the one used in part (a). It is necessary to

evaluate

Ep[Tn(Tn − 1)(Tn − 2)] =

n∑
t=0

t(t− 1)(t− 2)

(
n

t

)
ptqn−t

=

n∑
t=3

t(t− 1)(t− 2)

(
n

t

)
ptqn−t.

Applying (2.3.1) three times, it follows that
(
n

t

)
=

n

t
⋅ n− 1

t− 1
⋅ n− 2

t− 2

(
n− 3

t− 3

)
, t ≥ 3,

and these two last displays together yield that

Ep[Tn(Tn − 1)(Tn − 2)]

=

n∑
t=3

t(t− 1)(t− 2)
n

t
⋅ n− 1

t− 1
⋅ n− 2

t− 2

(
n− 3

t− 3

)
ptqn−t

= n(n− 1)(n− 2)

n∑
t=3

(
n− 3

t− 3

)
ptqn−t

= n(n− 1)(n− 2)

n−3∑
r=0

(
n− 3

r

)
pr+3qn−3−r

= n(n− 1(n− 2))p3
n−3∑
r=0

(
n− 3

r

)
prqn−3−r

= n(n− 1)(n− 2)p3

where the change of variable r = t−3 was used to set the third equality. Thus,

for n ≥ 3, dn = n(n − 1)(n − 2) ∕= 0 and Ep[Tn(Tn − 1)(Tn − 2)/dn] = p3

for every parameter value p ∈ [0, 1], that is, Tn(Tn − 1)(Tn − 2)/dn is an

unbiased estimator of p3.

(c) By the strong law of large numbers, Tn/n = Xn
Pp−→Ep[X1] = p. Conse-

quently, by the continuity theorem,

Tn(Tn − 1)

cn
=

Tn(Tn − 1)

n(n− 1)
=

Xn(Xn − 1/n)

1(1− 1/n)

Pp−→ p ⋅ p
1 ⋅ 1 = p2

and, similarly,

Tn(Tn − 1)(Tn − 2)

dn

=
Tn(Tn − 1)(Tn − 2)

n(n− 1(n− 2))
=

Xn(Xn − 1/n)(Xn − 2/n)

1(1− 1/n)(1− 2/n)

Pp−→ p ⋅ p ⋅ p
1 ⋅ 1 ⋅ 1 = p3.
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Thus, the sequences {Tn(Tn − 1)/cn} and {Tn(Tn − 1)(Tn − 2)/dn} estimate

consistently p2 and p3, respectively.

(d) Notice that g(p) = p − q = p − (1 − p) = 2p − 1; since Ep[Xn] = p, it

follows that Ep[2Xn − 1] = 2p − 1 = g(p), that is, 2Xn − 1 is an unbiased

estimator of g(p) = 2p− 1. ⊔⊓

Remark 2.3.1. For a ∈ IR and a positive integer k, set

(a)k: = a(a− 1) ⋅ ⋅ ⋅ (a− k + 1).

If k is a positive integer, for each random variableW the kth factorial moment

is given by

E[(W )k] = E[W (W − 1) ⋅ ⋅ ⋅ (W − k + 1)]

whenever the expectation exists. With this notation, the core of the solution

to Exercise 2.3.1 was the computation of Ep(Tn)2] and Ep[(Tn)3], the second

and third factorial moments of Tn. In some cases, the evaluation of a factorial

moment of W can be simplified by using the following factorial moments

generating function:

FactMW (t) = E[tW ], t > 0. (2.3.3)

If this function is finite in a neighborhood of 1, then its derivatives of all

orders exist about 1; this fact follows from the dominated convergence theo-

rem (Apostol, 1980, Rudin, 1984). Moreover, the derivatives of FactMW (t)

are given by

d

dt
FactMW (t) = E[WtW−1] = E[(W )1 tW−1]

d2

dt2
FactMW (t) = E[W (W − 1)tW−2] = E[(W )2 tW−2]

d3

dt3
FactMW (t) = E[W (W − 1)(W − 2)tW−3] = E[(W )3 tW−3]

...

dk

dtk
FactMW (t) = E[W (W − 1) ⋅ ⋅ ⋅ (W − k + 1) tW−k] = E[(W )k tW−k],

where k ≥ 1. Evaluating at t = 1, it follows that

dk

dtk
FactMW (t)

∣∣∣∣
t=1

= E[(W )k] = E[W (W − 1)(W − 2) ⋅ ⋅ ⋅ (W − k + 1)],

(2.3.4)
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and then the factorial moments ofW can be determined by taking the deriva-

tives of FactMW (t) and evaluating them at t = 1. For the random variable

Tn in the previous exercise, Tn ∼ Binomial (n, p), and the factorial moments

generating function is easily determined:

FactMTn(t) =

n∑

k=0

tk
(
n

k

)
pkqn−k =

n∑

k=0

(
n

k

)
(pt)kqn−k = (q + tp)n,

and then
d

dt
FactMTm

(t) = np(q + tp)n−1

d2

dt2
FactMTn(t) = n(n− 1)p2(q + tp)n−2

d3

dt3
FactMTn(t) = n(n− 1)(n− 2)p3(q + tp)n−3;

evaluating the second and third derivatives at t = 1, it follows that

Ep[(Tn)2] = Ep[Tn(Tn − 1)] =
d2

dt2
FactMTn(t)

∣∣∣∣
t=1

= n(n− 1)p2

and

Ep[(Tn)3] = Ep[Tn(Tn−1)(Tn−2)] =
d3

dt3
FactMTn(t)

∣∣∣∣
t=1

= n(n−1)(n−2)p3;

thus, the generating function of factorial moments provides an alternative

way to compute the expectations in Example 2.3.1. ⊔⊓

2.4. Additional Examples

Before concluding this chapter, the ideas of unbiasdness and consistency are

illustrated in some additional examples involving continuous and discrete

distributions.

Exercise 2.4.1. Let Tn and T ′
n be two independent unbiased and consistent

estimators of µ.

(a) Find and unbiased estimator of µ2;

(b) Find and unbiased estimator of µ(µ − 1);

(c) Are the estimator in parts (a) and (b) consistent?
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Solution. (a) The independence and unbiasedness properties of Tn and T ′
n

yield that, for each parameter µ,

Eµ[TnTn] = Eµ[Tn]Eµ[T
′
n] = µ ⋅ µ = µ2

and then TnT
′
n is an unbiased estimator of µ2.

(b) Using that Eµ[TnT
′
n] = µ2 and Eµ[Tn] = µ, it follows that

Eµ[Tn(T
′
n − 1)] = Eµ[TnT

′
n − Tn] = µ2 − µ = µ(µ − 1),

that is, Tn(T
′
n − 1) is an unbiased estimator of µ(µ − 1).

(c) Since Tn and T ′
n are consistent estimators of µ, combining the conver-

gences Tn
Pµ−→ µ and T ′

n
Pµ−→ µ with the continuity theorem, it follows that

TnT
′
n

Pµ−→ µ2 and Tn(T
′
n − 1)

Pµ−→ µ(µ − 1), so that the estimators in parts (a)

and (b) are consistent. ⊔⊓

Exercise 2.4.2. Let X1, X2, . . . be independent and identically distributed

random variables with distribution N (¹, ¹) for some ¹ > 0. Find a consis-

tent unbiased estimator of ¹2. [Hint: E[Xn] = ¹ and E[S2
n] = ¹; consider

Tn = XnS
2
n.]

Solution. Recall that in the context of a normal model Xn and S2
n are inde-

pendent; since E¹[Xn] = ¹ and E¹[S
2
n] = ¹ (because in the present model

the population variance and mean coincide), it follows that E¹[XnS
2
n] =

E¹[Xn]E¹[S
2
n] = ¹2, and then Tn = XnS

2
n is an unbiased estimator of ¹2.

Finally, using thatXn
P¹−→¹ and S2

n

P¹−→¹, it follows that Tn
P¹−→¹⋅¹ = ¹2, by

the continuity theorem, and then {Tn} is a consistent sequence of estimators

of ¹2. ⊔⊓

Exercise 2.4.3. Let X1, X2, . . . , Xn be a random sample of size n from the

density f(x; µ) = [(1− µ) + µ/(2
√
x)]I[0,1](x).

(a) Show that Xn is a biased estimator of µ and find its bias bn(µ),

(b) Does limn→∞ bn(µ) = 0 for all µ?

(c) Is Xn consistent in mean square?
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Solution. The mean of the density f(x; µ) is

¹(µ) =

∫

IR

xf(x; µ) dx =

∫ 1

0

x[(1− µ) + µ/(2
√
x)] dx =

1− µ

2
+

µ

3
=

1

2
− µ

6
.

(a) Since Eµ[Xn] = ¹(µ) ∕= µ, the sample mean Xn is a biased estimator of

µ, and bn(µ) = ¹(µ)− µ = 1/2− 7µ/6

(b) Notice that bn(µ) = 1/2− 7µ/6 ∕= 0 for all µ ∈ [0, 1] does not depend on

n, so that limn→∞ bn(µ) = 1/2− 7µ/6, and then bn(µ) does not converge to

zero at any parameter value; in particular, considering Xn as an estimator

of µ, the sequence {Xn} is not asymptotically unbiased.

(c) The sequence {Xn} is not consistent in mean square; indeed Eµ[(Xn −
µ)2] ≥ b2n(µ), and then Eµ[(Xn − µ)2] does not converges to zero as n → ∞,

by part (b). ⊔⊓

Exercise 2.4.4. Let the random variables X1, X2, . . . , Xn be independent

and identically distributed Poisson random variables with parameter ¸ > 0.

Show that Tn = Xn
2 − Xn is a biased estimator of ¸2, find its bias bn(¸)

and hence, find an unbiased estimator of ¸2. Does limn→∞ bn(¸) = 0 for all

¸?

Solution. Recall that for a Poisson (¸) distribution the mean ¹(¸) and the

variance ¾(¸)2 are equal to ¸. Thus, E¸[Xn] = ¹(¸) = ¸ and E¸[X
2

n] =

Var¸[Xn] + (E¸[Xn])
2 = ¾(¸)2/n+ ¹(¸)2 = ¸/n+ ¸2. Thus,

E¸[Tn] = E¸[Xn
2 −Xn] = (¸/n+ ¸2)− ¸.

Thus, as an estimator of ¸2, Tn is a biased estimator, and its bias, which

is given by bn(¸) = E¸[Tn] − ¸2 = ¸/n − ¸, which converges to ¸ ∕= 0 as

n goes to ∞. To find an unbiased estimator of ¸2, recall that E¸[Xn
2
] =

¸2 + ¸/n, and combine this equality with E¸[Xn/n] = ¸/n to conclude that

E¸[Xn
2 −Xn/n] = ¸2, showing that Xn

2 −Xn/n is an unbiased estimator

of ¸. ⊔⊓



Chapter 3

Maximum Likelihood Estimation

In this chapter a fundamental procedure to obtain an estimator of a

parametric function will be presented. The method is based on an intuitive

principle that can be roughly described as follows: After observing the value

attained by the random vector X, say X = x, the estimate of the unknown

parameter µ is the value µ̂ in the parameter space that assigns highest proba-

bility to the observed data. In other words, under the condition that µ̂ is the

true parameter value, the occurrence of the observed event [X = x] is more

‘likely’ than under the condition that the true parameter is different from

µ̂. The objective of this chapter is to describe formally this method, and

illustrate the computation of the corresponding estimators in some specific

examples.

