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Elaborada bajo la supervisión del comité particular de asesoŕıa
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Este trabajo trata sobre ideas fundamentales en la teoŕıa de esti-
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propiedad de invarianza de la propiedad de convergencia hacia una

distribución normal bajo transformaciones diferenciables.

iii



ABSTRACT

ASYMPTOTIC DISTRIBUTION OF MOMENTS

ESTIMATORS

BY

ALBERTO AGUILAR RODRÍGUEZ
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This work is concerned with basic aspects of the theory of point es-

timation in the context of parametric statistical models. The main

objective of the exposition is to illustrate fundamental notions, like

unbiasedness, consistency and asymptotic normality, presenting a

series of fully analyzed examples. To achieve this goal, two meth-

ods of constructing estimators, namely, the maximum likelihood

technique and the method of moments, are carefully presented and,

combining the central limit theorem with the invariance property

of the asymptotic normality under the application of smooth func-

tions, a detailed derivation of the limit distribution of moments

estimators is given.
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Chapter 1

Perspective of This Work

In this chapter presents a brief outline of this work, establishing the

main objectives and describing the organization of this subsequent material.

The main contributions are clearly stated.

1.1. Introduction

This work deals with the problem of parametric point estimation. Undoubt-

edly, the area of point estimation lays in the core of the statistical method-

ology, and a major step in every theoretical or applied analysis is the deter-

mination of estimates (i.e., approximations) to some unknown quantities in

terms of the observed data; moreover, every treatise on statistics dedicates

a good amount of space to describe methods of constructing estimators and

to analyze its properties (Dudewicz and Mishra , 1988, Wackerly et al. 2009,

Lehmann and Casella, 1999, or Graybill, 2000).

The topics analyzed in the following chapters are mainly concentrated

on three aspects of the estimation problem:

(i) The construction of estimators via the maximum likelihood technique and

the method of moments;

(ii) The study of particular models to illustrate the estimation procedures,

and to point out the technical difficulties to obtain explicit formulas.

1
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(iii) The analysis of the asymptotic behavior of momenst estimators.

Each one of these topics are briefly described below.

1.2. Parametric Estimation Problem

In general, the purpose of a statistical analysis is to use the observed data

to gain knowledge about some unknown aspect of the process generating

the observations. The observable data X = (X1, X2, . . . , Xn) is thought of

as a random vector whose distribution is not completely known. Rather,

theoretical or modeling considerations lead to assume that the distribution

of X, say PX, belongs to a certain family F of probability measures defined

on (the Borel class of) IRn:

PX ∈ F . (1.2.1)

This is a statistical model, and in any practical instance it is necessary to

include a precise definition of the family F . In this work, the main interest

concentrates on parametric models, for which the family F can be indexed

by a k-dimensional vector θ whose components are real numbers; in such a

case the set of possible values of θ, which is referred to as the parameter

space, will be denoted be Θ and F can be written as

F = {Pθ | θ ∈ Θ}.

In this context the model (1.2.1) ensures that there exists some parameter

θ∗ ∈ Θ such that PX = Pθ∗ , that is, for every (Borel) subset A of IRn

P [X ∈ A] = PX[A] = Pθ∗ [A]. (1.2.2)

The parameter θ∗ satisfying this relation for every (Borel) subset of IRn is

the true parameter value. Notice that the model prescribes the existence of

θ∗ ∈ Θ such that the above equality always holds, but does not specify which

is the parameter θ∗; it is only supposed that θ∗ belongs to the parameter

space Θ, and the main objective of the analyst is to determine θ∗ using

the value attained by the vector X, say X = x. Indeed, the lack of exact

knowledge of θ∗ represents ‘the aspects that are unknown ’ to the analyst

about the real process generating the observation vector X. On the other

hand, in any practical situation, θ∗ can not be determined exactly after

observing the value of X, so that the real goal of the analyst is to make an
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‘educated guess’ about the true parameter value using the observed value

of X; this means that a function T (X) must be constructed so that, after

observing X = x, the value T (x) will represent ‘the guess’ (approximation) of

the analyst to the true parameter value θ∗. More generally, the interest may

be to obtain an ‘approximation’ to the value g(θ∗) attained by some function

g(θ) at the true parameter value θ∗. The estimation problem consists in

constructing a function T (X) whose values will be used as approximations

to g(θ∗) such that the estimator T (X) has good statistical properties. As

already mentioned, this work analyzes methods to construct estimators.

1.3. Contribution and Main Goals

The main goals of this work can be described as follows:

(i) To present a formal description of two important methods to construct

estimators, namely, the maximum likelihood technique, and the method of

moments;

(ii) To use selected examples to illustrate the construction of estimators in

models involving distributions frequently used in applications,

(iii) To show the usefulness of elementary analytical tools in the analysis of

basic notions in the theory of point estimation, as unbiasedness, consistency,

asymptotic normality and convergence in distribution.

On the other hand, this work is also concerned with the more specific

problem of estimating a quantile of a continuos distribution function, and

the main purpose in this direction is the following:

(iv) To provide a derivation of the asymptotic distribution of the sequence

of moments estimators.

The analysis performed below to achieve these objectives, as well as the

numerous and detailed examples on the theory, represent the main contri-

bution of this work. Indeed, due to the technical difficulties that a rigorous

analysis of a statistical problem requires, frequently the delicate and more

demanding parts of the arguments are usually described, but not proved; in

the present exposition a serious effort has been made to derive and explain

the results in a clear and concise manner, highlighting the essential statistical

and analytical tools that are used to establish the conclusions, and indicating

clearly the basic steps of the arguments.
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1.4. The Origin of This Work

This work arose form the activities developed in the project Mathematical

Statistics: Elements of Theory and Examples, started on July 2011 by the

Graduate Program in Statistics at the Universidad Autónoma Agraria Anto-

nio Narro; the founder students were Mary Carmen Ruiz Moreno and Alfonso

Soto Almaguer. The basic aims of the project are:

(i) To be a framework were statistical problems can be freely and fruitfully

discussed;

(ii) To promote the understanding of basic statistical and analytical tools

through the analysis and detailed solution of exercises.

(iii) To develop the writing skills of the participants, generating an orga-

nized set of neatly solved examples, which can used by other members of the

program, as well as by the statistical communities in other institutions and

countries.

(iv) To develop the communication skills of the students and faculty through

the regular participation in seminars, were the results of their activities are

discussed with the members of the program.

Presently, the work of the project has been concerned with fundamental

statistical theory at an intermediate (non-measure theoretical) level, as in the

book Mathematical Statistics by Dudewicz and Mishra (1998). When neces-

sary, other more advanced references that have been useful are Lehmann and

Casella (1998), Borobkov (1999) and Shao (2002), whereas deeper probabilis-

tic aspects have been studied in the classical text by Loève (1984). On the

other hand, statistical analysis requires algebraic and analytical tools, and

ne these directions the basic references in the project are Apostol (1980),

Fulks (1980), Khuri (2002) and Royden (2003), which concern mathematical

analysis, whereas the algebraic aspects are covered in Graybill (2001) and

Harville (2008).

The examples that are used below to illustrate the basic statistical no-

tions studied in this work are a direct product of the activities of the different

participants in the project, and enjoying the discussions and different per-

spectives of analysis of a problem has been an experience in a lifetime. In

particular, it is a real pleasure to thank to my classmate, Alfonso Soto Al-

maguer, by his generous help and clever suggestions.
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1.5. The Organization

The remainder of this work has been organized as follows:

In Chapter 2 the basic concepts in the theory of point estimation are in-

troduced, presenting a description of the idea of parametric statistical model,

and discussing the estimation problem of an unknown parametric function.

The exposition continues with the notions of unbiased estimator and consis-

tency of a sequence of estimators, and the related concept of asymptotically

unbiased sequence is also analyzed. Next, in Chapter 3 the method of maxi-

mum likelihood estimation is introduced, which is based on the intuitive idea

that, after observing that data, the estimate of the unknown parameter θ is

the value θ̂ in the parameter space that assigns highest probability to the

observations. Then, Chapter 4 is concerned with the method of moments

and the presentation concludes in Chapter 5 analyzing the limit distribution

of a sequence of moments estimators.



Chapter 2

Consistency and Unbiasednenss

This chapter is concerned with the basic notions in the theory of point

estimation. After a brief description of a parametric statistical model, the

problem of estimating a function of the unknown parameter is considered.

The idea of estimator is introduced and the main objective is to illustrate

fundamental properties, as unbiasedness, consistency and asymptotic unbi-

asedness. These goals are achieved by analyzing in detail several examples

involving familiar distributions.

2.1. Introduction

Let Xn = (X1, X2, . . . , Xn) be an observable random vector. A parametric

statistical model for X prescribes a family {Pθ}θ∈Θ of probability distribu-

tions for X, where the set of indices Θ is referred to as the parameter space

and is a subset of IRk for some integer k ≥ 1. Thus, a statistical model can

be thought of as the hypothesis that of the distribution of X coincides with

Pθ for some parameter θ ∈ Θ, but the ‘true’ parameter value—the one which

corresponds to the distribution of the observation vector X—is unknown.

The statistical model is briefly described by writing

X ∼ Pθ, θ ∈ Θ.

6
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Frequently the components X1, X2, . . . , Xn of the random vector X are in-

dependent and identically distributed with common density or probability

function f(x; θ), and in this case the model will be written as

Xi ∼ f(x; θ), θ ∈ Θ,

where it is understood that the involved variables are independent with the

common distribution determined by f(x; θ).

The main objective of the analyst is to determine, at least approxi-

mately, the value of the true parameter or, more generally, the value of a

function g(θ) at the true parameter. To achieve this goal, the components

of the observation vector X are combined in some way to obtain a function

Tn ≡ Tn(X) = Tn(X1, X2, . . . , Xn)

and, after observing X = x = (x1, x2, . . . , xn), the function Tn is evaluated

at x to obtain Tn(x) = Tn(x1, x2, . . . , xn), a value that is used as an ‘approx-

imation’ of the unknown quantity g(θ). The random variable Tn is called an

estimator of g(θ) and Tn(x) is the estimate corresponding to the observation

X = x. Notice that this idea of estimator is quite general; indeed, an esti-

mator is an arbitrary function of the available data whose values are used

as an approximation of the unknown value of the parametric quantity g(θ);

thus, some criteria are needed to distinguish among diverse estimators and

to select one with desirable properties.

2.2. The Estimation Problem

In this section the problem of point estimation is discussed, and two basic

properties of estimators are discussed, namely, unbiasedness and consistency.

A parametric statistical model for a random (and observable) vector X =

(X1, X2, . . . , Xn) postulates that the distribution of X is a member of a

a family {Pθ}θ∈Θ of probability distributions on the Borel subsets of IRn.

The set of indices Θ is referred to as the parameter space and is a subset

of an Euclidean space IRk. Thus, a statistical model stipulates that the

distribution of X coincides with Pθ for some parameter θ ∈ Θ, but the

‘true’ parameter value—the one which corresponds to the distribution of the

observation vector X—is unknown. Such a model is briefly described by

writing

X ∼ Pθ, θ ∈ Θ.
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The main objective of the analyst is to determine, at least approximately, the

value of the true parameter or, more generally, the value of a function g(θ) at

the true parameter. To achieve this goal the components of the observation

vector X are combined in some way to obtain a function

Tn ≡ Tn(X) = Tn(X1, X2, . . . , Xn),

whose values are used as ‘approximations’ of the unknown quantity g(θ).

Thus, after performing the underlying experiment and observing X = x =

(x1, x2, . . . , xn), the value Tn(x) = Tn(x1, x2, . . . , xn) is used as the analyst’s

guess for the g(θ). The random variable Tn is called an estimator of g(θ)

and Tn(x) is the estimate corresponding to the observation X = x.