3.1. Introduction

The starting point of the exposition on the maximum likelihood procedure

is to define a measure of the likelihood of an observation X = x under the

different parameter values. To achieve this goal, consider a statistical model

X ∼ Pµ, µ ∈ Θ,

and, to begin with, suppose that X is a discrete vector. In this case, let

18
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fX(x; µ) = Pµ[X = x] be the probability function of X under the condition

that µ is the true parameter value. As a function of µ ∈ Θ, the value f(x; µ)

indicates the probability of observing X = x if the true distribution of X

is Pµ, and then is a measure of the ‘likelihood’ of the observation x if µ is

the true parameter. Thus, the likelihood function corresponding to the data

X = x is defined by

L(µ;x) = fX(x; µ), µ ∈ Θ. (3.1.1)

When X is continuous it has a density fX(x; µ) depending on µ, and the

likelihood function associated with the observation X = x is also defined by

(3.1.1); notice that in this case, f(x; µ) is not a probability. However, suppose

that the measurement instrument used to determine the observation has a

certain precision ℎ, where ℎ is ‘small’, so that when X = x is reported, the

practical meaning is that the vector X belongs to a ball B(x;ℎ) with center

x and radius ℎ; , when µ is the true parameter value, the probability of such

an event is ∫

y∈B(x;ℎ)

fX(y; µ) dy

and, if the density fX( ⋅; µ) is continuous, the above integral is approximately

equal to

Volume of B(x;ℎ)f(x; µ);

it follows that the likelihood function is (approximately) proportional to the

probability of observing X = x; moreover, the proportionality constant does

not depend on µ, and then, when the maximizer of the function L(⋅;X) is

determined, such a point also maximizes the above approximation to the

probability of the observation X = x.

3.2. Maximum Likelihood and the Invariance Property

In this section the procedure of maximum likelihood to estimate the true

parameter value µ will be formally introduced, and the invariance property,

allowing to estimate an arbitrary parametric function, will be established.

Definition 3.2.1. The maximum likelihood estimator of µ, hereafter denoted

by µ̂ ≡ µ̂(X), is (any) maximizer of the likelihood function L(µ;X) as a

function of µ, that is, µ̂ satisfies

L(µ̂;X) ≥ L(µ;X), µ ∈ Θ; (3.2.1)
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see (3.1.1).

This method to construct estimators of µ plays a central role in statistics,

and there are, at least, three reasons for its importance: (i) The method is

intuitively appealing, and (ii) The procedure generates estimators that, in

general, have nice behavior. For instance, as the sample size increases, the

sequence of maximum likelihood is generally consistent, and the estimators

are asymptotically unbiased. Moreover, (iii) The asymptotic variance of

maximum likelihood estimators is minimal (Dudewicz and Mishra, 1988,

Lehmann and Casella, 1998, Shao, 2010).

On the other hand, frequently what is desired is to estimate the value

of a parametric function g(µ) at the true parameter value. In this context,

it is necessary to decide what value ĝ is ‘more likely’ when X = x has been

observed. To determine such a value, consider the likelihood function L(⋅;x)
of the data and define, for each possible value g̃ of the function g(µ), the

reduced likelihood corresponding the value g̃ of g(µ) by

Lg̃(X): = max
µ: g(µ)=g̃

L(µ;X), (3.2.2)

so that Lg̃(X) is the largest likelihood that can be achieved among the pa-

rameters µ that produce the value g̃ for g(µ). The maximum likelihood

method prescribes to estimate g(µ) by the value ĝ that maximizes Lg̃(X) as

a function of g̃:

Lĝ(X) ≥ Lg̃(X), g̃ an arbitray value of g(⋅).

The maximizing value can be determined easily. Set

ĝ = g(µ̂) (3.2.3)

and notice that (3.2.1) and (3.2.2) imply that, for each possible value g̃ of

g(µ),

L(µ̂;X) ≥ max
µ: g(µ)=g̃

L(µ;X) = Lg̃(X)

and

L(µ̂;X) = max
µ: g(µ)=ĝ

L(µ;X) = Lĝ(X)

It follows that Lĝ(X) ≥ Lg̃(X), and then the reduced likelihood is maximized

by ĝ in (3.2.3). In short, the maximum likelihood estimator of a paramet-

ric function g(µ) is ĝ = g(µ̂), the value that is obtained by evaluating the
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function g at the maximum likelihood estimator of µ. This result is called

the invariance principle (or property) of the maximum likelihood estimation

procedure.

3.3. The Log-Likelihood Function

Before presenting some examples on maximum likelihood estimators, it is

convenient to note that, when X = (X1, X2, . . . , Xn) is a sample of size n

from a population with probability function or density f(x; µ), the likelihood

function is given by

L(µ;X) =

n∏

i=1

f(Xi; µ);

since the logarithmic function is strictly increasing, maximizing this product

is equivalent to maximizing its logarithm, which is given by

ℒ(µ;X) =

n∑

i=1

log(f(Xi; µ)).

In any case, whether L(⋅;X) or ℒ(µ;X) is being maximized, the problem

of obtaining its maximizer is an interesting one. As it should be expected,

the differentiation technique plays a central role to analyze this optimization

problem (Fulks, 1980, Khuri, 2002). In particular, if the likelihood function

is ‘smooth’ as a function of µ and the maximizer belongs to the interior of

the parameter space, the following likelihood equation is satisfied:

Dµℒ(µ;X) = 0, (3.3.1)

where Dµ is the gradient operator, whose components are the partial deriva-

tives with respect to each element of the parameter µ; thus, when µ is a

vector, (3.3.1) represent a system of equations satisfied by µ̂. On the other

hand, when µ̂ belongs to the boundary of the parameter space, the require-

ment (3.3.1) is no longer necessarily satisfied by the optimizer µ̂. These

remarks are illustrated in a collection of fully analyzed examples presented

in the following section.

3.4. The Maximum Likelihood Technique in Specific Examples

The following examples illustrate the application of the maximum likelihood

method for the construction of estimators in models that frequently appear in
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statistics, and show that the application of the technique leads to interesting

problems, even for familiar models as the normal one.

Exercise 3.4.1. Let X1, X2, . . . , Xn be a random sample from the uniform

density in (0, µ], that is, f(x; µ) = (1/µ)I(0,µ](x), where µ ∈ Θ = (0,∞).

Find the maximum likelihood estimator of µ, say Tn, and show that {Tn} is

a consistent sequence of estimators.

Solution. The likelihood function is given by

L(µ;X) =

n∏

i=1

(1/µ)I(0,µ](Xi) =

{
1/µn, if 0 < Xi ≤ µ for i = 1, 2, . . . , n
0, otherwise.

From this expression it follows that L(µ;X) is maximized by the smallest

number µ which satisfies Xi ≤ µ for every i, and such a number is µ̂n =

max{X1, . . . , Xn} = X(n), the largest order statistic of the sample. The

sequence {µ̂n} is consistent; indeed, given µ ∈ (0,∞) and " ∈ (0, µ),

Pµ[∣µ̂n − µ∣ > "] = Pµ[µ̂n > µ + "] + Pµ[µ̂n < µ − "]

= Pµ[µ̂n < µ − "]

= Pµ[X1 ≤ µ − ",X2 ≤ µ − ", . . . , Xn ≤ µ − "]

= (1− "/µ)n

where, to establish the second equality it was used that, when µ is the param-

eter value, the inequality µ̂n ≤ µ always holds, and the last step is due to the

fact that Pµ[Xi ≤ µ−"] = 1−"/µ for all i. It follows that Pµ[∣µ̂n−µ∣ > "] → 0

as n → ∞, that is, µ̂n
Pµ−→ µ, establishing the consistency of {µ̂n}. ⊔⊓

.

Exercise 3.4.2. Let X1, X2, . . . , Xn be a random sample of size m from a

N (
¹, ¾2

)
distribution, and let Y1, Y2, . . . , Yn be a random sample of size n

from a N (
º, ¾2

)
distribution, where the two samples are independent. Find

the maximum likelihood estimator of the overlapping coefficient

Δ(µ) ≡ Δ = 2Φ

(
−∣º − ¹∣

¾

)
, µ = (¹, º, ¾2) ∈ IR× IR× (0,∞) = Θ.
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Show that, as min{n,m} → ∞, the sequence of maximum likelihood estima-

tors {Δ̂mn} is consistent for Δ. Also find the maximum likelihood estimator

of µ = (¹, º, ¾2).

Solution. The likelihood function is given by

L(µ;X,Y) =

n∏

i=1

(1/
√
2¼¾)e−(Xi−¹)2/[2¾2]

m∏

j=1

(1/
√
2¼¾)e−(Yj−º)2/[2¾2]

and its logarithm is given by

ℒ(µ;X) = C − (n+m) log(¾)− 1

2

n∑

i=1

(Xi − ¹)2

¾2
− 1

2

m∑

j=1

(Yj − º)2

¾2
,

where C stands for a term that does not involve the parameter µ. The critical

points of ℒ(⋅;X,Y) satisfy

∂¹ℒ(µ;X,Y) =

n∑

i=1

(Xi − ¹)

¾2
= 0

∂ºℒ(µ;X,Y) =

m∑

j=1

(Yj − º)

¾2
= 0

∂¾ℒ(µ;X,Y) = −n+m

¾
+

n∑

i=1

(Xi − ¹)2

¾3
+

m∑

j=1

(Yj − º)2

¾3
= 0

Direct calculations yield that the unique solution (¹∗, º∗, ¾∗) of this system

is given by

¹∗ = Xn =
1

n

n∑

i=1

Xi

º∗ = Y m =
1

m

m∑

j=1

Yj

¾2
∗ =

1

n+m

⎡
⎣

n∑

i=1

(Xi −Xn)
2 +

m∑

j=1

(Yj − Y m)2

⎤
⎦

=
n

n+m
S̃2
nX +

m

n+m
S̃2
mY

where S̃2
nX =

∑n
i=1(Xi −Xn)

2/n and S̃2
mY =

∑m
j=1(Yj − Y m)2/m are the

maximum likelihood estimators of ¾2 based on X and Y, respectively. Since
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ℒ(µ;X,Y) → −∞ when ∣¹∣ + ∣º∣ → ∞ or ¾ → 0, it follows that the above

point (¹∗, º∗, ¾2
∗) is the maximizer of ℒ(⋅;X,Y), that is,

µ̂nm = (¹̂nm, º̂nm, ¾̂2
nm) =

(
Xn, Y m,

n

n+m
S̃2
nX +

m

n+m
S̃2
mY

)

When min{n,m} → ∞, the law of large numbers implies that

Xn
Pµ−→¹, Y m

Pµ−→ º, S̃2
n

Pµ−→¾2, and S̃2
m

Pµ−→¾2

and then, since ¾̂2
nm is a convex combination of S̃2

n and S̃2
m,

¾̂2
nm

Pµ−→¾2.

Hence, the sequence {µ̂nm} is consistent when min{m,n} goes to ∞. Since

the overlapping coefficient Δ = Δ(µ) is a continuous function of µ, it follows

form the above displays and the continuity theorem, that as min{n,m} → ∞,

Δ̂nm = Δ(µ̂nm)

= 2Φ

(
−∣Xn − Y n∣

¾̂nm

)
Pµ−→ 2Φ

(
−∣¹− º∣

¾

)
= Δ(µ) = Δ,

establishing that {Δ̂nm} is a consistent sequence as n and m increase. ⊔⊓

The following example shows that the calculation of a maximum like-

lihood estimator may be a difficult task, even in familiar and apparently

simple cases.

Exercise 3.4.3. Let X1, X2, . . . , Xn be a random sample of size m from a

N (
¹, ¾2

1

)
distribution and, independently, let Y1, Y2, . . . , Yn be a random

sample of size n from the N (
¹, ¾2

2

)
distribution. Find the maximum likeli-

hood estimators of ¹, ¾2
1 , ¾

2
2 , and find the variance of these estimators.