An estimator of g(θ) is unbiased if

Eθ[Tn] = g(θ), θ ∈ Θ;

the subindex θ in the expectation operator is used to indicate that the ex-

pected value is computed under the condition that θ is the true parameter

value. Generally, the value attained by an estimator is not equal to g(θ) but,

if the estimator Tn is unbiased and the experiment producing the sample

X is repeated again and again, the estimates Tn 1, Tn 2, Tn 3, . . . obtained at

each repetition satisfy that, with probability 1,

Tn 1 + Tn 2 + Tn 3 + · · ·+ Tnk
k

converges to g(θ) as the number k of repetitions increases, a property that

is consequence of the law of large numbers. Thus, on the average, the esti-

mator Tn ‘points to the correct quantity’ g(θ). It must be noted that not

all quantities of interest admit an unbiased estimator. For instance, suppose

that X1, X2, . . . , Xn is a sample from the Bernoulli (θ) distribution, where

θ ∈ Θ = [0, 1], and assume that Tn = Tn(X1, X2, . . . , Xn) for g(θ) is an

unbiased estimator for g(θ). Since

Pθ[X1 = x1, X2 = x2, . . . , Xn = xn] = θ
∑

i
xi(1− θ)n−

∑
i
xi

when the xis are zero or one, it follows that

Eθ[Tn] =
∑

x1,...,xk=0,1

T (x1, x2, . . . , xn)θ
∑

i
xi(1− θ)n−

∑
i
xi
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is a polynomial of degree less than or equal to n, so that Eθ[Tn] = g(θ)

for all θ ∈ Θ can not be satisfied for functions that are not polynomials,

as g(θ) = eθ or g(θ) = sin(θ), or even for polynomial functions with degree

larger that n, as g(θ) = θn+1. Thus, the unbiasdness property may be too

restrictive, and it is is possible to have that an unbiased estimator does not

exists in some cases of interest.

The bias function of an estimator Tn of g(θ) is defined by

bTn(θ): = Eθ[Tn]− g(θ), θ ∈ Θ

so that Tn is unbiased if bTn(θ) = 0 for every θ ∈ Θ. To compute the bias

of an estimator Tn it is necessary to compute the expected value Eθ[Tn],

and usually this task requires to know the density or probability function

of Tn; however, occasionally symmetry conditions may help to simplify the

computation.

A sequence {Tn}n=1,2,... of estimators of g(θ) is asymptotically unbiased if

lim
n→∞

bTn(θ) = 0, θ ∈ Θ

a condition that is equivalent to requiring that, for each parameter θ ∈ Θ,

Eθ[Tn]→ g(θ) as n→∞.

On the other hand, a sequence {Tn}n=1,2,... of estimators of g(θ) is consistent

if for each ε > 0,

lim
n→∞

Pθ[|Tn − g(θ)| > ε] = 0, θ ∈ Θ,

that is, the sequence {Tn} always converges in probability to g(θ) with re-

spect to the distribution Pθ. The above convergence will be alternatively

written as

Tn
Pθ−→ g(θ).

2.3. Instruments to Study the Consistency Property

There are three main tools to show consistency of a sequence of estimators,

which are briefly discussed in the following points (i)–(iii):

(i) The law of large numbers: Assume that the quantity g(θ) is the expecta-

tion of a random variable Y = Y (X1), that is,

g(θ) = Eθ[Y (X1)]
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In this case, if the variables X1, X2, . . . , Xn, . . . are independent and identi-

cally distributed, setting

Tn =
Y (X1) + Y (X2) + · · ·+ Y (Xn)

n
,

the law of large numbers yields that Tn
Pθ−→ g(θ), that is the sequence {Tn}

of estimators of g(θ) is consistent.

(ii) The continuity theorem. Roughly, this result establishes that consistency

is preserved under the application of a continuous function and is formally

stated as follows:

Suppose that the parametric functions g1(θ), g2(θ), . . . , gr(θ) are estimated

consistently by the sequences {T1n}, {T2n}, . . . , {Tr n}, that is

Ti n
Pθ−→ gi(θ), i = 1, 2, . . . , r.

Additionally, let the function G(x1, x2, . . . , xr) be continuous at each point

(g1(θ), . . . , gr(θ)). In this context, the sequence {G(T1n, T2n, . . . , Tr n)} of

estimators of G(g1(θ), g2(θ), . . . , gr(θ)) is consistent, i.e.,

G(T1n, T2n, . . . , Tr n)
Pθ−→G(g1(θ), g2(θ), . . . , gr(θ)).

(iii) The idea of convergence in the mean. If p is a positive number, a

sequence of random variables {Tn} converges in the mean of order p to g(θ)

if

lim
n→∞

Eθ[|Tn − g(θ)|p] = 0, θ ∈ Θ.

The notation Tn
Lp−→ g(θ) will be used to indicate that this condition holds.

The most common instance in applications arises when p = 2, so that

Tn
L2

−→ g(θ) is equivalent to the statement that, for each θ ∈ Θ, Eθ[(Tn −
g(θ))2] → 0 as n → ∞. When Tn

Lp−→ g(θ) the sequence {Tn} of estimators

of g(θ) is referred to as consistent in the mean of order p. Suppose now that

Tn
Lp−→ g(θ), and notice that Markov’s inequality yields that, for each ε > 0,

Pθ[|Tn − g(θ)| > ε] ≤ Eθ[|Tn − g(θ)|p]
εp

→ 0 as n→∞,

so that

Tn
Lp−→ g(θ)⇒ Tn

P−→ g(θ);
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in words, if the sequence {Tn} of estimators of g(θ) is consistent in the

mean of order p, then {Tn} is consistent (in probability). This implication

is useful, since it is frequently easier to establish consistency in the mean

of some order p for some p > 0, than to prove consistency directly. When

considering consistency in the mean of order 2, it is useful to keep in mind

the the mean square error Eθ[(Tn−g(θ))2], the variance and the bias function

of Tn are related by

Eθ[(Tn − g(θ))2] = bTn(θ)2 + Varθ(Tn).

2.4. Unbiasedness and Consistency in Simple Cases

In this section the ideas recently introduced will be illustrated for statis-

tical models involving some common distributions and standard statistical

concepts, like independence. The idea is to generate some insight on the nec-

essary computations to evaluate the bias of an estimator, and to establish

the consistency or asymptotic unbiasedness of a sequence of estimators.

Exercise 2.4.1. Let Tn and T ′n be two independent unbiased and consistent

estimators of θ.

(a) Find and unbiased estimator of θ2;

(b) Find and unbiased estimator of θ(θ − 1);

(c) Are the estimator in parts (a) and (b) consistent?

Solution. (a) The independence and unbiasedness properties of Tn and T ′n

yield that, for each parameter θ,

Eθ[TnTn] = Eθ[Tn]Eθ[T
′
n] = θ · θ = θ2

and then TnT
′
n is an unbiased estimator of θ2.

(b) Using that Eθ[TnT
′
n] = θ2 and Eθ[Tn] = θ, it follows that

Eθ[Tn(T ′n − 1)] = Eθ[TnT
′
n − Tn] = θ2 − θ = θ(θ − 1),

that is, Tn(T ′n − 1) is an unbiased estimator of θ(θ − 1).



12

(c) Since Tn and T ′n are consistent estimators of θ, combining the conver-

gences Tn
Pθ−→ θ and T ′n

Pθ−→ θ with the continuity theorem, it follows that

TnT
′
n

Pθ−→ θ2 and Tn(T ′n − 1)
Pθ−→ θ(θ − 1), so that the estimators in parts (a)

and (b) are consistent. tu

Exercise 2.4.2. Let X1, X2, . . . , Xn be a random sample of size n from the

density f(x; θ) = [(1− θ) + θ/(2
√
x)]I[0,1](x).

(a) Show that Xn is a biased estimator of θ and find its bias bn(θ),

(b) Does limn→∞ bn(θ) = 0 for all θ?

(c) Is Xn consistent in mean square?

Solution. The mean of the density f(x; θ) is

µ(θ) =

∫
IR

xf(x; θ) dx =

∫ 1

0

x[(1− θ) + θ/(2
√
x)] dx =

1− θ
2

+
θ

3
=

1

2
− θ

6
.

(a) Since Eθ[Xn] = µ(θ) 6= θ, the sample mean Xn is a biased estimator of

θ, and bn(θ) = µ(θ)− θ = 1− 7θ/6

(b) Notice that bn(θ) = 1− 7θ/6 6= 0 for all θ ∈ [0, 1] does not depend on n,

so that limn→∞ bn(θ) = 1− 7θ/6, and then bn(θ) does not converge to zero

at any parameter value; in particular, considering Xn as an estimator of θ,

the sequence {Xn} is not asymptotically unbiased.

(c) The sequence {Xn} is not consistent in mean square; indeed Eθ[(Xn −
θ)2] ≥ b2n(θ), and then Eθ[(Xn − θ)2] does not converges to zero as n→∞,

by part (b). tu

2.5. The Usefulness of a Symmetry Property

The objective of this section is to show that the computations to analyze

the properties of an estimator can be eased by the application of symmetry

properties of the underlying probability measures postulated by the model.

Exercise 2.5.1. Let X1, X2, . . . , Xn be independent random variables each

with the same ‘displaced Laplace density’

f(x; θ) =
1

2
e−|x−θ|, x ∈ IR,
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where the parameter θ belongs to IR. If Y1 ≤ Y2 ≤ · · · ≤ Yn are the order

statistics, show that Tn = (Y1 + Yn)/2 is an unbiased estimator of θ. tu

Solution. The key fact to keep in mind is that the underlying density is

symmetric about θ, so that Xi−θ and θ−Xi have the same Laplace density

f(x) = (1/2)e−|x|. Using the independence of the variables Xi, it follows

that

(X1 − θ,X2 − θ, . . . , Xn − θ)
d
= (θ −X1, θ −X2, . . . , θ −Xn),

a relation that, after applying the minimum functions in both sides, leads to

min{Xi − θ, i = 1, 2, . . . , n} d
= min{θ −Xi, i = 1, 2, . . . , n}.

Notice now that

min{Xi − θ, i = 1, 2, . . . , n} = min{Xi, i = 1, 2, . . . , n} − θ = Y1 − θ

whereas

min{θ −Xi, i = 1, 2, . . . , n} = θ + min{−Xi, i = 1, 2, . . . , n}

= θ −max{Xi, i = 1, 2, . . . , n}

= θ − Yn.

Combining the three last displays, it follows that

Y1 − θ
d
= θ − Yn,

and then both sides in this relation have the same expectation, that is,

E[Y1− θ] = E[θ−Yn]. Therefore, E[Y1 +Yn] = 2θ, i.e., Eθ[(Y1 +Yn)/2] = θ,

showing that Tn = (Y1 + Yn)/2 is an unbiased estimator of θ. tu

2.6. Additional Examples

The remainder of the chapter is dedicated to provide further illustrations of

the basic conceptos introduced in Section 2.2.

Exercise 2.6.1. (a) Let X have density f(x; θ) = [2/(1 − θ)2](x − θ)I(θ,1),

where θ ∈ [0, 1). Show that Eθ[X − θ] = 2(1 − θ)/3, and hence find an

unbiased estimator of θ based on a sample of size 1.
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(b) If X1, X2, . . . , Xn is a random sample of size n from the density in part

(a), find a function of Xn that is unbiased for θ, and also find the bias of

Xn.

(c) Let Y1 ≤ Y2 ≤ · · · ≤ Yn be the order statistics of the sample in part (b).

Find Eθ[Y1].

Solution. (a) Notice that

Eθ[X − θ] =

∫
IR

(x− θ)f(x; θ) dx = [2/(1− θ)2]

∫ 1

θ

(x− θ)2 dx =
2

3
(1− θ);

hence, the mean of the density f(x; θ) is

µ(θ) = Eθ[X] =
2

3
+
θ

3
.

and Eθ[3X − 2] = θ, that is , T = 3X1 − 2 is an unbiased estimator of θ

based on a sample of size 1.

(b) Because the expectation of the sample average equals the population

mean, part (a) yields that Eθ[Xn] = (2 + θ)/3, that is, Eθ[3Xn − 2] = θ, so

that Tn = 3Xn − 2 is a function of Xn and is an unbiased estimator of θ.

The bias of Xn as an estimator of θ is bXn(θ) = Eθ[Xn]− θ = 2(1− θ)/3.

(c) To evaluate Eθ[Y1] it is necessary to determine the density of Y1. Observe

that the distribution function of the density f(x; θ) satisfies

F (x; θ) =
(x− θ)2

(1− θ)2
, θ ≤ x ≤ 1.

An application of the formula for the density of Y1 yields that, for θ ≤ y ≤ 1,

fY1
(y; θ) = nf(y; θ)[1− F (y; θ)]n−1 = n

2(y − θ)
(1− θ)2

[
1− (y − θ)2

(1− θ)2

]n−1

,

an expression the leads to

Eθ[Y1 − θ] =

∫ 1

θ

(y − θ) · n2(y − θ)
(1− θ)2

[
1− (y − θ)2

(1− θ)2

]n−1

dy.

Changing the variable in the integral to z = (y − θ)/(1 − θ), and observing

that dy = (1 − θ)dz and that z = 0 when y = θ and z = 1 when y = 1, it

follows that

Eθ[Y1 − θ] = 2n(1− θ)
∫ 1

0

z2
[
1− z2

]n−1
dz.
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To obtain an explicit formula, chage the variable in this last integral by

setting w = z2 to obtain, using that z = w1/2 and dz = (1/2)w−1/2, that

Eθ[Y1 − θ] = n(1− θ)
∫ 1

0

w3/2−1(1− w)n−1 dw.

Recall now that
∫ 1

0
xα−1(1− x)β−1 = Γ(α)Γ(β)/Γ(α+ β), and combine this

expression with the previous display to obtain

Eθ[Y1 − θ] =
n(1− θ)Γ(3/2)Γ(n)

Γ(n+ 3/2)
. (2.6.1)

The right-hand side can be simplified by observing that

Γ(3/2) = (1/2)Γ(1/2) =
√
π/2

Γ(n) = (n− 1)!

Γ(n+ 3/2) = (n+ 1/2)Γ(n+ 1/2)

= (n+ 1/2)(n− 1/2)Γ(n− 1/2)

...

= (n+ 1/2)(n− 1/2) · · · (1/2)Γ(1/2)

=

(
2n+ 1

2

)(
2n− 1

2

)
· · ·
(

1

2

)√
π

=
(2n+ 1)(2n− 1) · · · 1

2n
√
π

=
(2n+ 1)(2n)(2n− 1)(2n− 2) · · · 2 · 1

2n(2n)(2n− 2) · · · 2
√
π

=
(2n+ 1)!

22nn!

√
π

Combining these expressions with (2.6.1) it follows that

Eθ[Y1 − θ] =
n(1− θ)[

√
π/2](n− 1)!

[(2n+ 1)!/22nn!]
√
π

=
1− θ

2(2n+ 1)
· 1

[(2n)!/22n(n!)2]

=
1− θ

2(2n+ 1)
· 22n(

2n

n

)
Thus,

Eθ[Y1] = θ +
1− θ

2(2n+ 1)
· 22n(

2n

n

) ,
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concluding the argument. tu

Exercise 2.6.2. Let X1, X2, . . . , Xn be independent random variables each

one with distribution Gamma (α, λ), which has density

f(x;α, λ) =
λα

Γ(α)
xα−1e−λxI(0,∞)(x),

where α and λ are positive. Suppose that α is known, and define

β ≡ β(λ) = 1/λ, and Tn = Xn/α.

(a) Show that Tn is an unbiased estimator of β which is consistent in mean

square.

(b) Show that (X2
1 +X2

2 + · · ·+X2
n)/[nα(α+ 1)] is unbiased and consistent

as estimator of β2.

Solution. To begin with, recall that the first and second moments of the

Gamma (α, λ) distribution are given by

Eλ[X1] =
α

λ
= αβ, and Eλ[X2

1 ] =
α(α+ 1)

λ2
= α(α+ 1)β2, (2.6.2)

relations that yield

Varλ[X1] =
α

λ2
= αβ2. (2.6.3)

(a) The first equation in (2.6.2) yields that Eλ[Xn] = αβ, and then Eλ[Tn] =

Eλ[Xn/α] = β, that is, Tn is an unbiased estimator of β. On the other hand,

from (2.6.3) it follows that Varλ[Xn] = Varλ[X1]/n = αβ2/n, and then

Eλ[(Tn − β)2] = Varλ[Tn]

= Varλ[Xn/α] =
1

α2
Varλ[Xn] =

β2

nα
→ 0 as n→∞,

so that Tn is consistent in mean square as estimator of β.

(b) The second equality in (2.6.2) and the law of large numbers together

yield that

Eλ

[
X2

1 +X2
2 + · · ·+X2

n

n

]
= α(α+ 1)β2,
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and
X2

1 +X2
2 + · · ·+X2

n

n

Pλ−→ α(α+ 1)β2.

Hence,

Eλ

[
X2

1 +X2
2 + · · ·+X2

n

nα(α+ 1)

]
= β2, and

X2
1 +X2

2 + · · ·+X2
n

nα(α+ 1)

Pλ−→ β2

showing that (X2
1 + X2

2 + · · · + X2
n)/[nα(α + 1)] is unbiased and consistent

as estimator of β2. tu

Exercise 2.6.3. Let X1, X2, . . . , Xn be independent random variables with

Exponential (λ) distribution, which has density

f(x;λ) = λe−λxI(0,∞)(x),

where λ > 0. Note that Eλ[Xi] = 1/λ.

(a) An intuitive estimator for λ is 1/Xn. Show that this estimator is biased,

and compute the bias b1/Xn(λ).

(b) Based on part (a), find an unbiased estimator of λ.

Solution. Let n be a fixed positive integer and notice that

Y : = X1 + · · ·+Xn ∼ Gamma (n, λ) ,

so that

Eλ[1/Y ] =

∫ ∞
0

1

y

λn

Γ(n)
yn−1e−λy dy

=
λn

Γ(n)

∫ ∞
0

yn−2e−λy dy

=
λn

Γ(n)
· Γ(n− 1)

λn−1
=

λ

n− 1

Hence,

Eλ[1/Xn] = Eλ[n/Y ] =
nλ

n− 1
= λ+

λ

n− 1
; (2.6.4)

this relation shows that 1/Xn is a biased estimator of λ, with bias b1/Xn(λ) =

λ/(n− 1).
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(b) Equality (2.6.4) yields that Eλ[(n− 1)/(nXn)] = λ, so that

Tn = (n− 1)/(X1 +X2 + · · ·+Xn)

is an unbiased estimator of λ. tu

Exercise 2.6.4. Let X1, X2, . . . , Xn be a random sample from the triangular

density

f(x; a, b) =


x− a
c

, if a ≤ x ≤ (a+ b)/2,

b− x
c

, if (a+ b)/2 ≤ x ≤ b,
0 otherwise,

where a and b are arbitrary real numbers satisfying a < b, and c = c(a, b) =

(b − a)2/4. Show that Xn is an unbiased estimator of E(X1) (the parental

mean), and that Var
[
Xn

]
= (b− a)2/(24n).

Solution. The specification of f(x; a, b) (or a sketch of its graph) makes it

evident that, as a function of x, f(·; a, b) is symmetric about (a+ b)/2; this

property can be verified analytically as follows:

If w ∈ [0, (b− a)/2], then (a+ b)/2 + w ∈ [(a+ b)/2, b] and

f((a+ b)/2 + w; a, b) =
b− [w + (a+ b)/2]

c
=

(b− a)/2− w
c

.

Similarly, when w ∈ [0, (b− a)/2], the inclusion (a+ b)/2−w ∈ [a, (a+ b)/2]

holds, so that

f((a+ b)/2− w; a, b) =
[(a+ b)/2− w]− a

c
=

(b− a)/2− w
c

.

These two last displays yield that

f((a+ b)/2 + w; a, b) =
(b− a)/2− |w|

c
I−(b−a)2, (b−a)/2)(w), (2.6.5)

showing explicitly that f(·; a, b) is symmetric about (a+ b)/2. Consequently,

the mean of the density is (a+ b)/2, that is

µ ≡ µ(a, b) =

∫
IR

xf(x; a, b) dx = (a+ b)/2,
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and the variance of the density is

σ2 ≡ σ2(a, b) =

∫
IR

(x− (a+ b)/2)2f(x; a, b) dx

=

∫ b

a

(x− (a+ b)/2)2f(x; a, b) dx

=

∫ (b−a)/2

−(b−a)/2

w2f(w + (a+ b)/2; a, b) dx

and using (2.6.5), it follows that

σ2 =

∫ (b−a)/2

−(b−a)/2

w2 (b− a)/2− |w|
c

dx

= 2

∫ (b−a)/2

0

w2 (b− a)/2− w
c

dx

=
2

c

[
[(b− a)/2]4

3
− [(b− a)/2]4

4

]
=

[(b− a)/2]4

6c
=

(b− a)4

96c
=

(b− a)2

24

Concerning the consistency of the sequences {Xn} and {S2
n} as estimators

of µ and σ2, it is important to keep in mind that they are always consistent,

as it is shown in Dudewciz y Mishra (1998). tu



Chapter 3

Maximum Likelihood Estimation

The idea of estimator as presented before is rather arbitrary, in the sense

that any function T of the observations is considered as an estimator of a

parametric quantity g(θ), as soon as the analyst is willing to think that the

values attained by T can be used as approximations for g(θ). In this chap-

ter a technique to generate estimators that can be reasonably thought of as

‘approximations’ for g(θ) is presented, namely the method of maximum like-

lihood. The technique is based on an intuitive principle that can be roughly

described as follows: After observing the value attained by the random vec-

tor X, say X = x, the estimate of the unknown parameter θ is the value

θ̂ in the parameter space that assigns highest probability to the observed

data. In other words, under the condition that θ̂ is the true parameter value,

the occurrence of the observed event [X = x] is more likely than under the

condition that the true parameter is different form θ̂. The objective of the

chapter is to present a formal description of these idea, and illustrate its

application.

3.1. Introduction

In this section a measure of the likelihood of an observation X under the

different parameter values is introduced, and then it is used to generate

20
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estimators of parametric quantities. Consider a statistical model

X ∼ Pθ, θ ∈ Θ,

and, as a starting point, suppose that X is a discrete vector. In this case, let

fX(x; θ) = Pθ[X = x] be the probability function of X under the condition

that θ is the true parameter value. As a function of θ ∈ Θ, the value f(x; θ)

indicates the probability of observing X = x if the true distribution of X

is Pθ, and then is a measure of the ‘likelihood’ of the observation x if θ is

the true parameter. Thus, the likelihood function corresponding to the data

X = x is defined by

L(θ;x) = fX(x; θ), θ ∈ Θ (3.1.1)

When X is continuous it has a density fX(x; θ) depending on θ, and the

likelihood function associated with the observation X = x is also defined by

(3.1.1); notice that in this case, f(x; θ) is not a probability. However, suppose

that the measurement instrument used to determine the observation has a

certain precision h, where h is ‘small’, so that when X = x is reported, the

practical meaning is that the vector X belongs to a ball B(x;h) with center

x and radius h; , when θ is the true parameter value, the probability of such

an event is ∫
y∈B(x;h)

fX(y; θ) dy

and, if the density fX( ·; θ) is continuous, the above integral is approximately

equal to

Volume of B(x;h)f(x; θ);

it follows that the likelihood function is (approximately) proportional to the

probability of observing X = x; moreover, the proportionallty constant does

not depend on θ, and then when the maximizer of the function L(·;X) is

determined, such a point also maximizes (approximately) the probability of

the observation X = x.

3.2. Maximum Likelihood Estimators and Invariance Principle

The maximum likelihood estimator of θ, hereafter denoted by θ̂ ≡ θ̂(X), is

(any) maximizer of the likelihood function L(θ;X) as a function of θ, that

is, θ̂(X) satisfies

L(θ̂;X) ≥ L(θ;X), θ ∈ Θ. (3.2.1)
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This maximum likelihood method to construct estimators of θ plays a central

role in Statistics, and there are, at least, two reasons for its importance:

(i) The method is intuitively appealing, and (ii) The procedure generates

estimators that, in general, have nice behavior. For instance, as the sample

size increases, the sequence of maximum likelihood is generally consistent,

and the estimators are asymptotically unbiased. Moreover, (iii) As it will

be seen later, the asymptotic variance of maximum likelihood estimators is

minimal.

Frequently, what is desired is to estimate the value of a parametric

function g(θ) at the true parameter value. In this context, it is necessary

to decide what value ĝ is ‘more likely’ when X = x has been observed.

To determine such a value, consider the likelihood function L(·;x) of the

data and define, for each possible value g̃ of the function g(θ), the reduced

likelihood corresponding the value g̃ of g(θ) by

Lg̃(X): = max
θ: g(θ)=g̃

L(θ;X), (3.2.2)

so that Lg̃(X) is the largest likelihood that can be achieved among the pa-

rameters θ that produce the value g̃ for g(θ). The maximum likelihood

method prescribes to estimate g(θ) by the value ĝ that maximizes Lg̃(X) as

a function of g̃:

Lĝ(X) ≥ Lg̃(X), g̃ an arbitray value of g(θ).