Solution. A solution to this problem will not be presented. The analysis be-

low shows that finding the maximum likelihood estimator of µ = (¹, ¾2
1 , ¾

2
2)

requires to solve a cubic equation; although an explicit formula for the solu-

tion of a cubic equation is available, it is not simple. The likelihood function

is

L(µ;X,Y) =

m∏

i=1

(1/
√
2¼¾1)e

−(Xi−¹)2/[2¾2
1 ]

n∏

j=1

(1/
√
2¼¾2)e

−(Yj−¹)2/[2¾2
2 ]
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and its logarithm is given by

ℒ(µ;X) = C −m log(¾1)− n log(¾2)− 1

2

m∑

i=1

(Xi − ¹)2

¾2
1

− 1

2

n∑

j=1

(Yj − ¹)2

¾2
2

where, as before, the term C does not involve µ. Assuming that this function

has a maximizer in the parameter space Θ = IR × (0,∞) × (0,∞), such a

point must satisfy the following likelihood system:

∂¹ℒ(µ;X,Y) =

m∑

i=1

(Xi − ¹)

¾2
1

+

n∑

j=1

(Yj − ¹)

¾2
2

= 0

∂¾1ℒ(µ;X,Y) = −m

¾1
+

m∑

i=1

(Xi − ¹)2

¾3
1

∂¾2ℒ(µ;X,Y) = − n

¾2
+

n∑

j=1

(Yj − ¹)2

¾3
2

The first equation yields that

m(Xm − ¹)

¾2
1

+
n(Y n − ¹)

¾2
2

= 0

that is,

m(Xm − ¹)¾2
2 + n(Y n − ¹)¾2

1 = 0

whereas the last two likelihood equations are equivalent to

¾2
1 =

1

m

m∑

i=1

(Xi − ¹)2 = S̃2
X m + (Xm − ¹)2

¾2
2 =

1

n

n∑

j=1

(Yj − ¹)2 = S̃2
Y n + (Y n − ¹)2

where S̃2
X m =

∑m
i=1(Xi − ¹)2/m and S̃2

Y n =
∑n

j=1(Yj − ¹)2/n. The two

last displays together lead to

m(Xm − ¹)[S̃2
Y n + (Y n − ¹)2] + n(Y n − ¹)[S̃2

X m + (Xm − ¹)2] = 0,

a cubic equation in ¹ ⊔⊓

.
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In the following example, the estimation of paramenter of a gamma

density will be studied when the other parameter is known; in contrast to

the case in which both parameters are unknown, an explicit formula for the

estimator will be obtained.

Exercise 3.4.4. Let X1, X2, . . . , Xn be a random sample of size n from the

Beta (®, ¯) density

f(x;®, ¯):=
Γ(®+ ¯)

Γ(®)Γ(¯)
x®−1(1− x)¯−1I(0,1)(x)

where ® and ¯ are positive numbers. In the following questions ¯ is a known

number, but ® ∈ (0,∞) is unknown.

(a) Find the maximum likelihood estimator of ® when ¯ = 1;

(b) Find the maximum likelihood estimator of ® when ¯ = 2;

(c) Find the maximum likelihood estimator of ®/(1 + ®) in each of the pre-

ceding cases (a) and (b).

Solution. Set X = (X1, X2 . . . , Xn).

(a) When ¯ = 1 the density of each observation Xi is

f(x;®, 1):=
Γ(®+ 1)

Γ(®)Γ(1)
x®−1(1− x)1−1I(0,1)(x) = ®x®−1I(0,1)(x).

where it was used that Γ(1) = 1 and Γ(® + 1) = ®Γ(®) to set the second

equality. Thus, the likelihood function associated to a sample X ∈ (0, 1)n is

L(®;X) =

n∏

i=1

®X®−1
i = ®n

Ã
n∏

i=1

Xi

)®−1

whose logarithm is

ℒ(®;X) = n log(®) + (®− 1)

n∑

i=1

log(Xi), ® ∈ (0,∞)

Recalling that log(x) → −∞ as x ↘ 0 and that log(x) < 0 when x ∈ (0, 1),

it follows that ℒ(®;X) → −∞ as ® ↘ 0 or ® → ∞, and then ℒ(⋅;X) has a

maximizer ®̂n in (0,∞). Such a point is a solution of the likelihood equation

∂®ℒ(®;X) =
n

®
+

n∑

i=1

log(Xi) = 0,
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whose unique solution is ® = −n/(
∑n

i=1 log(Xi)). Consequently,

®̂n = − n∑n
i=1 log(Xi)

.

(b) Suppose that ¯ = 2. In this case, the density of each observation Xi is

f(x;®, 2):=
Γ(®+ 2)

Γ(®)Γ(2)
x®−1(1−x)2−1I(0,1)(x) = ®(®+1)x®−1(1−x)I(0,1)(x);

as for the second equality, recall that Γ(2) = 1 and Γ(®+2) = (®+1)®Γ(®).

It follows that the likelihood function associated to a sample X ∈ (0, 1)n is

L(®;X) =

n∏

i=1

®(®+1)X®−1
i (1−Xi) = [®(®+1)]n

Ã
n∏

i=1

Xi

)®−1 n∏

i=1

(1−Xi)

whose logarithm is given by

ℒ(®;X) = n log(®) + n log(®+ 1) + (®− 1)

n∑

i=1

log(Xi) +

n∑

i=1

log(1−Xi),

As in the previous part, it is not difficult to see that ℒ(®;X) → −∞ as ® ↘ 0

or ® → ∞, so that ℒ(⋅;X) has a maximizer ®̂n in (0,∞) which satisfies that

the likelihood equation

∂®ℒ(®;X) =
n

®
+

n

®+ 1
+

n∑

i=1

log(Xi) = 0,

which, after some simple algebra, is equivalent to (2®+1)+®(®+1)Y = 0,

where Y =
∑n

i=1 log(Xi)/n. This quadratic equation in ® can be written as

®2Y + ®(2 + Y ) + 1 = 0, and the roots are

® =
−(2 + Y )±

√
(2 + Y )2 − 4Y

2Y
=

−(2 + Y )±√
4 + Y 2

2Y
;

Recalling that Y < 0, the root that is positive is given by

® =
−(2 + Y )−√

4 + Y 2

2Y
=

2√
4 + Y 2 + (2− Y )

;

hence,

®̂n =
2√

4 + (
∑n

i=1 log(Xi))2 + (2−∑n
i=1 log(Xi))

.
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(c) By the invariance principle, the maximum likelihood estimator of g(®) =

®/(®+ 1) is given by ĝ =
®̂n

1 + ®̂n
. ⊔⊓

In the following example, a model with discrete parameter space will be

studied; naturally, differentiation will not be directly used to determine the

maximum likelihood estimator.

Exercise 3.4.5. Let X1, X1, . . . , Xn be a random sample of size n from the

(discrete) Uniform ({1, 2, . . . , µ}) distribution on the set {1, 2, . . . , µ}, whose
probability function is given by

f(x; µ) =
1

µ
I{1,2,...,µ}(x).

Find the maximum likelihood estimator of µ, and its mean. Is this estimator

unbiased?

Solution. GivenX = (X1, X2, . . . , Xn) with positive integer components, the

corresponding likelihood function is given as follows: For a positive integer

µ,

L(µ;X) =

n∏

i=1

1

µ
I{1,2,3,...,µ}(Xi) =

{
1/µn, if Xi ≤ µ for all i = 1, 2, . . . , n,
0, otherwise,

an expression that can be written as

L(µ;X) =

{
1/µn, if max{Xi, i = 1, 2, . . . , n} ≤ µ,
0, otherwise.

Since µ 7→ 1/µn is a decreasing mapping on the set of positive integers, it

follows that the maximizer of L(⋅;X) is the minimal value of µ at which

L(µ;X) is positive, that is,

µ̂n = X(n) = max{X1, X2, . . . , Xn}.

To find the expectation of µ̂n, first the distribution function of the estimator

will be determined. Given a positive integer µ, notice that

Pµ[µ̂n ≤ k] = Pµ[Xi ≤ k, i = 1, 2, . . . , n]

=

k∏

i=1

Pµ[Xi ≤ k] =

k∏

i=1

(
k

µ

)
=

(
k

µ

)n

, k = 1, 2, . . . , µ,
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Thus, the probability function of µ̂n is determined by

fµ̂n(k; µ) = Pµ[µ̂n = k]

= Pµ[µ̂n ≤ k]− Pµ[µ̂n ≤ (k − 1)]

=

(
k

µ

)n

−
(
k − 1

µ

)n

, k = 1, 2, . . . , µ,

and then

Eµ[µ̂n] =

µ∑

k=1

kPµ[µ̂n = k]

=

µ∑

k=1

k

[(
k

µ

)n

−
(
k − 1

µ

)n]

=

µ∑

k=1

kn+1 − k(k − 1)n

µn

=

µ∑

k=1

kn+1 − (k − 1)n+1 − (k − 1)n

µn

=

µ∑

k=1

kn+1 − (k − 1)n+1

µn
−

µ∑

k=1

(k − 1)n

µn

=
µn+1 − (1− 1)n+1

µn
−

µ∑

k=1

(k − 1)n

µn

= µ −
µ−1∑

k=1

kn

µn
.

and it follows that µ̂n is a biased estimator of µ. ⊔⊓

In the following example a sample of a Bernoulli (p) distribution will be

studied; an interesting aspect will be the comparison of variances between

biased an unbiased estimators.

Exercise 3.4.6. Let Xi, i = 1, 2, . . . , n be a random sample of size n from the

Bernoulli (p) distribution, where p ∈ [0, 1], and set Tn = X1+X2+ ⋅ ⋅ ⋅+Xn.

(a) Find the maximum likelihood estimator Mn of pq = p(1− p)

(b) Show that Un = Tn(n− Tn)/[n(n− 1)] is an unbiased estimator of pq =

p(1− p).

(c) Show that the maximum likelihood estimator of pq is biased, but is asymp-

totically unbiased.
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(d) Show that the unbiased estimator of pq has larger variance than the

maximum likelihood estimator.

Solution. (a) The maximum likelihood estimator of p is Xn, so that, by the

invariance property, Xn(1−Xn) = Mn is the maximum likelihood estimator

of p(1− p) = pq.

(b) In Exercise 2.3.1 it was shown that Tn(Tn − 1)/[n(n− 1)] is an unbiased

estimator of p2. Since Xn = Tn/n is an unbiased estimator of p, it follows

that

pq = p(1− p) = p− p2 = Ep

[
Tn

n
− Tn(Tn − 1)

n(n− 1)

]

= Ep

[
Tn(n− Tn)

n(n− 1)

]
= Ep[Un]

so that Un is an unbiased estimator of pq.

(c) Notice that

Mn =Xn(1−Xn)

=
Tn

n

(
1− Tn

n

)
=

Tn(n− Tn)

n2
=

n− 1

n

Tn(Tn − 1)

n(n− 1)
=

n− 1

n
Un.

Hence,

Ep[Mn] = Ep

[
n− 1

n
Un

]
=

n− 1

n
Ep[Un] =

n− 1

n
pq = pq − pq

n
.

It follows that bMn(p) = Ep[Mn] − pq = pq/n, so that Mn is biased; since

bMn(p) = pq/n → 0 as n → ∞, Mn is asymptotically unbiased.

(d) As already noted in the previous part, Mn = [(n − 1)/n]Un, so that

Varp [Mn] = Varp [[(n− 1)/n]Un] = [(n− 1)/n]2Varp [Un]. Therefore,

Varp [Un] =

(
n

n− 1

)2

Varp [Mn] > Varp [Mn] ,

showing that the variance of the unbiased estimator Un is larger than the

variance of the maximum likelihood estimator Mn. ⊔⊓

The estimation problem for the logistic location-scale family is studied

in the following example. As it will be shown, the maximum likelihood

estimators must be determined computationally.
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Exercise 3.4.7. Let X1, X2, . . . , Xn be a random variable of size n from the

logistic density

f(x;®) = ¯
e−(®+¯x)

(1 + e−(®+¯x))2

where ® is an unknown real number and ¯ is known. In this context, find

the maximum likelihood estimator of ®.

Solution. This is a case where an explicit formula for the maximum likelihood

estimator ®̂n does not exist, and ®̂n(X) = ®̂(X1, X2, . . . , Xn) must be found

numerically. In the following argument it will be shown that ®̂n exits, and

is determined as the unique critical point of the likelihood function. The

likelihood function associated to the sample X = (X1, X2, . . . , Xn) is given

by

L(®;X) =

n∏
=1

¯
e−(®+¯Xi)

(1 + e−(®+¯Xi))2

=
¯ne−

∑n

i=1
(®+¯Xi)

∏n
=1(1 + e−(®+¯Xi))2

= ¯n e−n(®+¯Xn)

∏n
=1(1 + e−(®+¯Xi))2

,

and its logarithm is

ℒ(®;X) = n log(¯)− n(®+ ¯Xn)− 2

n∑

i=1

log(1 + e−(®+¯Xi)).

Thus,

∂®ℒ(®;X) = −n+ 2

n∑

i=1

e−(®+¯Xi)

1 + e−(®+¯Xi)

= −n+ 2

n∑

i=1

e−(®+¯Xi) + 1− 1

1 + e−(®+¯Xi)

= −n+ 2

n∑

i=1

[
1− 1

1 + e−(®+¯Xi)

]

= n− 2

n∑

i=1

1

1 + e−(®+¯Xi)
.

(3.4.1)

Notice that lim®→∞ 1 + e−(®+¯Xi) = 1, so that

lim
®→∞

∂®ℒ(®;X) = −n < 0,

and lim®→−∞ 1 + e−(®+¯Xi) = ∞, and then

lim
®→−∞

∂®ℒ(®;X) = n > 0.
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These two last displays together imply that there exists (at least) a point

®∗(X) ≡ ®∗ such that

∂®ℒ(®;X)∣®=®∗ = 0. (3.4.2)

Notice now that

∂2
®ℒ(®;X) = ∂®

[
n− 2

n∑

i=1

1

1 + e−(®+¯Xi)

]

= −2

n∑

i=1

e−(®+¯Xi)

(1 + e−(®+¯Xi))2
< 0,

so that ℒ(®;X) is a concave function of ®, and then the point ®∗ satisfying

(3.4.2) is unique, and is the unique maximizer of ℒ(®;X), that is, ®̂n(X) =

®∗. Notice that (3.4.1) and (3.4.2) together yield that ®̂n is the unique

solution of the likelihood equation

n∑

i=1

1

1 + e−(®+¯Xi)
=

n

2

which, as already mentioned, must be solve numerically. ⊔⊓

The following example is simple and closely related with the Bernoulli

case previously analyzed.

Exercise 3.4.8. Suppose that

X1 ∼ Binomial (n1, p)

X2 ∼ Binomial (n2, p)

...

Xk ∼ Binomial (nk, p)

are independent random variables. Find the maximum likelihood estimator

of p.

Solution. Given X = (X1, X2, . . . , Xk) such that Xi is an integer between 0

and n1, the corresponding likelihood function is

L(p;X) =

k∏

i=1

(
ni

Xi

)
pXi(1− p)ni−Xi
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whose logarithm is given by

ℒ(p;X) =

k∑

i=1

log

[(
ni

Xi

)]
+

k∑

i=1

[Xi log(p) + (ni −Xi) log(1− p)]

=

k∑

i=1

log

[(
ni

Xi

)]
+ log(p)

k∑

i=1

Xi + log(1− p)

[
N −

k∑

i=1

Xi

]

=

k∑

i=1

log

[(
ni

Xi

)]
+ log(p)T + log(1− p) [N − T ]

where N =
∑k

i=1 ni and T =
∑k

i=1 Xi. The kernel in this expression

(the part involving the parameter p), is the same as the kernel of a sam-

ple Y1, Y2, . . . , YN of size N from the Bernoulli (p) distribution when the

grand total Y1 + Y2 + ⋅ ⋅ ⋅ + YN is equal to T . The computations for this

case are well-known and yield that, in the present problem, the maximum

likelihood estimator of p is

p̂ =
T

N
=

X1 +X2 + ⋅ ⋅ ⋅+Xk

n1 + n2 + ⋅ ⋅ ⋅+ nk
.

⊔⊓

The following example concerns the estimation of the right tail of a

normal distribution.

Exercise 3.4.9. Let X1, X2, . . . , Xn be a random sample of size n from the

N (
¹, ¾2

)
distribution, where the vector (¹, ¾2) ∈ Θ = IR × (0,∞) is un-

known. Set

g(¹, ¾2) = P(¹,¾2)[X > c],

where c is a known constant. Determine the maximum likelihood estima-

tor ĝn of this parametric function and show that the {ĝn} is a consistent

sequence.

Solution. The basic properties of the normal distribution yield that

g(¹, ¾2) = 1− Φ

(
c− ¹

¾

)
,

where, as usual, Φ(⋅) is the cumulative distribution function of the standard

normal distribution. Recalling that the maximum likelihood estimator of

(¹, ¾2) is

(¹̂n, ¾̂
2
n) = (Xn, S

2
n),
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the invariance theorem yields that

ĝn = 1− Φ

(
c−Xn

Sn

)
;

since g(⋅, ⋅) is a continuous function in the parameter space Θ and the se-

quences {Xn} and {S2
n} estimate consistently to the parameters ¹ and ¾2,

respectively, it follows from the continuity theorem that {ĝn} is a consistent

sequence. ⊔⊓

3.5. A Non-smooth Example

In this section the determination of the maximum likelihood estimator for

a location family based on the Laplace distribution will be studied. The

interesting part of the analysis is that it is not difficult to prove that the

likelihood function achieves its maximum at an interior point of the param-

eter space, but the optimizer can not be determined by direct differentiation

and requires a rather careful analysis.

Exercise 3.5.1. Let X1, X2, . . . , Xn be a random sample of size n from the

(Laplace) double exponential density with center µ ∈ IR ≡ Θ, which is given

by

f(x; µ) =
1

2
e−∣x−µ∣.

Find the maximum likelihood estimator of µ.

Solution. The likelihood function is

L(µ;X) = 2−n
n∏

i=1

e−∣Xi−µ∣.

and it logarithm is given by

ℒ(µ;X) = C −
n∑

i=1

∣Xi − µ∣,

where C = −n log(2). The main difficulty in this problem is that the absolute

value function is not differentiable at every point. Indeed, the mapping

µ 7→ ∣x− µ∣ is not differentiable at µ = x, whereas

d

dµ
∣x− µ∣ = −sign(x− µ), µ ∕= x.
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where sign(a) = 1 if a > 0 and sign(a) = −1 for a < 0. Notice now that

ℒ(µ;X) is a continuous function of µ and observe the following facts:

(i) When µ ≤ min{Xi, i = 1, 2, . . . , n} = X(1), the relations ∣Xi− µ∣ = Xi− µ

hold for every i, and in this case ℒ(µ;X) = −∑n
i=1[Xi − µ] = nµ−∑n

i=1 Xi;

consequently,

lim
µ→−∞

ℒ(µ;X) = −∞.

(ii) For µ ≥ max{Xi, i = 1, 2, . . . , n} = X(n), the equalities ∣Xi − µ∣ = µ−Xi

are always valid, so that ℒ(µ;X) = −∑n
i=1[Xi − µ] = −nµ+

∑n
i=1 Xi; thus,

lim
µ→∞

ℒ(µ;X) = −∞.

These properties (i) and (ii) together with the continuity with respect to µ

yield that, given X, ℒ(µ;X) attains its maximum at some point µ̂n ∈ IR. To

determine such a point, it is convenient to write

ℒ(µ;X) = −
n∑

i=1

∣X(i) − µ∣

where X(1) ≤ X(2) ≤ ⋅ ⋅ ⋅ ≤ X(n) are the order statistics of the sample

X1, . . . , Xn; this expression for the log-likelihood function is equivalent to

the original one, because the vector of order statistics is just a permutation

of the original data. Now, let µ ∕= X(1), X(2), . . . , X(n) and notice that

∂µℒ(µ;X) =

n∑

i=1

sign(X(i) − µ)

= #{i ∣X(i) > µ} −#{j ∣X(j) < µ}



36

where #A stands for the number of elements of the set A. Hence,

µ < X(1) ⇒ ∂µℒ(µ;X) = n

X(1) < µ < X(2) ⇒ ∂µℒ(µ;X) = n− 2

X(2) < µ < X(3) ⇒ ∂µℒ(µ;X) = n− 4

X(3) < µ < X(4) ⇒ ∂µℒ(µ;X) = n− 6

...

X(k) < µ < X(k+1) ⇒ ∂µℒ(µ;X) = n− 2k

X(k+1) < µ < X(k+2) ⇒ ∂µℒ(µ;X) = n− 2(k + 1)

...

X(n−3) < µ < X(n−2) ⇒ ∂µℒ(µ;X) = 6− n

X(n−2) < µ < X(n−1) ⇒ ∂µℒ(µ;X) = 4− n

X(n−1) < µ < X(n) ⇒ ∂µℒ(µ;X) = 2− n

X(n) < µ ⇒ ∂µℒ(µ;X) = −n

(3.5.1)

Suppose that n ≥ 2 and let k∗ be the largest positive integer such that

n ≥ 2k∗, that is, k∗ satisfies

n ≥ 2k∗ and n− 2(k∗ + 1) < 0. (3.5.2)

With this notation, (3.5.1) shows that

(a) ∂µℒ(µ;X) ≥ 0 when µ ∈ (−∞, X(1)) ∪ (X(1), X(2)) ∪ ⋅ ⋅ ⋅ (X(k∗), X(k∗+1)),

and then the continuity of ℒ(µ;X) implies that ℒ(µ;X) is an increasing

function of µ in the interval (−∞, X(k∗+1)], so that

ℒ(µ;X) ≤ ℒ(X(k∗+1);X), µ ∈ (−∞, X(k∗+1)].

(b) If µ ∈ (X(k∗+1), X(k∗+2)) ∪ (X(k∗+2), X(k∗+3)) ∪ ⋅ ⋅ ⋅ ∪ (X(n−1), X(n)) ∪
(X(n),∞), then the partial derivative ∂µℒ(µ;X) is negative; in this case,

by continuity of ℒ(µ;X), the mapping µ 7→ ℒ(µ;X) is decreasing in µ ∈
[X(k∗+1),∞). Thus,

ℒ(µ;X) ≤ ℒ(X(k∗+1);X), µ ∈ [X(k∗+1),∞).

The two last displays together yield that µ 7→ ℒ(µ;X) attains its maximum

at

µ̂n = X(k∗+1). (3.5.3)
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If the sample size n is odd, say n = 2r + 1, then k∗ in (3.5.2) equals r, and

X(k∗+1) = X(r+1) is the sample median,

µ̂n = median(X1, . . . , Xn) = median(X)

On the other hand, if the sample size n is even, n = 2r, then k∗ in (3.5.2)

equals r, and ∂µℒ(µ;X) is zero in the interval (X(r), X(r+1), so that ℒ(µ;X)

is constant on the interval µ ∈ [X(r), X(r+1], and then every point in that

interval is a maximizer of ℒ(µ;X). Notice that when n = 2r is an even

integer, every point in [X(r), X(r+1] is a median of the data, and the above

expression for µ̂n remains valid. Summarizing: the maximum likelihood

estimator of µ is any sample median, and if the sample size n is even, µ̂n is

not unique. ⊔⊓



Chapter 4

Method of Moments

This chapter introduces an additional procedure to construct estimators

of parametric functions, namely, the method of moments. Essentially, this

procedure can be described as follows: A population moment is estimated

by the corresponding sample moment, and a parametric function that is a

function of the population moments, is estimated by the same function eval-

uated at the sample moments. The method is easily implemented when the

interesting parametric quantity is determined in terms of population mo-

ments, and renders consistent and asymptotically normal estimators which,

generally, are biased but asymptotically unbiased.