The maximizing value can be determined easily. Set

ĝ = g(θ̂) (3.2.3)

and notice that (3.2.1) and (3.2.2) imply that, for each possible value g̃ of

g(θ),

L(θ̂;X) ≥ max
θ: g(θ)=g̃

L(θ;X) = Lg̃(X)

and

L(θ̂;X) = max
θ: g(θ)=ĝ

L(θ;X) = Lĝ(X)

It follows that Lĝ(X) ≥ Lg̃(X), and then the reduced likelihood is maximized

by ĝ in (3.2.3). In short, the maximum likelihood estimator of a paramet-

ric function g(θ) is ĝ = g(θ̂), the value that is obtained by evaluating the
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function g at the maximum likelihood estimator of θ. This result is called

the invariance principle (or property) of the maximum likelihood estimation

procedure.

3.3. Logarithmic Transformation

Before going to the analysis of specific examples, it is useful to note that,

when the observation vector X is a sample (X1, X2, . . . , Xn) of size n from a

population with probability function or density f(x; θ), the likelihood func-

tion is given by

L(θ;X) =

n∏
i=1

f(Xi; θ);

since the logarithmic function is strictly increasing, maximizing this product

is equivalent to maximizing its logarithm, which is given by

L(θ;X) =

n∑
i=1

log(f(Xi; θ)).

In any case, whether L(·;X) or L(θ;X) is being maximized, the problem of

obtaining its maximizer is an interesting one. As it should be expected, the

differentiation technique plays a central to analyze this optimization problem,

In particular, of the likelihood function is ‘smooth’ as a function of θ and

the maximizer belongs to the interior of the parameter space, the following

likelihood equation is satisfied:

DθL(θ;X) = 0, (3.3.1)

where Dθ is the gradient operator, whose components are the partial deriva-

tives with respect to each element of the parameter θ; thus, when θ is a

vector, (3.3.1) represent a system of equations satisfied by θ̂. On the other

hand, when θ̂ belongs to the boundary of the parameter space, the require-

ment (3.3.1) is no longer necessarily satisfied by the optimizer θ̂.

3.4. Elementary Applications

The following examples illustrate the application of the maximum likelihood

method for the construction of estimators in models that frequently appear in
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statistics, and show that the application of the technique leads to interesting

problems, even for familiar models as the normal one. The first example

concerns a normal model with unitary coefficient of variation.

Exercise 3.4.1. Let X1, X2, . . . , Xn be a random sample from the N
(
θ, θ2

)
distribution, where θ ∈ (0,∞). Find the maximum likelihood estimator of

θ. Is the sequence {θ̂n} consistent?

Solution. The likelihood function is given by

L(θ;X) =
n∏
i=1

(1/
√

2πθ)e−(Xi−θ)2/[2θ2]

and it logarithm is given by

L(θ;X) = C − n log(θ)− 1

2

n∑
i=1

(
Xi − θ
θ

)2

Hence

∂θL(θ;X) = −n
θ

+

n∑
i=1

Xi(Xi − θ)
θ3

From this expression, direct calculations show that the equation ∂θL(θ;X) =

0 is equivalent to θ2 + m1θ −m2 = 0, where mi is the ith sample moment

about 0. The unique positive solution of this likelihood equation is

θ∗ =

√
m2

1 + 4m2 −m1

2
=

4m2

2[
√
m2

1 + 4m2 +m1]
.

Since ∂L(θ;X)→ −∞ as θ → 0 or θ →∞, it follows that θ∗ maximizes the

likelihood, that is,

θ̂n =
4m2

2[
√
m2

1 + 4m2 +m1]

=
4
∑n
i=1X

2
i /n

2[
√

(
∑n
i=1Xi/n))2 + 4

∑n
i=1X

2
i /n+

∑n
i=1Xi/n]

To analyze the consistency of {θ̂n}, recall that the law of large numbers

implies that

n∑
i=1

X2
i /n

Pθ−→Eθ[X
2
1 ] = Varθ [X1] + (Eθ[X1])2 = θ2 + θ2 = 2θ2

and
n∑
i=1

Xi/n
Pθ−→Eθ[X1] = θ.
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Combining these convergences with the continuity theorem it follows that

θ̂n
Pθ−→ 4(2θ2)

2[
√

(θ)2 + 4(2θ2) + θ]
=

8θ2

2[
√

9θ2 + θ]
= θ

establishing the consistency of {θ̂n}. tu

Exercise 3.4.2. Let X1, X2, . . . , Xn be a random sample of size n from the

gamma density f(x;α, λ) = λαxα−1e−λx/Γ(α)I(0,∞)(x), where θ = (α, λ) ∈
Θ = (0,∞)× (0,∞). Use the approximation

Γ′(α)

Γ(α)
≈ log(α)− 1

2α
(3.4.1)

to find an approximate formula for the maximum likelihood estimator θ̂n =

(α̂n, λ̂n).

Solution. Under the condition Xi > 0 for all i (which in the present context

always holds with probability 1), the likelihood function is

L(θ;X) =
n∏
i=1

(λα/Γ(α))Xα−1
i e−λXi , θ = (α, λ) ∈ (0,∞)× (0,∞).

and it logarithm is given by

L(θ;X) = nα log(λ)− n log(Γ(α)) + (α− 1)

n∑
i=1

log(Xi)− λ
n∑
i=1

Xi

Thus, a critical point of L(·;X) satisfies

∂αL(θ;X) = n log(λ)− nΓ′(α)

Γ(α)
+

n∑
i=1

log(Xi) = 0

∂λL(θ;X) = n
α

λ
−

n∑
i=1

Xi = 0

(3.4.2)

The second equation yields that

α

λ
= Xn (3.4.3)

Combining the first equation in (3.4.2) with (3.4.1) it follows that

n log(λ)− n [log(α− 1/(2α)] +

n∑
i=1

log(Xi) ≈ 0
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that is,

− log
(α
λ

)
− 1

2α
+

1

n

n∑
i=1

log(Xi) ≈ 0

a relation that via (3.4.3) leads to

− log
(
Xn

)
− 1

2α
+

1

n

n∑
i=1

log(Xi) ≈ 0,

and then

α̂n ≈
1

2
[∑n

i=1 log(Xi)/n− log
(
Xn

)] .
This expression and (3.4.3) yield that

λ̂n ≈
1

2Xn

[∑n
i=1 log(Xi)/n− log

(
Xn

)] .
tu

Exercise 3.4.3. Let X1, X2, . . . , Xn be a random sample of size n from the

Poisson (λ) distribution. Find the maximum likelihood estimator of p(0) +

p(1).

Solution. The interesting function must be expressed in terms of the para

meter λ. Notice that

p(0) + p(1) = Pλ[X = 0] + Pλ[X = 1] = e−λ + λe−λ =: g(λ).

The maximum likelihood estimator of g(λ) will be constructed using the in-

variance principle: first, λ̂n will be determined, and then ĝn will be obtained

by replacing λ by λn in the above expression for g(λ). To develop this plan,

notice that the likelihood function is

L(λ;X) =

n∏
i=1

e−λ
λXi

Xi!
= e−nλλ

∑n

i=1
Xi

n∏
i=1

1

Xi!
,

whose logarithm is given by

L(λ;X) = −nλ+ log(λ)

n∑
i=1

Xi −
n∑
i=1

log(Xi!),
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Observe that L(λ;X) → −∞ as λ → 0 or λ → ∞, so that λ 7→ L(λ;X)

attains its maximum at some point λ̂n ∈ (0,∞), which is be a solution of

∂λL(λ;X) = −n+
1

λ

n∑
i=1

Xi = 0,

an equation that has the unique solution λ∗ = Xn. Thus, λ̂n = Xn, and

then

ĝn = g(λ̂n) = (1 + λ̂n)e−λ̂n = (1 +Xn)e−Xn .

Notice now the the strong law of large numbers yields that λ̂n
Pλ−→λ; since

that function g(λ) is continuous, an application of the continuity theorem

yields that ĝn = g(λ̂n)
Pλ−→ g(λ), that is, the sequence {ĝn} is consistent. tu

Exercise 3.4.4. Let X1, X2, . . . , Xn be a random sample of size m from a

N
(
µ, σ2

1

)
distribution and, independently, let Y1, Y2, . . . , Yn be a random

sample of size n from the N
(
µ, σ2

2

)
distribution. Find the maximum likeli-

hood estimators of µ, σ2
1 , σ

2
2 , and find the variance of these estimators.

Solution. A solution to this problem will not be presented. The analysis be-

low shows that finding the maximum likelihood estimator of θ = (µ, σ2
1 , σ

2
2)

requires to solve a cubic equation; although an explicit formula for the solu-

tion of a cubic equation is available, it is not simple. The likelihood function

is

L(θ;X,Y) =

m∏
i=1

(1/
√

2πσ1)e−(Xi−µ)2/[2σ2
1 ]

n∏
j=1

(1/
√

2πσ2)e−(Yj−µ)2/[2σ2
2 ]

and it logarithm is given by

L(θ;X) = C −m log(σ1)− n log(σ2)− 1

2

m∑
i=1

(Xi − µ)2

σ2
1

− 1

2

n∑
j=1

(Yj − µ)2

σ2
2

Assuming that this function has a maximizer in the parameter space Θ =

IR×(0,∞)×(0,∞), such a point must satisfy the following likelihood system:

∂µL(θ;X,Y) =
m∑
i=1

(Xi − µ)

σ2
1

+
n∑
j=1

(Yj − µ)

σ2
2

= 0

∂σ1L(θ;X,Y) = −m
σ1

+

m∑
i=1

(Xi − µ)2

σ3
1

∂σ2L(θ;X,Y) = − n

σ2
+

n∑
j=1

(Yj − µ)2

σ3
2
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The first equation yields that

m(Xm − µ)

σ2
1

+
n(Y n − µ)

σ2
2

= 0

that is,

m(Xm − µ)σ2
2 + n(Y n − µ)σ2

1 = 0

whereas the last two likelihood equations are equivalent to

σ2
1 =

1

m

m∑
i=1

(Xi − µ)2 = S̃2
Xm + (Xm − µ)2

σ2
2 =

1

n

n∑
j=1

(Yj − µ)2 = S̃2
Y n + (Y n − µ)2

where S̃2
Xm =

∑m
i=1(Xi − µ)2/m and S̃2

Y n =
∑n
j=1(Yj − µ)2/n. The two

last displays together lead to

m(Xm − µ)[S̃2
Y n + (Y n − µ)2] + n(Y n − µ)[S̃2

Xm + (Xm − µ)2] = 0,

a cubic equation in µ tu

.

Exercise 3.4.5. Let X1, X2, . . . , Xn be a random sample of size n from the

truncated Laplace density

f(x; θ) =
1

2(1− e−θ)
e−|x|I[−θ,,θ](x)

where θ ∈ Θ = (0,∞). Find the maximum likelihood estimator of θ. Is this

estimator unbiased? Consistent?

Solution. The likelihood function is given by

L(θ;X) =
n∏
i=1

1

2(1− e−θ)
e−|Xi|I[−θ, θ](Xi)

=
1

2n(1− e−θ)n
e−
∑n

i=1
|Xi|

n∏
i=1

I[−θ, θ](Xi)

Observing that

I[−θ, θ](x) = 1 ⇐⇒ −θ ≤ x ≤ θ ⇐⇒ |x| ≤ θ
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it follows that

L(θ;X) =


1

2n(1− e−θ)n
e−
∑n

i=1
|Xi|, if θ ≥ |Xi|, i = 1, 2, . . . , n

0, otherwise.

Notice now that θ 7→ (1/(1 − e−θ)n is a decreasing function, a fact that

implies that  L(θ;X) is maximized at the smallest value at which the function

is positive, that is,

θ̂n = max{|X1|, |X2|, . . . , |Xn|}.