4.1. Moment Estimators

In this section the method of moments to build estimators is formally

described. Consider a random variable X whose distribution depends on an

unknown parameter µ,

X ∼ Pµ, µ ∈ Θ,

where the parameter space Θ is a subset of IRm for some m. Now, let ¹′
k(µ)

be the kth moment of the distribution Pµ, that is,

¹′
k(µ) = Eµ[X

k], (4.1.1)

38
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which is supposed to be finite. Next, let X = (X1, X2, . . . , Xn) be a random

sample of size n of the population Pµ, so that

X1, X2, . . . , Xn are independent and identically

distributed with common distribution Pµ.
(4.1.2)

The kth sample moment of the data X = (X1, X2, . . . , Xn) is defined by

m′
k n =

1

n

n∑

i=1

Xk
i . (4.1.3)

This sample moment is naturally considered as an estimator of ¹′
k; indeed,

since the powers Xk
1 , X

k
2 , . . . , X

k
n are independent with the same distribution

as Xk, the law of large numbers yields that

m′
k n =

1

n

n∑

i=1

Xk
i

Pµ−→Eµ[X
k] = ¹′

k(µ) (4.1.4)

so that the sequence {m′
k n}n=1,2,3,... estimates ¹′

k(µ) consistently. Moreover,

Eµ[mk n] =

n∑

i=1

Eµ[X
k
i ]/n = n¹′

k(µ)/N = ¹′
k(µ),

so that m′
k n is an unbiased estimator of ¹′

k(µ).

The method of moments is formally stated as follows: Given X1, X2, . . . , Xn

as in (4.1.2), then

(i) The kth population moment ¹′
k(µ) is estimated by m′

k n;

(ii) If a parametric quantity g(µ) can be expressed in terms of the population

moments ¹′
1(µ), ¹

′
2(µ), . . . , ¹

′
r(µ), say

g(µ) = G(¹′
1(µ), ¹

′
2(µ), . . . , ¹

′
r(µ)), (4.1.5)

then the estimator of g(µ) based on X1, X2, . . . , Xn is given by

ĝn = G(m′
1n,m

′
2n, . . . ,m

′
r n); (4.1.6)

in words, if the parametric quantity g(µ) is a function of some population

moments, then the estimator ĝn is the same function of the corresponding

sample moments.



40

As it was already noted, the estimator m′
k n of ¹′

k(µ) is unbiased. How-

ever, the above estimator ĝn of the parametric function in (4.1.5) is not,

in general, unbiased if the function G is not linear; this assertion will be

exemplified several times below.

4.2. Consistency of the Method of Moments

The objective of this section is to prove that, under mild conditions, the

consistency of a sequence {ĝn} of moment estimators is a generic property.

Theorem 4.2.1. Suppose that the function G(z1, z2, . . . , zr) is continuous at

each point (¹′
1(µ), ¹

′
2(µ), . . . , ¹

′
r(µ)), µ ∈ Θ. In this case, within the frame-

work determined by (4.1.2), the parametric function g(µ) in (4.1.5) is esti-

mated consistently by the sequence {ĝn} specified in (4.1.6).

Proof. It must be shown that, for each µ ∈ Θ and " > 0,

lim
n→∞

Pµ[∣ĝn − g(µ)∣ > "] = 0. (4.2.1)

To establish the conclusion, let µ ∈ Θ be arbitrary but fixed. By the conti-

nuity of the function G, given " > 0, there exists ± > 0 such that

∣xi − ¹′
i(µ)∣ ≤ ±, i = 1, 2, . . . , r

⇒ ∣G(x1, x2, . . . , xr)−G(¹′
1(µ), ¹

′
2(µ), . . . , ¹

′
r(µ))∣ ≤ ".

This implication is equivalent to

∣G(x1, x2, . . . , xr)−G(¹′
1(µ), ¹

′
2(µ), . . . , ¹

′
r(µ))∣ > "

⇒ ∣xi − ¹′
i(µ)∣ > ±, for some i = 1, 2, . . . , r.

Consequently,

∣G(m′
1n,m

′
2n, . . . ,m

′
r n)−G(¹′

1(µ), ¹
′
2(µ), . . . , ¹

′
r(µ))∣ > "

⇒ ∣m′
i n − ¹′

i(µ)∣ > ±, for some i = 1, 2, . . . , r.

that is,

[∣G(m′
1n,m

′
2n, . . . ,m

′
r n)−G(¹′

1(µ), ¹
′
2(µ), . . . , ¹

′
r(µ))∣ > "]

⊂
r∪

i=1

[∣m′
i n − ¹′

i(µ)∣ > ±],
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which can be written as

[∣ĝn − g(µ)∣ > "] ⊂
r∪

i=1

[∣m′
i n − ¹′

i(µ)∣ > ±];

see (4.1.5) and (4.1.6). From this point, the monotonicity and subadditivity

properties of a probability distribution yield that

Pµ[∣ĝn − g(µ)∣ > "] ≤
r∑

i=1

Pµ[∣m′
i n − ¹′

i(µ)∣ > ±].

Recalling the Pµ[∣m′
i n − ¹′

i(µ)∣ > ±] → 0 as n → ∞, by (4.1.4), taking the

limit as n goes to ∞ in the above display, it follows that

lim
n→∞

Pµ[∣ĝn − g(µ)∣ > "] ≤
r∑

i=1

lim
n→∞

Pµ[∣m′
i n − ¹′

i(µ)∣ > ±] → 0 as n → ∞,

establishing (4.2.1). ⊔⊓

Before proceeding to present some examples on the method of moments,

it is convenient to summarize the precedent discussion:

Given a sample X = (X1, X2, . . . , Xn) of a population Pµ, where µ ∈ Θ,

(i) The method of moments prescribes to estimate a population moment by

the corresponding sample moment;

(ii) The estimator of a function of ¹′
1(µ), ¹

′
2(µ), . . . , ¹

′
k(µ) is constructed eval-

uating the same function at the sample moments m′
1n,m

′
2,n, . . . ,m

′
k n.

(iii) When estimating a continuous function of population moments, the

method of moments produces consistent estimators.

(iv) If a linear function of population moments is being estimated, the

method of moments generates unbiased estimators; however, the estimators

of nonlinear functions of population moments are generally biased.

One of the appealing features of the method of moments is that, as soon

as the parametric function of interest can be expressed as a function of the

population moments, the construction of the estimator corresponding to a

given sample is straightforward. In some cases the method can be applied
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successfully, particularly in problems for which the maximum likelihood es-

timate needs to be determined numerically.

4.3. Examples

The above ideas about the method of moments are illustrated in a series of

examples.

Exercise 4.3.1. Let X1, X2, . . . , Xn be a random sample of size n from the

Uniform (0, µ) distribution, where µ ∈ Θ = (0,∞).

(a) Find the method of moments estimator of µ and show that it is unbiased.

(b) Find the method of moments estimator of µ2 and show that it is biased,

Also, find an unbiased estimator of µ2.

(c) Show the consistency of the estimators in parts (a) and (b).

Solution. (a) First, the parametric quantity g(µ) = µ must be expressed in

terms of the moments of the parent distribution. In the present case, if X ∼
Uniform (0, µ), then ¹′

1(µ) = Eµ[X] = µ/2, so that µ = 2¹′
1. Consequently,

the moments estimator of µ is µ̂n = 2m′
1n(X) = 2Xn. Notice that µ is a

linear function of ¹′
1(µ), and then µ̂n is unbiased.

(b) The moments estimator of g(µ) = µ2 based on the sample of size n is ĝn =

g(µ̂n) = µ̂2n = (2Xn)
2 = 4X

2

n; since µ̂n is not constant, Jensen’s inequality

yields that Eµ[ĝn] = Eµ[(µ̂n)
2] > Eµ[µ̂n]

2 = µ2, and then ĝn is a biased

estimator; for a discussion of Jensen’s inequality, see, for instance, Rudin

(1984), or Khuri (2002). To determine an unbiased estimator of g(µ) = µ2,

notice that

Eµ[µ̂
2
n] = Varµ

[
µ̂n

]
+ Eµ[µ̂n]

2

= Varµ
[
2Xn

]
+ µ2

= 4Varµ
[
Xn

]
+ µ2

= 4
µ2

12n
+ µ2 =

(
1 +

1

3n

)
µ2.

Consequently, Un = 3n/(1 + 3n)µ̂2n = (3n/(1 + 3n)ĝn = 12n/(1 + 3n)X
2

n is

an unbiased estimator of µ2.

(c) Notice that in parts (a) and (b), µ and g(µ) are continuous functions of the

population moments, and then the sequences {µ̂n} and {ĝn} are consistent
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for µ and g(µ), respectively. Also, Un = (3n/(1 + 3n)ĝn
Pµ−→ 1 ⋅ g(µ) = g(µ),

and then {Un} is a consistent sequence for the parametric function g(µ). ⊔⊓

Exercise 4.3.2. Let X1, X2, . . . , Xn be independent random variables, each

with the density f(x; µ) = 1/(2µ)I[−µ,µ](x). Find the moments estimator of

µ and show directly that is biased.

Solution. The uniform distribution on the interval [−µ, µ] has mean ¹′
1 = 0,

so that µ can not be expressed as a function of ¹′
1. Therefore, the second

moment must be calculated. If X ∼ Uniform(−µ, µ),

¹′
2(µ) = Eµ[X

2] = Varµ [X2] =
(2µ)2

12
=

µ2

3
.

Since µ is a positive number, it follows that µ = (3¹′
2(µ))

1/2, and then the

moments estimator of µ is given by

µ̂n = (3m′
2n)

1/2.

This estimator is biased. Indeed, the second sample moment is not con-

stant with probability 1 and, using that the function H(x) = x1/2 is strictly

concave, it follows that

Eµ[µ̂n] = Eµ[(3m
′
2n)

1/2] = Eµ[H(3m′
2n)] > H(Eµ[(3m

′
2n]) = H(µ2) = µ,

so that µ̂n is biased with positive bias function. ⊔⊓

Exercise 4.3.3. Let X1, X2, . . . , Xn be a random sample of size n from the

Geometric (p) distribution, so that the common probability function of the

variables is

f(x; p) = (1− p)x−1pI{1,2,3,...}(x).

Use the method of moments to find an estimator of p. Show that the method

of moments used to estimate 1/p produces the estimator Xn.
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Solution. If X ∼ Geometric (p), then

¹′
1(µ) = Eµ[X] =

∞∑
x=1

x(1− p)x−1p

= p

∞∑
x=1

x(1− p)x−1

= p
d

dp

[ ∞∑
x=1

(1− p)x

]

= p
d

dp

[
1

1− (1− p)

]
=

p

p2
=

1

p
.

It follows that p = 1/¹′
1, and then the method of moments produces the

following estimator of p:

p̂n =
1

m′
1n

=
1

Xn

As for the estimation of g(p) = 1/p, the previous calculations show that

g(p) = ¹′
1(p), and then

ĝn = m′
1n = Xn

is the estimator of g(p) produced by the method of moments. ⊔⊓

Exercise 4.3.4. Let X1, X2, . . . , Xn be a random sample of size n from the

discrete uniform distribution on the set {1, 2, . . . , µ} where µ is an unknown

positive integer. Use the method of moments to find an estimator of µ.

Solution. To express the parameter µ in terms of the population moments,

just notice that if X ∼ Uniform ({1, 2, . . . , µ}) then ¹′
1(µ) = Eµ[X] = (1 +

µ)/2, so that µ = 2¹′
1(µ) − 1. Hence, the method of moments produces

the estimator µ̂n = 2m′
1n − 1 = 2Xn − 1; since µ is a linear function of

¹′
1(µ), it follows that the estimators µ̂n are unbiased and the sequence {µ̂n}

is consistent. ⊔⊓

Exercise 4.3.5. Let X1, X2, . . . , Xn be a random sample of the Gamma (®, ¸)

distribution, where µ = (®, ¸) ∈ Θ = (0,∞) × (0,∞). Use the method of

moments to obtain estimators of ® and ¸.
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Solution. The starting point is to evaluate the moments of order one and two

of the Gamma (®, ¸) distribution. It is known that if X ∼ Gamma (®, ¸),

then

¹′
1(µ) = Eµ[X] =

®

¸
, and ¹′

2(µ) = Eµ[X
2] =

®(®+ 1)

¸2
. (4.3.1)

To express ® and ¸ in terms of ¹′
1(µ) and ¹′

2(µ), notice that

¹′
2(µ)

¹′
1(µ)

2
=

®(®+ 1)/¸2

®2/¸2
=

®+ 1

®
= 1 +

1

®
.

Hence,
¹′
2(µ)− ¹′

1(µ)
2

¹′
1(µ)

2
=

1

®
,

which is equivalent to

® =
¹′
1(µ)

2

¹′
2(µ)− ¹′

1(µ)
2
.

Combining this expression with the first equality in (4.3.1), it follows that

¸ =
®

¹′
1(µ)

=
¹′
1(µ)

¹′
2(µ)− ¹′

1(µ)
2
.

Then the method of moments estimation prescribes the estimators

®̂n =
(m′

1n)
2

m′
2n − (m′

1)
2
,

and
ˆ̧
n =

m′
1n

m′
2n − (m′

1n)
2
.

Since m′
1n = Xn and m′

2n − (m′
1n)

2 =
∑n

i=1 X
2
i /n − X

2

n =
∑n

i=1(Xi −
Xn)

2/n = S̃2
n the above estimators can be expressed in more familiar terms:

®̂n =
X

2

n

S̃2
n

, and ˆ̧
n =

Xn

S̃2
n

.

Since ® and ¸ are continuous functions of ¹′
1(µ) and ¹′

2(µ), the sequences

{®̂n} and {ˆ̧n} are consistent. ⊔⊓

Remark 4.3.1. An interesting aspect of the precedent problem is that method

of moments allowed to obtain explicit formulas for the estimators of ® and
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¸. In contrast, the maximum likelihood estimators of ® and ¸ must be

determined numerically for each data set. ⊔⊓

Exercise 4.3.6. Let X1, X2, . . . , Xn be a random sample of size n from the

Beta (®, ¯) distribution, where µ = (®, ¯) ∈ (0,∞) × (0,∞). Determine the

moment estimators of ® and ¯.

Solution. If X ∼ Beta (®, ¯), the first two moments of X are

¹′
1 = Eµ[X] =

®

®+ ¯
, ¹′

2 =
®¯

(®+ ¯)2(1 + ®+ ¯)
.

Now, the parameters ® and ¯ will be expressed in terms of ¹′
1 and ¹′

2. Notice

that

¹′
2 =

¹′
1(1− ¹′

1)

1 + ®+ ¯
, and then ®+ ¯ =

¹′
1(1− ¹′

1)

¹′
2

− 1.

Since ® = ¹′
1(®+ ¯), it follows that

® = ¹′
1

(
¹′
1(1− ¹′

1)

¹′
2

− 1

)

On the other hand, notice that 1−¹′
1 = 1−Eµ[X] = 1−®/(®+¯) = ¯/(®+¯),

so that

¯ = (1− ¹′
1)(®+ ¯) = (1− ¹′

1)

(
¹′
1(1− ¹′

1)

¹′
2

− 1

)

From these two last displays, it follows that the moments estimators of ®

and ¯ based on a sample of size n are given by

®̂n = m′
1n

(
m′

1n(1−m′
1n)

m′
2n

− 1

)

ˆ̄
n = (1−m′

1n)

(
m′

1n(1−m′
1n)

m′
2n

− 1

)
,

concluding the argument. ⊔⊓

Remark 4.3.2. Observe that ®̂n and ˆ̄
n contain the factor

(
m′

1n(1−m′
1n)

m′
2n

− 1

)
=

(
Xn(1−Xn)∑n

i=1 X
2
i /n

− 1

)
. (4.3.2)



47

As it will be shown below, that this factor may be negative for some samples,

a fact that illustrates a disadvantage of the method of moments, namely,

the estimates generated by the method, do not necessarily belong to the

parameter space. Consider the sample

X = x = (", ", . . . , ", 1− ") (4.3.3)

of size n and notice that

Xn = [(n− 1)"+ 1− "]/n and

n∑

i=1

X2
i /n = [(n− 1)"2 + (1− ")2]/n.

so that

lim
n→∞

Xn =
1

n
and lim

n→∞

n∑

i=1

X2
i /n =

1

n
. (4.3.4)

On the other hand,

(
Xn(1−Xn)∑n

i=1 X
2
i /n

− 1

)
≥ 0 ⇐⇒ Xn(1−Xn) ≥

n∑

i=1

X2
i /n

⇐⇒ Xn(1−Xn) ≥
n∑

i=1

X2
i /n

Suppose now that, for the sample (4.3.3), the factor () is nonnegative, so

that the last inequality in the previous display holds; taking the limit as "

goes to 0, it follows that

lim
"↘0

Xn(1−Xn) ≥ lim
"↘0

n∑

i=1

X2
i /n,

a relation that, via (4.3.4), is equivalent to (1/n)[1 − 1/n] ≥ 1/n, which in

turn yields that 1− 1/n ≥ 1, which is a contradiction. It follows that

lim
"↘0

Xn(1−Xn) < lim
"↘0

n∑

i=1

X2
i /n,

and then Xn(1−Xn) <
∑n

i=1 X
2
i /n when " > 0 is small enough, a fact the

implies that, with positive probability, the factor in (4.3.2) is negative, and

then the estimators ®̂n and ˆ̄
n are negative with positive probability. This

discussion shows explicitly that the estimators generated by the method of

moments do not necessarily belong to the parameter space. ⊔⊓
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Exercise 4.3.7. Let X1, X2, . . . , Xn be a sample of the N (
0, ¾2

)
distribu-

tion, where ¾ ∈ (0,∞). Find the moments estimator of ¾2 and analyze the

consistency of the sequence {¾̂2}.

Solution. If X ∼ N (
0, ¾2

)
, then ¹′

1(¾) = E¾[X] = 0, so that ¾2 can not be

expressed in terms of ¹′
1(¾) and it is necessary to compute more moments of

X. Next, observe that ¹′
2(¾) = E¾[X

2] = Var¾ [X] = ¾2, and it follows that

the interesting parametric function—¾2 in the present problem—equals the

second population moment. Thus, the method of moments prescribes the

estimator

¾̂2 = m′
2n =

1

n

n∑

i=1

X2
i ;

since ¾2 is a linear function of ¹′
2(¾), the estimator ¾̂2 is unbiased for ¾2. ⊔⊓



Chapter 5

Quantile Estimation

In this chapter the problem of estimating a quantile of a distribution

function F is considered. Roughly, given ® ∈ (0, 1), a quantile q® of order

® for F is the point that has the following property: the total probability

accumulated form −∞ to the point q® is exactly ®. Hereafter the discussion

is restricted to continuous distributions, and in this context a quantile q®

exists for each ® ∈ (0, 1). The estimator of q® based on a sample of size n

is the data value that occupies among the observations a similar position to

the one of q® in the underlying population. Using a relation between the

distribution of an order statistic and a binomial random variable, the limit

distribution of the estimator of q® will be determined.

5.1. Population Quantiles

In this section a population quantile q® of a given order ® ∈ (0, 1) is formally

defined, and under mild conditions its uniqueness is established.

Definition 5.1.1. Let F (x) be a continuous distribution function F with

density f(x), so that

F (x) =

∫ x

−∞
f(z) dz, x ∈ IR.

49
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For a given number ® ∈ (0, 1), a quantile q® ≡ q®(F ) for the distribution

function F is any solution of the equation

F (q®) = ®. (5.1.1)

A quantile of order .5 satisfies F (q0.5) = 0.5 and is called a median of

the distribution. Quantiles of order 0.25 and 0.75 satisfy F (q0.25) = 0.25

and F (q0.75) = 0.75, respectively, and are usually referred to as quartiles

of F ; the difference q0.75 − q0.25 is the interquartile range, and is frequently

used as a descriptive measure of the dispersion of the distribution function

F (Montgomery, 2011).

As for the existence of a quantile q®, recall that limx→−∞ F (x) = 0

and limx→∞ F (x) = 1. Since F is assumed to be continuous, from the

intermediate value property it follows that, for each ® ∈ (0, 1), there exists

a number q® satisfying (5.1.1); see, for instance, Khuri (2002). However, in

general a quantile of a given order is not unique, since F may be constant

in some interval. In the following lemma sufficient conditions are given to

ensure the uniqueness of a quantile.

Lemma 5.1.1. Let F be a continuous distribution function with density f

and, given ® ∈ (0, 1), let q® be a quantile of order ® for F . In this case, if

f(x) is continuous at x = q® and f(q®) ∕= 0, (5.1.2)

then q® is the unique quantile of order ® for F .

Proof. Notice that (5.1.2) implies that there exists ± > 0 such that

f(x) > 0 if x ∈ (q® − ±, q® + ±). (5.1.3)

It will be shown that this property implies that

z ∕= q® ⇒ F (z) ∕= ®,

so that q® is the unique quantile of order ®. To achieve this goal, consider

the following two exhaustive cases:
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(i) z < q®. In this case select a point w such that

z < w < q® and w ∈ (q® − ±, q®), (5.1.4)

and notice that

® = F (q®) =

∫ q®

−∞
f(x) dx

=

∫ w

−∞
f(x) dx+

∫ q®

w

f(x) dx;

on the other hand, (5.1.3) and the inclusion in (5.1.4) together yield that f(x)

is positive at each point x in the interval (w, q®), and then
∫ q®
w

f(x) dx > 0;

combining this inequality with the previous display, it follows that

® > F (w);

since the inequality z < w implies that F (w) ≥ F (z), it follows that ® >

F (z).

(ii) z > q®. In this context, paralleling the above argument it will be proved

that F (z) > ®. First, select a point w such that

z > w > q® and w ∈ (q®, q® + ±); (5.1.5)

with this notation,

F (w) =

∫ w

−∞
f(x) dx

=

∫ q®

−∞
f(x) dx+

∫ w

q®

f(x) dx

= ®+

∫ w

q®

f(x) dx;

since (5.1.3) and the inclusion in (5.1.5) imply that f(x) > 0 for x ∈ (q®, w),

it follows that
∫ w

q®
f(x) dx > 0, so the above displayed relation leads to

F (w) > ®;

since the inequality z > w implies that F (z) ≥ F (w), it follows that F (z) >

®. ⊔⊓
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5.2. Sample Quantiles and Consistency

The estimation of a quantile q® will be consider in this section. Notice that

(5.1.1) means that a probability ® is accumulated to the left or at q® accord-

ing to F . Thus, given a sample X1, X2, . . . , Xn of that distribution function,

it is natural to estimate the quantile q® by the sample point q̂®n which has

an analogous property in terms of the sample; such a point will be intro-

duced below. Recall that the vector (X(1), X(2), . . . , X(n)) order statistics of

the sample consists of the same data values as the sample, but arranged in

a non-decreasing order:

X(1) ≤ X(2) ≤ ⋅ ⋅ ⋅ ≤ X(n);

moreover, since the parent distribution function is continuous, the above

inequalities are strict with probability one.

Definition 5.2.1. Let ® ∈ (0, 1) be arbitrary, and let (X1, X2, . . . , Xn) be a

random sample of a distribution function F . Suppose that 1/n < ® and let

k(®, n) be the the largest integer that does not exceed n®, that is, k(®, n) is

the positive integer that satisfies

k(®, n)

n
≤ ®, and ® <

k(®, n) + 1

n
. (5.2.1)

With this notation, the estimator q̂®n of the quantile q® is defined by

q̂®,n = X(k(®,n)). (5.2.2)

Notice that the proportion of data that lay at or to the left of q̂n =

X(k(®,n)) is k(®, n)/n, and this proportion differs from ® at most by 1/n.

Thus, q̂®,n occupies among the observations a position that is similar to the

one occupied by q® in the sampled population. The following result shows

that {q̂®,n} is a consistent sequence of estimators of q®.