To analyze the bias of θ̂n, notice that Pθ[|Xi| < θ] = 1 for every i, so that

Pθ[|Xi| < θ, i = 1, 2, . . . , n] = 1, i.e., for every θ ∈ Θ

Pθ[θ̂n < θ] = 1; (3.4.4)

this structural property implies that Eθ[θ̂n] < θ, and then θ̂n is a biased

estimator of θ, and its bias function bθ̂n(θ) = Eθ[θ̂n] − θ is negative. To

study the consistency, notice that if ε ∈ (0, θ), then

Pθ[|Xi| ≤ θ − ε] = Pθ[−(θ − ε) ≤ Xi ≤ θ − ε]

=

∫ θ−ε

−(θ−ε)

1

2(1− e−θ)
e−|x| dx =:α(θ, ε) < 1.

Hence,

Pθ[θ̂n ≤ (θ − ε)] = Pθ[|Xi| ≤ θ − ε, i = 1, 2, . . . , n]

=

n∏
i=1

Pθ[|Xi| ≤ θ − ε] = α(θ, ε)n → 0 as n→∞.

Since (3.4.4) implies that Pθ[θ̂n ≥ θ + ε] = 0, it follows that

Pθ[|θ̂n − θ| ≥ ε)] = Pθ[θ̂n ≤ θ − ε] + Pθ[θ̂n ≥ θ + ε]

= Pθ[θ̂n ≤ θ − ε] = α(θ, ε)n → 0 as n→∞,

that is, θ̂n
Pθ−→ θ, so that the sequence {θ̂n} is consistent. A natural question

is to see whether the sequence {θ̂n} is asymptotically unbiased. To study

this problem observe that

|bθ̂n(θ)| = |Eθ[θ̂n]− θ|

≤ Eθ[|θ̂n − θ|]

= Eθ[|θ̂n − θ|I[|θ̂n − θ| < ε]] + Eθ[|θ̂n − θ|I[|θ̂n − θ| ≥ ε]]

≤ ε+ Eθ[|θ̂n − θ|I[|θ̂n − θ| ≥ ε]]
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Observing that Pθ[|θ̂n − θ| ≤ θ] = 1, it follows that

|bθ̂n(θ)| ≤ ε+ θEθ[I[|θ̂n − θ| ≥ ε]] ≤ ε+ θα(θ, ε)n

and then, because α(θ, ε)n →, this implies that lim supn→∞ |bθ̂n(θ)| ≤ ε;

hence, since ε > 0 is arbitrary, limn→∞ bθ̂n(θ) = 0, that is, {θ̂n} is asymp-

totically unbiased. tu

Remark 3.4.1. The above analysis of the unbiasedness property for θn was

not based on a direct computation of the expectation of θ̂n. If an explicit

formula for the bias function is required, such an expectation must be cal-

culated using the density of θ̂n, which is determined as follows:. Notice that

the distribution function of |Xi| is

G(x; θ) = Pθ[|Xi| ≤ x] =

∫ x

−x

1

2(1− e−θ)
e−|t|I[−θ,,θ](t)dt

=

∫ x

0

1

(1− e−θ)
e−t dt =

1− e−x

1− e−θ
, x ∈ [0, θ)

an expression that renders the following formula for the density of |Xi|:

g(x; θ) =
e−x

1− e−θ
I[0,θ)(x).

Using the formula for the density of the maximum of independent and iden-

tically distributed random variables,

fθ̂n(x; θ) = ng(x; θ)G(x; θ)n−1 =
ne−x

1− e−θ

(
1− e−x

1− e−θ

)n−1

I[0,θ)(x).

The expectation of θ̂n can be now computed explicitly as follows:

Eθ[θ̂n] =

∫ θ

0

x
ne−x

1− e−θ

(
1− e−x

1− e−θ

)n−1

dx

= x

(
1− e−x

1− e−θ

)n∣∣∣∣θ
x=0

−
∫ θ

0

(
1− e−x

1− e−θ

)n
dx

= θ −
∫ θ

0

(
1− e−x

1− e−θ

)n
dx.

Therefore, the bias function of θ̂n is

bθ̂n(θ) = Eθ[θ̂n]− θ = −
∫ θ

0

(
1− e−x

1− e−θ

)n
dx, θ > 0
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showing explicitly that the bias is always negative. Also, observing that

lim
n→∞

(
1− e−x

1− e−θ

)n
= 0, x ∈ [0, θ),

the bounded convergence theorem implies that

lim
n→∞

∫ θ

0

(
1− e−x

1− e−θ

)n
dx = 0,

which implies that {θ̂n} is asymptotically unbiased. tu

3.5. Further Examples

In some cases, the determination of a maximum likelihood estimator does

not have simple expressions, and examples of this and other difficulties of

the method are illustrated in this section.

Exercise 3.5.1. Let f1(x) and f2(x) be two density functions and consider a

random sample Z1, Z2 of size two of the mixture

f(z; θ) = θf1(z) + (1− θ)f2(z) = f2(z) + θ[f1(z)− f2(z)],

where θ ∈ [0, 1]. Find the maximum likelihood estimator of θ.

Solution. The likelihood function of the data Z = (Z1, Z2) is

L(θ;Z) = [f2(Z1) + θd(Z1)][f2(Z2) + θd(Z2)], θ ∈ [0, 1],

where

d(z): = f1(z)− f2(z).

To find the maximizers of L(·;Z), consider the following exhaustive cases:

(i) d(Z1)d(Z2) > 0: In this context, the mapping

θ 7→ [f2(Z1) + θd(Z1)][f2(Z2) + θd(Z2)]

is convex, and its unique critical point is a minimizer. Thus, L(·;Z) attains

its maximum at θ = 0 or θ = 1. Observing that L(0;Z) = f2(Z1)f2(Z2) and

L(1;Z) = f1(Z1)f1(Z2), it follows that

θ̂2(Z) =

 1, if f1(Z1)f1(Z2) > f2(Z1)f2(Z2)
0, if f1(Z1)f1(Z2) < f2(Z1)f2(Z2)
0 or 1, if f1(Z1)f1(Z2) = f2(Z1)f2(Z2).
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(ii) d(Z1)d(Z2) < 0: In this framework, the mapping

θ 7→ [f2(Z1) + θd(Z1)][f2(Z2) + θd(Z2)]

is concave, an attains its maximum (with respect to all the points θ ∈ IR) at

the unique critical point point

θ∗(Z) = −d(Z1)f2(Z2) + d(Z2)f2(Z1)

2d(Z1)d(Z2)

and the maximizer of L(·;Z) is given by

θ̂2(Z) =

 θ∗(Z), if θ∗(Z) ∈ [0, 1]
0, if θ∗(Z) < 0
1, if θ∗(Z) > 1.

(iii) d(Z1) = 0 and d(Z2) 6= 0: In this framework, L(θ;Z) is a linear function

of θ with slope f2(Z1)d(Z2), and it follows that

θ̂2(Z) =

 1, if f2(Z1)d(Z2) > 0
0, if f2(Z1)d(Z2) < 0
any point in [0, 1], if f2(Z1) = 0.

Similarly,

(iv) d(Z1) 6= 0 and d(Z2) = 0: In these circumstances, L(θ;Z) is a linear

function of θ with slope f2(Z2)d(Z1), and

θ̂2(Z) =

 1, if f2(Z2)d(Z1) > 0
0, if f2(Z2)d(Z1) < 0
any point in [0, 1], if f2(Z2) = 0.

Finally,

(iv) d(Z1) = 0 and d(Z2) = 0: In this case L(θ;Z) is a constant function, so

that

θ̂2(Z) = any point in [0, 1].

tu

Exercise 3.5.2. Let X1, X2, . . . , Xn be a random sample of size n from the

Poisson (λ) distribution, where λ ∈ [0,∞) is unknown.
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(a) Find the maximum likelihood estimator of e−λ.

(b) Find an unbiased estimator of e−λ.

Solution. (a) The maximum likelihood estimator ĝn of g(λ) = e−λ will be

constructed via the invariance principle, that is, if λ̂n is the maximum like-

lihood estimator of λ, then ĝn = g(λ̂n). To find λ̂n, notice that, given a

sample X = (X1, X2, . . . , Xn) whose components are nonnegative integers,

the corresponding likelihood function is given by

L(λ;X) =

n∏
i=1

λXi

Xi!
e−λ = λ

∑n

i=1
Xie−nλ

n∏
i=1

1

Xi!
, λ ∈ [0,∞)

and its logarithm is

L(λ;X) = log(λ)
n∑
i=1

Xi − nλ+ log

(
n∏
i=1

1

Xi!

)
, λ ∈ [0,∞). (3.5.1)

(i) Suppose that Xi > 0 for some i. In this case, the basic properties of

the logarithmic function yield that L(λ;X) → −∞ as λ → 0 or as λ → ∞.

Therefore, L(·;X) attains its maximum at some positive point, which satisfies

∂λL(λ;X) =
1

λ

n∑
i=1

Xi − n = 0;

this equation has the unique solution λ = Xn =
∑n
i=1Xi/n. Hence,

λ̂n = Xn. (3.5.2)

(ii) Suppose now that Xi = 0 for all i. In this context, (3.5.1) shows that

the likelihood function reduces to L(λ;X) = −nλ, and then its maximizer is

λ̂n = 0 = Xn. Thus, in any circumstance, the maximum likelihood estimator

of λ is the sample mean, and for g(λ) = e−λ,

ĝn = e−λ̂n = e−Xn .

It is interesting to observe that this estimator is biased. Indeed, using that

the population mean of the Poisson (λ) distribution is λ, it follows that

Eλ[Xn] = λ, and then observing that the function H(x) = e−x is strictly

convex, Jensen’s inequality implies that

e−λ = H(λ) = H(Eλ[Xn]) < Eλ[H(Xn)] = Eλ[e−Xn ].
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(b) To determine an unbiased estimator of e−λ, notice that

e−λ = Pλ[X1 = 0] = Eλ[I[X1 = 0]].

Thus, I[X1 = 0] is an unbiased estimator of e−λ; since all the Xi have the

same distribution, it follows that, for every i, I[Xi = 0] is also an unbiased

estimator, and then so is their average T =
∑n
i=1 I[Xi = 0]/n. However, the

idea behind this problem is to determine an unbiased estimator of λ) which

is a function of Xn. Let G(Xn) be such that

Eλ[G(Xn)] = e−λ for every λ ∈ [0,∞). (3.5.3)

Since Xn = Tn/n where Tn = X1 +X2 + · · ·+Xn ∼ Poisson (nλ), it follows

that

Eλ[G(Xn)] =
∞∑
k=0

G(k/n)Pλ[Tn = k] =
∞∑
k=0

G(k/n)
(nλ)k

k!
e−nλ,

and then

Eλ[G(Xn)] = e−λ ⇐⇒
∞∑
k=0

G(k/n)
(nλ)k

k!
e−nλ = e−λ

⇐⇒
∞∑
k=0

G(k/n)nk

k!
λk = e(n−1)λ

⇐⇒
∞∑
k=0

G(k/n)nk

k!
λk =

∞∑
k=0

(n− 1)k

k!
λk

where the classical expansion ea =
∑∞
k=0 a

k/k! was used in the last step.

Therefore (3.5.3) is equivalent to

∞∑
k=0

G(k/n)nk

k!
λk =

∞∑
k=0

(n− 1)k

k!
λk, λ ∈ [0,∞).

Now, using the known fact that two power series coincide in an interval if

and only if they have the same coefficients, this last display is equivalent to

G(k/n)nk

k!
=

(n− 1)k

k!
, k = 0, 1, 2, 3, . . . ,

that is,

G(k/n) =
(n− 1)k

nk
=

(
1− 1

n

)k
, k = 1, 2, 3, . . . .
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Consequently,

G(Xn) = G(Tn/n) =

(
1− 1

n

)Tn
=

(
1− 1

n

)nXn
is the unique unbiased estimator of e−λ which is a function of Xn. tu

Exercise 3.5.3. Let X = ((X1 1, X2 1), (X1 2, X2 2), . . . , (X1n, X2n)) be a ran-

dom sample of size n from the bivariate normal distribution with means

µ1, µ2, variances σ2
1 and σ2

2 and correlation coefficient ρ. Suppose that

ρ ∈ (−1, 1) is unknown and find the maximum likelihood estimator of ρ

if

(a) µ1, µ2, and σ2
1 and σ2

2 are also unknown.

(b) µ1, µ2, and σ2
1 and σ2

2 are known.