Theorem 5.2.1. Assume that X1, X2, X3, . . . is a sequence of independent

random variables with a common distribution function F (x) with density

f(x). Given ® ∈ (0, 1), let q® be a quantile of order ® of F , and suppose that

the condition (5.1.2) holds, so that the quantile q® is uniquely determined. In
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this context, the sequence {q̂®,n} in Definition 5.2.1 estimates q® consistently,

that is,

q̂®,n
P−→ q®.

The argument used below to establish this theorem relies on the follow-

ing lemma, which establishes a connection between the binomial distribution

and the quantiles of a sample X = (X1, X2, . . . , Xn). First, for each number

x ∈ IR define Nn(X;x) as the number of observations that are less than or

equal to x, that is,

Nn(X;x) =

n∑

i=1

I[Xi ≤ x]; (5.2.3)

since the independent variables Xi have the continuous distribution function

F (x), it follows that the indicators I[Xi ≤ x] are independent with common

Bernoulli distribution with success parameter p = F (x), a fact that allows

to state that

Nn(X;x) ∼ Binomial (n, F (x)), (5.2.4)

and then, for every ± > 0,

P

[ ∣∣∣∣
Nn(X;x)

n
− F (x)

∣∣∣∣ > ±

]
≤ F (x)(1− F (x))

n±2
→ 0 as n → ∞, (5.2.5)

by Chebichev’s inequality. Observe now that the inequality X(k) > x is

equivalent to the statement that the number of observations that are less

than or equal to x is less that k:

X(k) > x ⇐⇒ Nn(X;x) < k (5.2.6)

which is also equivalent to

X(k) ≤ x ⇐⇒ Nn(X;x) ≥ k. (5.2.7)

Lemma 5.2.1. Under the framework of Theorem 5.2.1, the random variables

Nn(X;x) in (5.2.3) satisfy the following properties (i) and (ii), where ® ∈
(0, 1) and k(®, n) is the integer specified in (5.2.1):

(i) P [Nn(X; q® + ") < k(®, n)] → 0 as n → ∞.
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(ii) P [Nn(X; q® − ") ≥ k(®, n)] → 0 as n → ∞.

Proof. Let " be an arbitrary positive number.

(i) To begin with, notice that

Nn(X;q® + ") < k(®, n)

⇐⇒ Nn(X; q® + ")− nF (q® + ") < k(®, n)− nF (q® + ")

⇐⇒ Nn(X; q® + ")

n
− F (q® + ") <

k(®, n)

n
− F (q® + ").

(5.2.8)

Observe now that the relation (5.2.1) specifying the integer k(®, n) yields that

k(®, n)/n → ® as n → ∞; hence, since (5.1.2) implies that F (q® + ") > ®, it

follows that

lim
n→∞

k(®, n)

n
− F (q® + ") = ®− F (q® + ") < 0.

Thus, defining the positive number ± by ±: = (F (q® + ") − ®)/2, it follows

that there exists an integer m such that

k(®, n)

n
− F (q® + ") < −± if n > m.

Therefore, for n > m,

Nn(X; q® + ")

n
− F (q® + ") <

k(®, n)

n
− F (q® + ")

⇒ Nn(X; q® + ")

n
− F (q® + ") < −±

⇒
∣∣∣∣
Nn(X; q® + ")

n
− F (q® + ")

∣∣∣∣ > ±,

a fact that together with (5.2.8) allows to conclude that

if n > m

Nn(X; q® + ") < k(®, n) ⇒
∣∣∣∣
Nn(X; q® + ")

n
− F (q® + ")

∣∣∣∣ > ±.

Consequently,n if n > m,

P [Nn(X; q® + ") < k(®, n)] ≤ P

[∣∣∣∣
Nn(X; q® + ")

n
− F (q® + ")

∣∣∣∣ > ±

]
;

taking the limit as n goes to ∞ in both sides of this relation, (5.2.5) implies

that

lim
n→∞

P [Nn(X; q® + ") < k(®, n)] = 0,
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which is the desired conclusion.

(ii) The argument is similar to the one in part (i). Notice that

Nn(X;q® − ") ≥ k(®, n)

⇐⇒ Nn(X; q® − ")− nF (q® − ") ≥ k(®, n)− nF (q® − ")

⇐⇒ Nn(X; q® − ")

n
− F (q® − ") ≥ k(®, n)

n
− F (q® − ").

(5.2.9)

Combining the convergence k(®, n)/n → ® as n → ∞ with the inequality

F (q® − ") < ® (which is a consequence of (5.1.2)), it follows that

lim
n→∞

k(®, n)

n
− F (q® − ") = ®− F (q® − ") > 0,

so that the number ± specified by ±: = (®−F (q®−"))/2 is positive and there

exists an integer m such that k(®, n)/n− F (q® − ") > ± for n > m. Hence,

for n > m,

Nn(X; q® − ")

n
− F (q® − ") ≥ k(®, n)

n
− F (q® − ")

⇒ Nn(X; q® − ")

n
− F (q® − ") > ±

⇒
∣∣∣∣
Nn(X; q® − ")

n
− F (q® − ")

∣∣∣∣ > ±,

a fact that together with (5.2.9) implies that, if n > m

Nn(X; q® − ") ≥ k(®, n) ⇒
∣∣∣∣
Nn(X; q® − ")

n
− F (q® − ")

∣∣∣∣ > ±.

It follows that, for n > m,

P [Nn(X; q® − ") ≥ k(®, n)] ≤ P

[∣∣∣∣
Nn(X; q® − ")

n
− F (q® − ")

∣∣∣∣ > ±

]
,

and taking the limit as n goes to ∞, (5.2.5) yields that

lim
n→∞

P [Nn(X; q® − ") ≥ k(®, n)] = 0,

completing the proof. ⊔⊓

Proof of Theorem 5.2.1. Given ® ∈ (0, 1) it is necessary to show that, for

each " > 0, the convergence P [∣q̂®,n − q®∣ > "] → 0 holds as n → ∞. With

this in mind, notice that

[∣q̂®,n − q®∣ > "] = [q̂®,n > q® + "] ∪ [q̂®,n < q® − "]. (5.2.10)
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It will be proved that the probability of each event in the right-hand side

converges to 0 as n goes to ∞. To begin with, let " > 0 be arbitrary and

recall that q̂®,n = X(k(®,n), so that

[q̂®,n > q® + "] = [X(k(®,n) > q® + "] = [Nn(X, q® + ") < k(®, n)],

where (5.2.6) with q® + " instead of x was used to obtain the set the second

equality. From this point, an application of Lemma 5.2.1(i) yields that

P [q̂®,n > q® + "] = P [Nn(X, q® + ") < k(®, n)] → 0 as n → ∞. (5.2.11)

On the other hand,

[q̂®,n ≤ q® − "] = [X(k(®,n) ≤ q® − "] = [Nn(X, q® − ") ≥ k(®, n)]

where the last equality stems form (5.2.7); applying the second part of

Lemma 5.2.1, it follows that

lim
n→∞

P [q̂®,n ≤ q® − "] = 0. (5.2.12)

Taking the limit as n → ∞ in both sides of (5.2.10), the convergences (5.2.11)

and (5.2.12) together imply that P [∣q̂®,n − q®∣ > "] → 0 as n → ∞. ⊔⊓

5.3. Asymptotic Distribution of Sample Quantiles

The objective of this section is to state the result on the asymptotic dis-

tribution of the quantile estimators q̂®,n. To begin with, notice that the

convergence

q̂®,n
P−→ q®

established in Theorem 5.2.1 means that q̂®,n is ‘near’ to q® when n is ‘large’.

In the remainder of the chapter the distribution of the sample quantile

q̂®,n about q® will be studied, and it will be shown that the distribution

of
√
n(q̂®,n − q®) is approximately normal. The basic ideas and notation

that will be used to state such a result are briefly discussed in the following

remark.
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Remark 5.3.1. (i) Given a distribution function, a sequence of random ob-

jects {Wn} converges in distribution to F if the following property holds:

lim
n→∞

P [Wn ≤ x] = F (x) occurs at every point x at which F is continuous.

(5.3.1)

When this statement is true, it is indicated by writing

Wn
d−→F or, if Z ∼ F , Wn

d−→Z.

(ii) The most basic properties of the notion of convergence in distribution

establish that, if a sequence converging in distribution to F is perturbed for

other sequence whose influence vanishes as as n goes to ∞, then the new

sequence also converges in distribution to F . In formal terms, the follow-

ing results (a) and (b) hold: Let {Wn} and {Vn} two sequences of random

variables. In this case,

(a) If Vn
P−→ 0 and Wn

d−→F , then Vn +Wn
d−→F .

(b) If Vn
P−→ 1 and Wn

d−→F , then VnWn
d−→F .

(iii) An extension of the two properties in part (ii) is as follows: Let W be a

random variable with distribution function F . In this case,

(a) If Vn
P−→ c ∈ IR and Wn

d−→W , then Vn +Wn
d−→ c+W .

(b) If Vn
P−→ c ∈ IR and Wn

d−→W , then VnWn
d−→ cW .

(iv) The most important instance of the notion of convergence of distribution

is the central limit theorem: IfX1, X2, X3, . . . are independent and identically

distributed random variables, with mean ¹ and variance ¾2 < ∞, then the

sample mean Xn satisfies that

√
n
Xn − ¹

¾

d−→Z ∼ N (0, 1) ; (5.3.2)

since the distribution function Φ(⋅) of the standard normal distribution is

continuous at every point, the above convergence is equivalent to

P

[√
n
Xn − ¹

¾
≤ x

]
= P [Z ≤ x] = Φ(x), x ∈ IR.

Also notice that, via the properties in part (ii), (5.3.2) is equivalent to

∑n
i=1 Xi − n¹√

n
=

√
n(Xn − ¹)

d−→¾Z ∼ N (
0, ¾2

)
. (5.3.3)
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⊔⊓

The main objective of this section is to establish the following theorem on

the asymptotic distribution of a sample quantile q̂®,n.

Theorem 5.3.1. Let ® ∈ (0, 1) be arbitrary, and let X1, X2, X3, . . . be a

sequence of independent and identically distributed random variables with

common distribution function F , which is continuous and has density f

satisfying the condition (5.1.2). In this case the sequence {q̂®,n} of sample

quantiles satisfies that

√
n[q̂®,n − q®]

d−→
√

®(1− ®)

f(q®)
Z, (5.3.4)

where Z ∼ N (0, 1).

Usually, this result is presented without proof in intermediate level texts,

and a major objective of this exposition is to show that Theorem 5.3.4 can

be derived putting together the central limit theorem with two simple facts:

(i) The connection between the quantile estimators and the binomial distri-

bution implied by (5.2.3)–(5.2.7), and (ii) The basic properties of the idea of

convergence in distribution mentioned in Remark 5.3.1. Before proceeding

with the technical details, it is convenient to state (5.3.4) in an alternative

form.

Remark 5.3.2. Notice that the conclusion (5.3.4) is equivalent to

f(q®)

√
n

®(1− ®)
[q̂®,n − q®]

d−→Z, (5.3.5)

by Remark 5.3.1(iii). Thus, in a more explicit way, the conclusion of Theorem

5.3.1 can be expressed as

lim
n→∞

P

[
a < f(q®)

√
n

®(1− ®)
[q̂®,n − q®] < b

]

= Φ(b)− Φ(a)

=

∫ b

a

1√
2¼

e−z2/2 dz,

(5.3.6)

where the numbers a and b satisfy a < b but are arbitrary otherwise.

The above statement may be extremely useful to establish inferences about
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the unknown distribution of the data, particularly when the methods of

maximum likelihood or moments estimation are not easily implemented; an

example of such a situation will be analyzed after completing the proof of

Theorem 5.3.1. ⊔⊓

5.4. Preliminary Results

The proof of the asymptotic formula (5.3.4) is rather technical and, by con-

venience, it has been divided into four steps stated in the following lemmas,

where the context is as in the statement of Theorem 5.3.1.

Lemma 5.4.1. For each x ∈ IR, the inequalities

√
n[q̂®,n − q®] ≤ x and Nn(X; q® + x/

√
n) ≥ k(®, n)

are equivalent; see (5.2.1) and (5.2.3) for the specifications of k(®, n) and

Nn(X; q® + x/
√
n) .