Solution. (a) In this case the parameter is θ = (µ1, µ2, σ1, σ2, ρ) ∈ Θ =

IR× IR×(0,∞)×(0,∞)× [−1, 1], and the likelihood of the sample X is given

by

L(ρ;X) = e−Q/[2(1−ρ2)]
n∏
i=1

1

2π
√
σ2

1σ
2
2(1− ρ2)

(3.5.4)

where the quadratic form Q is given by

Q =
n∑
i=1

[(
X1 i − µ1

σ1

)2

+

(
X2 i − µ2)

σ2

)2

−2ρ

(
X1 i − µ1)

σ1

)(
X2 i − µ2

σ2

)]
.

(3.5.5)

The logarithm of the likelihood function is

L(θ;X) = − Q

2(1− ρ2)
− n log(σ1)− n log(σ2)− n

2
log(1− ρ2)− n log(2π),

(3.5.6)

and without loss of generality it will be supposed that the vectors (X1 i, i =

1, 2, . . . , n) and (X2 i, i = 1, 2, . . . , n) are not constant. The maximizer of

L(·;X) will be determined in two phases:

(i) First, given σ1, σ2 and ρ, the maximizer of L(·;X) with respect to µ1 and

µ2 will be determined.. Notice that (3.5.5) and (3.5.6) together yield that
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L(·;X) is a concave quadratic form in (µ1, µ2), and then it is maximized at

the pair satisfying the following critical equations:

∂µ1
L(θ;X) = 0, and ∂µ2

L(θ;X) = 0,

which are equivalent to

n∑
i=1

(
X1 i − µ1

σ1

)
− ρ

n∑
i=1

(
X2 i − µ2

σ2

)
= 0,

−ρ
n∑
i=1

(
X1 i − µ1

σ1

)
+

n∑
i=1

(
X2 i − µ2

σ2

)
= 0.

Since ρ ∈ (−1, 1), these equations have the unique solution

µ̂1 =
1

n

n∑
i=1

X1 i =: X1n, and µ̂2 =
1

n

n∑
i=1

X2 i =: X2n.

Thus,

L(θ;X) ≤ L(X1n, X2n, σ1, σ2, ρ), θ = (µ1, µ2, σ1, σ2, ρ) ∈ Θ. (3.5.7)

(ii) Next, the function L(X1n, X2n, σ1, σ2, ρ) will be maximized with respect

to σ1, σ2 and ρ. To achieve this goal, notice that

L(X1n, X2n, σ1, σ2, ρ) = − Q̃

2(1− ρ2)
− n log(σ1)− n log(σ2)

− n

2
log(1− ρ2)− n log(2π),

where the quadratic form Q̃ is given by

Q̃ =
n∑
i=1

[(
X1 i −X1n

σ1

)2

+

(
X2 i −X2n)

σ2

)2

−2ρ

(
X1 i −X1n)

σ1

)(
X2 i −X2n

σ2

)] (3.5.8)

From this expressions, it follows that, as σ1 or σ2 goes to 0 or ∞ or ρ→ ±1,

the function L(X1n, X2n, σ1, σ2, ρ) converges to −∞, and then the mapping

L(X1n, X2n, ·, ·, ·) attains its maximum at some point

(σ1, σ2, ρ) ∈ (0,∞)× (0,∞)× (0, 1),
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which satisfies

∂σ1
L(X1n, X2n, σ1, σ2, ρ)

=
−1

2(1− ρ2)

[
−2

σ1

n∑
i=1

(
X1 i −X1n

σ1

)2

+
2ρ

σ1

n∑
i=1

(
X1 i −X1n

σ1

)(
X2 i −X2n

σ1

)]
− n

σ1
= 0

∂σ2
L(X1n, X2n, σ1, σ2, ρ)

=
−1

2(1− ρ2)

[
−2

σ2

n∑
i=1

(
X2 i −X2n

σ2

)2

+
2ρ

σ2

n∑
i=1

(
X1 i −X1n

σ1

)(
X2 i −X2n

σ2

)]
− n

σ2
= 0

∂ρL(X1n, X2n, σ1, σ2, ρ)

=
−ρ

(1− ρ2)2
Q̃− 1

2(1− ρ2)
∂ρQ̃+

nρ

1− ρ2
= 0

(3.5.9)

The first equation immediately yields that

n(1− ρ2)

σ1

=

[
1

σ1

n∑
i=1

(
X1 i −X1n

σ1

)2

− ρ

σ1

n∑
i=1

(
X1 i −X1n

σ1

)(
X2 i −X2n

σ2

)]

and then, multiplying both sides by σ1/n,

S2
1

σ2
1

− ρ S1 2

σ1σ2
= 1− ρ2 (3.5.10)

where

S2
1 =

n∑
i=1

(
X1 i −X1n

)2
/n

S2
2 =

n∑
i=1

(
X2 i −X2n

)2
/n

S1 2 =
n∑
i=1

(
X1 i −X1n

) (
X2 i −X2n

)
/n

(3.5.11)

Similarly, from the second equation in (3.5.10) it follows that

S2
2

σ2
2

− ρ S1 2

σ1σ2
= 1− ρ2 (3.5.12)



38

Combining the specification of Q̃ in (3.5.8) with (3.5.11) it follows that

Q̃ = n

[
S2

1

σ2
1

− ρ S1 2

σ1σ1
+
S2

2

σ2
1

− ρ S1 2

σ1σ1

]
,

and then, at the solution of the system (3.5.9), equalities (3.5.10) and (3.5.12)

yield that

Q̃ = 2n(1− ρ2);

combining this relation with the third equation in (3.5.9), it follows that

−ρ
(1− ρ2)2

[2n(1− ρ2)]− 1

2(1− ρ2)
∂ρQ̃+

nρ

1− ρ2
= 0,

that is,
−2nρ

(1− ρ2)
− 1

2(1− ρ2)
∂ρQ̃+

nρ

1− ρ2
= 0,

equality that immediately yields that

ρ = − 1

2n
∂ρQ̃.

Since ∂ρQ̃ = −2nS1 2/(σ1σ2) (see (3.5.8) and (3.5.11)), it follows that

ρ =
S1 2

σ1σ2
. (3.5.13)

Together with (3.5.10) this implies that S2
1/σ

2
1−ρ2 = 1−ρ2, that is S2

1/σ
2
1 =

1, so that

σ2
1 = S2

1 .

Similarly, (3.5.12) and (3.5.13) together yield that

σ2
2 = S2

2 ,

and then (3.5.13) becomes

ρ =
S1 2

S1S2

In short, the mapping (σ1, σ2, ro) 7→ L(X1n, X2n, σ1, σ2, ρ) attains its max-

imum at the point specified in the three previous displays, that is,

L(X1n, X2n, σ1, σ2, ρ)

≤ L(X1n, X2n, S1, S2, S1 2/[S1S2]), σ1, σ2 > 0, ρ ∈ (−1, 1),
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and combining this inequality with (3.5.7), it follows that

L(θ;X) ≤ L(X1n, X2n, S1, S2, S1 2/[S1S2];X), θ ∈ Θ, .

showing that the maximum likelihood estimator θ̂ = (µ̂1, µ̂2, σ̂2, σ̂2, ρ̂) is

given by

(µ̂1, µ̂2, σ̂2, σ̂2, ρ̂) = .(X1n, X2n, S1, S2, S1 2/[S1S2]);

in particular, the maximum likelihood estimator of the population correlation

coefficient ρ is the sample correlation coefficient S1 2/[S1S2].

(b) When µ1, µ2 and σ1 and σ2 are known, the likelihood function is given

by (3.5.4), where Q is specified by (3.5.5), that is,

L(ρ;X) = e−Q/[2(1−ρ2)]
n∏
i=1

1

2π
√
σ2

1σ
2
2(1− ρ2)

(3.5.14)

and the corresponding logarithm is

L(ρ;X) = − Q

2(1− ρ2)
− n log(σ1)− n log(σ2)− n

2
log(1− ρ2)− n log(2π),

(3.5.15)

where, writing

S̃2
1 =

1

n

n∑
i=1

(
X1 i − µ1

σ1

)2

S̃2
2 =

1

n

n∑
i=1

(
X2 i − µ2)

σ2

)2

S̃1 2 =
1

n

n∑
i=1

(
X1 i − µ1)

σ1

)(
X2 i − µ2

σ2

)

Q is given by

Q = n[S̃2
1 + S̃2

2 − 2ρS̃1 2]

The value of ρ maximizing L(ρ;X) in the interval (−1, 1) satisfies the likeli-

hood equation

∂ρL(ρ;X) = − ρQ

(1− ρ2)2
− ∂ρQ

2(1− ρ2)
+

nρ

1− ρ2
= 0,
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which is equivalent to

−nρ[S̃2
1 + S̃2

2 − 2ρS̃1 2]

(1− ρ2)2
− −2nS̃1 2

2(1− ρ2)
+

nρ

1− ρ2
= 0,

that is,

−ρ[S̃2
1 + S̃2

2 − 2ρS̃1 2]

(1− ρ2)
+ S̃1 2 + ρ = 0,

equality that is equivalent to

(1− ρ2)[S̃1 2 + ρ]− ρ[S̃2
1 + S̃2

2 − 2ρS̃1 2] = 0;

this cubic equation should be solved numerically. tu

Remark 3.5.1. (i) At first, sight, part (b) seemed to be easier than part

(a), since in part (b) only ρ is unknown. However, the maximum likelihood

estimators was explicitly found when all the quantities determining the dis-

tribution of the observation data were unknown.

(ii) A very elegant method to determine the maximum likelihood estimators

when the observation vectors have a multivariate normal distribution with

unknown mean and covariance matrix, can be found, for instance in Chapter

1 of Anderson (2002). The argument relies on the spectral theory of positive

matrices and on a factorization result in terms of triangular matrices. tu

Exercise 3.5.4. Let X1, X2, . . . , Xm be a random sample of size m from the

N
(
µ, σ2

)
distribution and, independently, let Y1, Y2, . . . , Yn be a random

sample of size n from N
(
µ, λσ2

)
where λ > 0 is unknown.

(a) If µ and σ are known, find the maximum likelihood estimator of λ.

(b) If µ and σ and λ are unknown, find the maximum likelihood estimator

of θ = (µ, σ, λ).

Solution. (a) Suppose that µ and σ2 are known. In this case the distribution

of the random vector X = (X1, X2, . . . , Xm) does not involve λ, and the esti-

mation of this parameter relies only on Y = (Y1, Y2 . . . , Yn). The statistical

model for this last vector is

Y1, . . . , Yn are i.i.d. N
(
µ, λσ2

)
random variables, λ ∈ (0,∞). (3.5.16)
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Since λ is an arbitrary real number, setting

σ2
1 = λσ2 (3.5.17)

the statistical model (3.5.16) is equivalent to

Y1, . . . , Yn are i.i.d. N
(
µ, σ2

1

)
random variables, σ1 ∈ (0,∞).

For this model, the maximum likelihood estimator of σ2
1 is given by

σ̂2
1 =

1

n

n∑
i=1

(Xi − µ)2;

since λ = σ2
1/σ

2, the maximum likelihood estimator of λ is

λ̂ =
σ̂2

1

σ2
=

1

n

n∑
i=1

(
Xi − µ
σ

)2

.

(b) The statistical model for (X,Y) is

(i) Y1, . . . , Yn are i.i.d. N
(
µ, λσ2

)
random variables,

(ii) X1, . . . , Xm are i.i.d. N
(
µ, σ2

)
random variables,

(iii) The vectors (X1, . . . , Xm) and Y = (Y1, . . . , Yn) are independent,

and

(iv) µ ∈ IR, σ ∈ (0,∞), λ ∈ (0,∞).

Defining σ1 > 0 by

σ2
1 = λσ2, (3.5.18)

the mapping (µ, σ, λ) 7→ (µ, σ, σ1) is a bijection of the parameter space IR×
(0,∞) × (0,∞). Hence, the above statistical model is equivalent to the

following:

(i) Y1, . . . , Yn are i.i.d. N
(
µ, σ2

1

)
random variables,

(ii) X1, . . . , Xm are i.i.d. N
(
µ, σ2

)
random variables,

(iii) The vectors (X1, . . . , Xm) and Y = (Y1, . . . , Yn) are independent,

and

(iv) µ ∈ IR, σ ∈ (0,∞), σ1 ∈ (0,∞).
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This model was studied in Exercise 3.4.4, where it was shown that µ̂ is

determined as the root of a cubic equation, and then σ̂ and σ̂1 are the

determined by

σ̂2 =
1

m

m∑
i=1

(Xi − µ̂)2 and σ̂2
1 =

1

n

n∑
j=1

(Yj − µ̂)2;

then, (3.5.18) and the invariance property together yield that

λ̂ =
σ2

1

σ2

is the maximum likelihood estimator of λ. tu

Exercise 3.5.5. Let (X1, X2, . . . , Xk) be a random vector with multinomial

distribution with parameter p = (p1, p2, . . . , pk) and n trials, where n is

known and the probabilities p1 are unknown numbers is [0, 1] satisfying∑k
i=1 pi = 1. Find the maximum likelihood estimator p̂ = (p̂1, p̂2, . . . , p̂k).

Solution. Given X = (X1, X2 . . . , Xk) with positive components adding up

to n, the corresponding likelihood function is

L(p;X) =

(
n

X1, X2, . . . , Xk

)
pX1

1 pX2
2 · · · p

Xk
k ≡ CpX1

1 pX2
2 · · · p

Xk
k ,

where the convention 00 = 1 is enforced, and the multinomial coefficient has

been denoted by C, since it does not involve the unknown vector parameter

p. Let P be the set of all admissible values of the vector p, that is,

P =
{
p = (p1, p2, . . . , pk) ∈ IRk

∣∣∣ k∑
i=1

pi = 1, pi ≥ 0, i = 1, 2, . . . , k

}
.

This set is closed and bounded, so that the continuous function L(·;X) at-

tains its maximum at some point p̂ = (p̂1, p̂2, . . . , p̂k):

L(p̂;X) ≥  L(p;X), p ∈ P. (3.5.19)

To determine this point, let D be the set of all indices i such that Xi is

no-null, that is,

D = {i ∈ {1, 2, . . . , n} | Xi 6= 0}, (3.5.20)
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so that

L(p;X) = C
∏
j∈D

p
Xj
j , (3.5.21)

Now, observe the following properties (a)–(e):

(a) L(p̂;X) > 0. Indeed, the k-dimensional vector u = (1/k, 1/k, . . . , 1/k) ∈
P satisfies L(u;X) = C/kn > 0, and then (3.5.19) implies that  L(p̂;X) > 0.

(b) If Xi = 0 then p̂i = 0. Proceeding by contradiction suppose that Xi = 0

but p̂i > 0. In these circumstances, notice that i /∈ D and that p̂i < 1, since

otherwise p̂i = 1, and then p̂j = 0 for all j 6= i; in particular, p̂j = 0 for every

j ∈ D, and then (3.5.21) yields that L(p̂;X) = 0, which contradicts the fact

(a) stated above. To continue. define the new vector p̃ ∈ P as follows:

p̃i = 0, p̃j = p̂j/(1− p̂i), j 6= i,

so that p̃j = p̂j/(1− p̂i) for every j ∈ D, and then

L(p̃;X) = C
∏
j∈D

(
p̂j

1− p̂i

)Xj
=

1∏
j∈D(1− p̂i)Xj

C
∏
j∈D

p̂
Xj
j

=
1∏

j∈D(1− p̂i)Xj
L(p̂;X)

where (3.5.21) with p̂ instead of p was used in the last step. Since p̂i ∈ (0, 1)

and Xj > 0 for j ∈ D, the above display yields that L(p̃;X) > L(p̂;X),

which is a contradiction, since p̂ maximizes L(·;X) on the set P and p̃ ∈ P.

It follows that Xi = 0 implies that p̂i = 0, establishing the desired conclusion.

(c) p̂i = 0 implies Xi = 0. Indeed, if p̂i = 0 but Xi 6= 0, it follows that i ∈ D
and then the factor p̂Xii = 0 appears in the right hand side of (3.5.21), and

then L(p̂;X) = 0, in contradiction with fact (a).

The discussion in (a)-(c) can be summarized as follows: The largest value

of the likelihood function is positive, and a coordinate p̂i of the maximizer p̂

is positive if, and only if, the observation Xi is positive.

(d) Suppose that D is a singleton, say D = {j∗}. In this case p̂j∗ = 1.

When D = {j∗}, notice that (3.5.21) yields that L(p;X) = Cp
Xj∗
j∗ , which is

an increasing function of pj∗ , and then attains its maximum when pj∗ = 1,

so that p̂j∗ = 1.
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(e) Suppose that S contains two or more indices and let j∗ ∈ D be fixed.

For every i ∈ D the equality

Xi

p̂i
=
Xj∗

pj∗

occurs.

To verify this assertion, for a real number h satisfying |h| < min{p̂i, p̂j∗},
define the k-dimensional vector p(h) by

p(h)j =


p̂j , if j 6= i, j∗

p̂i − h, if j = i
p̂j∗ + h, if j = j∗

It follows form this specification p(h) ∈ P and p(0) = p̂. Defining g(h) =

L(p(h);X) for |h| < min{p̂i, p̂j∗}, relation (3.5.19) yields that 0 6= L(p̂;X) =

g(0) ≥ g(h), that is, the function g attains its maximum at h = 0, so

that g′(0) = 0. Observing that g(h) = C̃(p̂i − h)Xi(p̂j∗ + h)Xj∗ where

C̃ is a no-null term which does not depend on h, it follows that g′(h) =

[Xj∗/(pj∗ + h)−Xi/(pi − h)]g(h). Therefore,

0 = g′(0) =

[
Xj∗

pj∗
− Xi

pi

]
g(0),

and then, since g(0) 6= 0,
Xj∗

pj∗
=
Xi

pi
.

Using the previous facts, it will be shown that, for i = 1, 2, . . . , k,

p̂i =
Xi

n
. (3.5.22)

To establish this assertion, first notice that if i /∈ D, then Xi = 0, by (3.5.20),

and this implies that p̂i = 0, by part (b), so that the above equality always

holds when i /∈ D. To conclude it will be shown that (3.5.22) occurs when

i ∈ D. To achieve this goal, consider the following two exhaustive cases.

(i) D is a singleton, say D = {j∗}. In this context p̂j∗ = 1, by part (c),

and Xj∗ = n, since the Xi = 0 for i 6= j∗ (by (3.5.20)) and
∑k
r=1Xr = n.

Consequently, (3.5.22) also holds when i = j∗.

(ii) D contains two or more indices. In this case, part (e) yields that the

quotient
Xi

p̂i
= λ
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is constant when i varies in D. Thus, Xi = λp̂i and, using that Xi = 0 = p̂i

when i /∈ D, it follows that

n =
n∑
r=1

Xr =
∑
r∈D

Xr =
∑
r∈D

λp̂r = λ
k∑
r=1

p̂r = λ,

and then p̂i = Xi/n for all i ∈ D, showing that (3.5.22) also occurs when

i ∈ D. In short, for every i = 1, 2, . . . , k, the maximum likelihood estimator

of pi is p̂i = Xi/n. tu

Exercise 3.5.6. Let X = (X1, X2, . . . , Xn) be a random sample from the

density f(x; θ) = (θ/x2)I[θ,∞)(x), where θ ∈ Θ = (0,∞).

(a) Find the maximum likelihood estimator {θ̂n} of θ and verify that {θ̂n}
is consistent.

(b) Find the maximum likelihood estimator of g(θ) = Pθ[X ≤ c], where c is

a known constant, and show the consistency of the sequence {ĝn}.

(c) Find the estimate ĝ5 corresponding to x = (2.9, 1.48, 5.62, 4.0, 1.22), so

that n = 5.

Solution. (a) Given X = (X1, X2, . . . , Xn) with positive components, the

corresponding likelihood function is

L(θ,X) =
n∏
i=1

θ

X2
i

I[θ,∞)(Xi) =
θn∏n
i=1X

2
i

n∏
i=1

I[θ,∞)(Xi), θ ∈ (0,∞).

Observing that

n∏
i=1

I[θ,∞)(Xi) = 1 ⇐⇒ I[θ,∞)(Xi) = 1 for all i = 1, 2, . . . n

⇐⇒ θ ≤ Xi for all i = 1, 2, . . . n

⇐⇒ θ ≤ X(1) = min{X1, X2, . . . , Xn},

⇐⇒ I(0,X(1)](θ) = 1,

it follows that

L(θ,X) =
1∏n

i=1X
2
i

θnI(0,X(1)](θ).
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This expression shows that L(·;X) is strictly increasing in (0, X(1)] and is

null outside this interval. Hence, θ̂n = X(1). Observe now that, for ε > 0,

Pθ[θ̂n > θ + ε] = Pθ[Xi > θ + ε, i = 1, . . . , n]

=

n∏
i=1

Pθ[Xi > θ + ε]

=

n∏
i=1

∫ ∞
θ+ε

θ

x2
dx

=

(
θ

θ + ε

)n
→ 0 as n→∞.

Since Pθ[θ̂n < θ] = 0, it follows that Pθ[|θ̂n − θ| > ε] = Pθ[θ̂n > θ + ε] → 0

as n→∞, that is, {θ̂n} is a consistent sequence.

(b) By the invariance principle, the maximum likelihood estimator of g(θ) is

ĝn = g(θ̂n) = g(X(1)).

On the other hand, the function g(θ) is explicitly given by

g(θ) =

∫ c

0

f(x; θ) dx =

∫ c

0

θ

x2
I[θ,∞)(x) dx =

{
1− θ/c, if θ ≤ c,
0 if c < θ,

and it is clear the g(·) is continuous in the parameter space. Using that

{θ̂n} is a consistent sequence, the continuity theorem yields the consistency

of {ĝn}.

The estimate θ̂5(x) corresponding to the given data is

θ̂5(x) = min{x1, x2, x3, x4, x5} = 1.48,

and then

ĝ5(x) = g(1.48) =
{

1− 1.48/c, if θ ≤ 1.48,
0 if 1.48 < θ.

tu

Exercise 3.5.7. Let X = (X1, X2, . . . , Xn) be a random sample from a

Geometric (p) distribution, where p ∈ [0, 1], so that the common probability

function of the Xis is

f(x; p) = (1− p)x−1pI{1,2,3,...}(x).
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(a) Find the maximum likelihood estimator of p.

(b) A state has 36 counties. Assume that each county has equal proportions

of people who favor a certain gun control proposal. In each of 8 randomly

selected counties, we find how many people we need to sample to find the

first person who favors the proposal. The results are

3, 8, 9, 6, 5, 3, 2

(e.g., in the first county sampled, the first two persons sampled were opposed,

and the third one was in favor). Based on this data, compute the maximum

likelihood estimator of p.

Solution. (a) Given a sample X = (X1, X2, . . . , Xn) whose components are

positive integers, the corresponding likelihood function is

L(p;X)

n∏
i=1

(1− p)Xi−1p = (1− p)Tn−npn, p ∈ [0, 1],

where

Tn =
n∑
i=1

Xi.

The function L(·;X) is continuous in [0, 1], and then it has a maximizer p̂n.

To determine such a point, notice that Tn ≥ n, since the Xis are positive

integers, and consider the following two exhaustive cases.

(i) Tn = n. In this context, L(p;X) = pn is an increasing function in [0, 1],

so that the the likelihood function is maximized at the unique point p̂n = 1.

(ii) Tn > n. In this case L(p;X) is null at the extreme points p = 0 and

p = 1 of its domain, and is positive for p ∈ (0, 1). It follows that L(p;X)

attains its maximum inside the open interval (0, 1), and the maximizer must

satisfy the likelihood equation

∂pL(p;X) = −Tn − n
1− p

L(p : X) +
n

p
L(p;X) = 0

where L(p;X) 6= 0. Hence,
Tn − n
1− p

=
n

p
,
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which is equivalent to p(Tn−n) = n(1−p), that is, pTn = n, and the unique

solution is p = n/Tn. Consequently,

p̂n =
n

Tn
=

1

Xn

,

a relation that is also valid when Tn = n, since in this case p̂n = 1 and

Xn = 1. In short, the maximum likelihood estimator of p is p̂n = 1/Xn.

(b) For the data set x in the problem, X8 attains the value x8 = 40/8 = 5,

and the corresponding estimate of p is p̂8 = 1/5 = 0.2. tu



Chapter 4

Method of Moments

This chapter presents other procedure to build estimators of parametric

functions, namely, the method of moments. In contrast with the maximum

likelihood technique, when applicable the method of moments always pro-

duces explicit formulas for the estimators, and can be roughly described as

follows: A population moment is estimated by the corresponding sample

moment, and a parametric function that is a function of the population mo-

ments, is estimated by the same function evaluated at the sample moments.