Proof. Just recall that q̂®,n = X(k(®,n)) and observe that

√
n[q̂®,n − q®] ≤ x ⇐⇒ q̂®,n ≤ q® + x/

√
n

⇐⇒ X(k(®,n)) ≤ q® + x/
√
n

⇐⇒ Nn(X; q® + x/
√
n) ≥ k(®, n)

where the relation (5.2.7) with q® + x/
√
n instead of x was used to set the

last equivalence. ⊔⊓

Lemma 5.4.2. Given x ∈ IR, define the random variable Vn as follows:

Vn = Nn(X; q® + x/
√
n)−Nn(X; q®)− n[F (q® + x/

√
n)− F (q®)]. (5.4.1)

With this notation,
1√
n
Vn

P−→ 0. (5.4.2)
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Proof. First, suppose that x > 0 and notice that (5.2.3) leads to

Nn(X; q® + x/
√
n)−Nn(X; q®) =

n∑

i=1

I[Xi ≤ q® + x/
√
n]−

n∑

i=1

I[Xi ≤ q®]

=

n∑

i=1

(I[Xi ≤ q® + x/
√
n]− I[Xi ≤ q®])

=

n∑

i=1

I[q® < Xi ≤ q® + x/
√
n]

Observing that each indicator I[q® < Xi ≤ q® + x/
√
n] has Bernoulli dis-

tribution with probability of success equal to P [q® < Xi ≤ q® + x/
√
n] =

F (q® + x/
√
n)−F (q®), and recalling that the variables Xi are independent,

it follows that

Nn(X; q® + x/
√
n)−Nn(X; q®) ∼ Binomial

(
n, F (q® + x/

√
n
)− F (q®)).

Consequently, the well-known formulae for the expectation and variance of

a binomial distribution imply that the variable Vn in (5.4.1) satisfies that

E[Vn] = 0, and

Var [Vn] = n(F (q® + x/
√
n)− F (q®))(1− [F (q® + x/

√
n)− F (q®)]).

From this point, an application of Chebychev’s inequality yields that, for

each " > 0,

P

[∣∣∣∣
Vn√
n

∣∣∣∣ > "

]
≤ Var [Vn]

n"2

=
(F (q® + x/

√
n)− F (q®))(1− [F (q® + x/

√
n)− F (q®)])

"2
;

since F (q® + x/
√
n) − F (q®) → 0 as n → ∞, by the continuity of F , the

above display immediately leads to

lim
n→∞

P

[∣∣∣∣
Vn√
n

∣∣∣∣ > "

]
= 0

establishing (5.4.2). The case x < 0 can be handled along similar lines. ⊔⊓

Lemma 5.4.3. Let ® ∈ (0, 1) and x ∈ IR be arbitrary. In this case,

k(®, n)− nF (q® + x/
√
n)√

n
→ −f(q®)x as n → ∞.
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Proof. Define Δn by

Δn: =
F (q® + x/

√
n)− F (q®)

x/
√
n

(5.4.3)

and notice that, since F has density f which is continuous at q®, the function

F is differentiable at the quantile q® and F ′(q®) = f(q®); hence,

f(q®) = F ′(q®) = lim
n→∞

F (q® + x/
√
n)− F (q®)

x/
√
n

= lim
n→∞

Δn. (5.4.4)

Now, use (5.4.3) to obtain that F (q® + x/
√
n) = F (q®) + Δnx/

√
n =

® + Δnx/
√
n, where the second equality is due to the relation F (q®) = ®.

Therefore,

nF (q® + x/
√
n) = n®+Δnx

√
n. (5.4.5)

On the other hand, the specification of k(®, n) in (5.2.1) yields that ®−1/n ≤
k(®, n) ≤ ®, so that there exists

¯n ∈ [0, 1/n) (5.4.6)

such that k(®, n)/n = ®− ¯n, that is,

k(®, n) = n®− n¯n,

an equality that together with (5.4.5) implies that

k(®, n)− nF (q® + x/
√
n)√

n
=

n®− n¯n − (n®+Δnx
√
n)√

n

= −n¯n√
n

−Δnx;

since the inclusion (5.4.6) yields that 0 ≤ n¯n/
√
n ≤ 1/

√
n → 0 as n → ∞,

taking the limit in the above display it follows that

lim
n→∞

k(®, n)− nF (q® + x/
√
n)√

n
= lim

n→∞

[
−n¯n√

n
−Δnx

]

= 0− lim
n→∞

Δnx,

and the conclusion follows via (5.4.4). ⊔⊓

In contrast with the previous lemmas, the next one, which is the last

step before the proof of Theorem 5.3.1, is concerned with a general property

of the notion of convergence in distribution.
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Lemma 5.4.4. Let {Wn} be a sequence of random variables converging in

distribution to a continuous distribution function G(x), and assume that

G(⋅) is continuous in IR. In this case, if {yn} is a convergent sequence of real

numbers, say

yn → y as n → ∞,

then

lim
n→∞

P [Wn ≥ yn] = 1−G(y)

Remark 5.4.1. When G is a continuous distribution function in IR and

Wn
d−→G, the definition of convergence in distribution directly yields that

P [Wn ≥ y] → 1−G(y) as n goes to ∞;

the main conclusion of the above lemma is that such a convergence remains

valid when the constant y in the left-hand side is replaced by a convergent

sequence {yn}. ⊔⊓

Proof. Let a and b two real numbers such that y ∈ (a, b) and, using that the

sequence {yn} converges to y, notice that the inclusion yn ∈ (a, b) holds if n

is large enough, say for n > m. In this case it follows that

[Wn > b] ⊂ [Wn ≥ yn] ⊂ [Wn > a],

and then

P [Wn > b] ≤ P [Wn ≥ yn] ≤ P [Wn > a], n > m.

Next, observe that P [Wn > a] = 1−P [Wn ≤ a] → 1−G(a) as n → ∞, by the

assumption thatWn
d−→G; similarly, P [Wn > b] = 1−P [Wn ≤ b] → 1−G(b).

Thus, the above display leads to

1−G(b) = lim
n→∞

P [Wn > b]

≤ lim
n→∞

P [Wn ≥ yn]

≤ lim
n→∞

P [Wn > a] = 1−G(a).
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After taking the limits as b ↘ y and a ↗ y, via the continuity of G it follows

that

1−G(y) = lim
b↘y

[1−G(b)] ≤ lim
n→∞

P [Wn ≥ yn] ≤ lim
a↗y

[1−G(a)] = 1−G(y),

completing the proof. ⊔⊓

5.5. Proof of the Asymptotic Normality

The preliminary results established in the previous section will be now

used to establish that the limit distribution of a sample quantile is normal.

Proof of Theorem 5.3.1. To begin with, let x ∈ IR be arbitrary and notice

that
[√

n[q̂®,n − q®] ≤ x
]

=
[
Nn(X; q® + x/

√
n) ≥ k(®, n)

]

=
[
Nn(X; q® + x/

√
n)− nF (q® + x/

√
n) ≥ k(®, n)− nF (q® + x/

√
n)
]

where the first equality is due to Lemma 5.4.1, and the second one follows

from a substraction in both sides of the inequality. Nn(X; q® + x/
√
n) ≥

k(®, n). Now, let Vn be the random variable defined in (5.4.1), and observe

that

Nn(X; q® + x/
√
n)− nF (q® + x/

√
n) = Vn +Nn(X; q®))− nF (q®)

a relation the together with the previous display allows to write

[√
n[q̂®,n − q®] ≤ x

]

=
[
Vn +Nn(X; q®)− nF (q®) ≥ k(®, n)− nF (q® + x/

√
n)
]

=

[
Vn√
n
+

Nn(X; q®)− nF (q®)√
n

≥ k(®, n)− nF (q® + x/
√
n)√

n

] (5.5.1)

Now observe that Nn(X; q®) ∼ Binomial (n, F (q®)) = Binomial (n, ®); see

(5.1.1) and (5.2.4). Using the central limit theorem, this distributional prop-

erty yields that

Nn(X; q®)− nF (q®)√
n

d−→N (0, ®(1− ®)).
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On the other hand, as it was proved in Lemma 5.4.2, Vn/
√
n

P−→ 0, and it

follows that

Wn: =
Vn√
n
+

Nn(X; q®)− nF (q®)√
n

d−→W ∼ N (0, ®(1− ®)); (5.5.2)

notice that the distribution function of W is given by

G(x) = P [W ≤ x] = P

[
W√

®(1− ®)
≤ x√

®(1− ®)

]
= Φ

Ã
x√

®(1− ®)

)
.

where Φ(⋅) is the distribution function of the standard normal distribution.

Also, notice that, with the notation in (5.5.2), the relation (5.5.1) can be

equivalently written as

[√
n[q̂®,n − q®] ≤ x

]
=

[
Wn ≥ k(®, n)− nF (q® + x/

√
n)√

n

]

= [Wn ≥ yn]

where

yn: =
k(®, n)− nF (q® + x/

√
n)√

n
→ −f(q®)x,

and the convergence follow from Lemma 5.4.3. From this point, an applica-

tion of Lemma 5.4.4 with −f(q®)x instead of y allows to conclude that

lim
n→∞

P
[√

n[q̂®,n − q®] ≤ x
]
= lim

n→∞
P [Wn ≥ yn]

= P [W > y] = 1−G(y) = 1−G(−f(q®)x),

and the specification of the distribution function G(⋅) yields that

lim
n→∞

P
[√

n[q̂®,n − q®] ≤ x
]
= 1− Φ

Ã
−f(q®)x√
®(1− ®)

)

= Φ

Ã
f(q®)x√
®(1− ®)

)

where the second equality is a consequence of the symmetry about 0 of the

standard normal distribution. Finally, observe that if Z ∼ N (0, 1), then the

distribution function of
√

®(1− ®)/f(q®)Z is given by

P

[√
®(1− ®)

f(q®)
Z ≤ x

]
= P

[
Z ≤ f(q®)x√

®(1− ®)

]
= Φ

Ã
f(q®)x√
®(1− ®)

)
,
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and these two last displayed relations together yield that

√
n[q̂®,n − q®]

d−→
√

®(1− ®)

f(q®)
Z ∼ N

(
0,

®(1− ®)

f(q®)2

)
,

completing the proof. ⊔⊓

Example 5.5.1. Theorem 5.3.1 is quite general and may be particularly

useful to establish inferences, specially when the maximum likelihood or

the moments methods are not applicable. For instance, consider a sample

X1, X2, . . . , Xn of the Cauchy density with center µ ∈ IR, which is given by

f(x; µ) =
1

¼

1

1 + (x− µ)2
.

For this density, the maximum likelihood estimator of µ does not admit an

explicit formula and must be determined numerically for each sample data.

On the other hand, this density does not have moments of any order ≥ 1, so

the method of moments can not be applied to estimate µ. However, notice

that

f(µ + ℎ; µ) = f(µ − ℎ; µ), ℎ ∈ IR,

a symmetry property that immediately yields the equality

∫ µ

−∞
f(x; µ) dx =

1

2
;

hence, µ is the median of the distribution, that is,

µ = q0.5(µ) ≡ q0.5.

Thus, the sample median q̂0.5n is a consistent estimator of µ, and

√
n [q̂0.5n − µ]

d−→N
(
0,

®(1− ®)

f(µ; µ)2

)
= N

(
0,

¼2

4

)

This convergence implies that, when n is ‘large’,

.95 ≈ P

[
−2 ≤ √

n
q̂0.5n − µ

¼/2
≤ 2

]
= P

[
q̂0.5n − ¼√

n
≤ µ ≤ q̂0.5n +

¼√
n

]
,

and it follows that [q̂0.5n −¼/
√
n, q̂0.5n +¼/

√
n] is a confidence interval for

µ, whose confidence level is ‘approximately’ 0.95. ⊔⊓
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