Under mild conditions, the generated estimators are consitent, and, as it will

be proved later, are asymptotically normal.

4.1. Estimation Using Sample Moments

This section introduces the method of moments to produce estimators of

parametric functions. Consider a random variable X whose distribution

depends on an unknown parameter θ,

X ∼ Pθ, θ ∈ Θ,

where the parameter space Θ is a subset of IRm for some m. Now, let µ′k(θ)

be the kth moment of the distribution Pθ, that is,

µ′k(θ) = Eθ[X
k], (4.1.1)

49
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which is supposed to be finite. Now, let X = (X1, X2, . . . , Xn) be a random

sample of size n of the population Pθ, so that

X1, X2, . . . , Xn are independent and identically

distributed with common distribution Pθ.
(4.1.2)

The kth sample moment of the data X = (X1, X2, . . . , Xn) is defined by

m′k n =
1

n

n∑
i=1

Xk
i . (4.1.3)

This sample moment is naturally considered as an estimator of µ′k; indeed,

since the powers Xk
1 , X

k
2 , . . . , X

k
n are independent with the same distribution

as Xk, the law of large numbers yields that

m′k n =
1

n

n∑
i=1

Xk
i

Pθ−→Eθ[X
k] = µ′k(θ) (4.1.4)

so that the sequence {m′k n}n=1,2,3,... estimates µ′k(θ) consistently. More-

over, Eθ[mk n] =
∑n
i=1Eθ[X

k
i ]/n = nµ′k(θ)/N = µ′k(θ), so that m′k n is an

unbiased estimator of µ′k(θ).

The method of moments can be now stated formally as follows: Given

X1, X2, . . . , Xn as in (4.1.2), then

(i) The kth population moment µ′k(θ) is estimated by m′k n;

(ii) If a parametric quantity g(θ) can be expressed in terms of the population

moments µ′1(θ), µ′2(θ), . . . , µ′r(θ), say

g(θ) = G(µ′1(θ), µ′2(θ), . . . , µ′r(θ)), (4.1.5)

then the estimator of g(θ) based on X1, X2, . . . , Xn is given by

ĝn = G(m′1n,m
′
2n, . . . ,m

′
r n); (4.1.6)

in words, if the parametric quantity g(θ) is a function of some population

moments, then the estimator ĝn is the same function of the corresponding

sample moments.

As it was already noted, the estimator m′k n of µ′k(θ) is unbiased. How-

ever, the above estimator ĝn of the parametric function in (4.1.5) is not,
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in general, unbiased if the function G is not linear; this assertion will be

exemplified several times below.

4.2. Consistency

The method of moments produces estimators that, under very mild con-

ditions, are consistent. Such a result is precisely stated in the following

theorem.

Theorem 4.2.1. Suppose that the function G(z1, z2, . . . , zr) is continuous at

each point (µ′1(θ), µ′2(θ), . . . , µ′r(θ)), θ ∈ Θ. In this case, within the frame-

work determined by (4.1.2), the parametric function g(θ) in (4.1.5) is esti-

mated consistently by the sequence {ĝn} specified in (4.1.6).

A detailed proof of this result can be seen in TESIS1. Before proceeding

to present some examples on the method of moments, it is convenient to

summarize the precedent discussion: Given a sample X = (X1, X2, . . . , Xn)

of a population Pθ, where θ ∈ Θ,

(i) The method of moments prescribes to estimate a population moment by

the corresponding sample moment;

(ii) The estimator of a functionG(µ′1(θ), µ′2(θ), . . . , µ′k(θ)) is constructed eval-

uating the same function at the sample moments m′1n,m
′
2,n, . . . ,m

′
k n.

(iii) When estimating a continuous function of population moments, the

method of moments produces consistent estimators.

(iv) If a linear function of population moments is being estimated, the

method of moments generates unbiased estimators; however, the estimators

of nonlinear functions of population moments are generally biased.

One of the appealing features of the method of moments is that, as soon

as the parametric function of interest can be expressed as a function of the

population moments, the construction of the estimator corresponding to a

given sample is straightforward. In some cases the method can be applied

successfully, particularly in problems for which the maximum likelihood es-

timate needs to be determined numerically. On the other hand, it should

be mentioned that, when the parametric function g(θ) being estimated de-

pends in a ‘smooth’ manner of the population moments, the sequence {ĝn}
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of moments estimators have a normal limit distribution as the sample size

n increases. This property will be established in the following chapter and

represents the most important result presented in this work.

4.3. The Values of Moments Estimators

In this section a first illustration of method of moments will be presented,

and the analysis will be used to show that in general, the method generates

estimators whose values do not necessarily belong to the parameter space.

Exercise 4.3.1. Let X1, X2, . . . , Xn be a random sample of size n from the

Beta (α, β) distribution, where θ = (α, β) ∈ (0,∞) × (0,∞). Determine the

moment estimators of α and β.

Solution. If X ∼ Beta (α, β), the first two moments of X are

µ′1 = Eθ[X] =
α

α+ β
, µ′2 =

αβ

(α+ β)2(1 + α+ β)
.

Now, the parameters α and β will be expressed in terms of µ′1 and µ′2. Notice

that

µ′2 =
µ′1(1− µ′1)

1 + α+ β
, and then α+ β =

µ′1(1− µ′1)

µ′2
− 1.

Since α = µ′1(α+ β), it follows that

α = µ′1

(
µ′1(1− µ′1)

µ′2
− 1

)
On the other hand, notice that 1−µ′1 = 1−Eθ[X] = 1−α/(α+β) = β/(α+β),

so that

β = (1− µ′1)(α+ β) = (1− µ′1)

(
µ′1(1− µ′1)

µ′2
− 1

)
From these two last displays, it follows that the moments estimators of α

and β based on a sample of size n are given by

α̂n = m′1n

(
m′1n(1−m′1n)

m′2n
− 1

)
β̂n = (1−m′1n)

(
m′1n(1−m′1n)

m′2n
− 1

)
,

concluding the argument. tu
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Remark 4.3.1. Observe that α̂n and β̂n contain the factor(
m′1n(1−m′1n)

m′2n
− 1

)
=

(
Xn(1−Xn)∑n

i=1X
2
i /n

− 1

)
. (4.3.1)

and it will be shown that this factor may be negative for some samples.

Consider the sample

X = x = (ε, ε, . . . , ε, 1− ε) (4.3.2)

of size n and notice that

Xn = [(n− 1)ε+ 1− ε]/n and
n∑
i=1

X2
i /n = [(n− 1)ε2 + (1− ε)2]/n.

so that

lim
n→∞

Xn =
1

n
and lim

n→∞

n∑
i=1

X2
i /n =

1

n
. (4.3.3)

On the other hand,(
Xn(1−Xn)∑n

i=1X
2
i /n

− 1

)
≥ 0 ⇐⇒ Xn(1−Xn) ≥

n∑
i=1

X2
i /n

⇐⇒ Xn(1−Xn) ≥
n∑
i=1

X2
i /n

Suppose now that, for the sample (4.3.2), the factor () is nonnegative, so

that the last inequality in the previous display holds; taking the limit as ε

goes to 0, it follows that

lim
ε↘0

Xn(1−Xn) ≥ lim
ε↘0

n∑
i=1

X2
i /n,

a relation that, via (4.3.3), is equivalent to (1/n)[1 − 1/n] ≥ 1/n, which in

turn yields that 1− 1/n ≥ 1, which is a contradiction. It follows that

lim
ε↘0

Xn(1−Xn) < lim
ε↘0

n∑
i=1

X2
i /n,

and then Xn(1−Xn) <
∑n
i=1X

2
i /n when ε > 0 is small enough, a fact the

implies that, with positive probability, the factor in (4.3.1) is negative, and

then the estimators α̂n and β̂n are negative with positive probability. This
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discussion shows explicitly that the estimators generated by the method of

moments do not necessarily belong to the parameter space. tu

4.4. Additional Examples

In this section the method of moments will be applied to estimate parametric

functions in familiar models. The first one analyzes a normal model with

unitary coefficient of variation.

Exercise 4.4.1. Let X1, X2, . . . , Xn be a random sample of size n from a

N
(
θ, θ2

)
distribution for some θ ∈ Θ = (0,∞). Find an estimator of θ2

using the method of moments.

Solution. Let X ∼ N
(
θ, θ2

)
and notice that the first population moment is

µ′1(θ) = Eθ[X] = θ, Thus, a method of moments estimator of θ is given by

θ̂n = m′1n = Xn. This estimator was obtained quite directly, and the sim-

plicity of the present argument should be contrasted with the effort required

to determine the maximum likelihood estimator of θ; see Exercise 3.4.1. tu

Exercise 4.4.2. Let X1, X2, . . . , Xn be a random sample from the ‘displaced’

exponential population with density

f(x;α, λ) =
1

λ
e(x−α)/λI(α,∞)(x),

where θ = (α, λ) ∈ IR× (0,∞) = Θ. Use the method of moments to generate

estimators of α and λ, and investigate their unbiasedness and consistency.

Solution. To begin with, the first two population moments of the given popu-

lation will be determined, The task is simplified by the following observation:

If X has the density f(x;α, λ), then Y = (X − α)/λ ∼ Exponential (1).

It follows that E[Y ] = 1 = Var [Y ] = E[Y 2]− 1, so that

E

[
X − α
λ

]
= 1 = E

[(
X − α
λ

)2
]
− 1.

The first part of this relation yields that

µ′1(θ) = Eθ [X] = α+ λ (4.4.1)
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whereas the second part implies that

Eθ
[
(X − α)2

]
= 2λ2,

so that

Eθ
[
X2 − 2Xα+ α2

]
= 2λ2,

a relation that leads to

µ′2(θ) = Eθ[X
2] = 2λ2 − α2 + 2Eθ[X]α

= 2λ2 − α2 + 2(λ+ α)α

= 2λ2 + 2αλ+ α2

= 2λ(λ+ α) + α2

= 2λµ′1(θ) + α2

(4.4.2)

Using that λ = µ′1(θ)− α, by (4.4.1), it follows that

µ′2(θ) = 2(µ′1(θ)− α)µ′1(θ) + α2

= 2µ′1(θ)2 − 2µ′1(θ)α+ α2 = µ1(θ)2 + (µ1(θ)− α)2.

Consequently,

λ2 = (µ1(θ)− α)2 = µ′2(θ)− µ′1(θ)2,

where the first equality is due to (4.4.1), and it is useful to observe that the

relation µ′2(θ) − µ′1(θ)2 ≥ 0 holds, by Jensen’s inequality. Hence, recalling

the λ > 0,

λ =
√
µ′2(θ)− µ′1(θ)2,

and

α = µ′1(θ)− λ = µ′1(θ)−
√
µ′2(θ)− µ′1(θ)2.

From these expressions, the method of moments renders the following esti-

mators:

λ̂n =
√
m′2n − (m′1n)2

α̂n = m′1n −
√
m′2n − (m′1n)2.

Since λ and α are continuous functions of µ′1 and µ′2, it follows that these

estimators are consistent, and since they are not linear functions of µ′1 and

µ′2, they are not unbiased. Before concluding, it is interesting to observe that

m′2−(m′1)2 =
∑n
i=1X

2
i /n−X

2

n =
∑n
i=1(Xi−Xn)2/n is the sample variance
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S̃2
n (with denominator n), and then λ̂n is the sample standard deviation S̃n,

whereas α̂n = Xn − S̃n. tu

Exercise 4.4.3. Let f1(x) and f2(x) be two densities with means µ1 and µ2,

respectively, where µ1 6= µ2. For each θ ∈ [0, 1] = Θ define the mixture

f(x; θ) = θf1(x) + (1− θ)f2(x).

Use the method of moments to find an estimator of θ based on a random

sample of size n from f(x; θ).

Solution. Observe that if X ∼ f(x; θ) then

µ′1(θ) = Eθ[X]

=

∫
IR

x[θf1(x) + (1− θ)f2(x)] dx

= θ

∫
IR

xf1(x) + (1− θ)
∫

IR

xf2(x) dx

= θµ1 + (1− θ)µ2 = µ2 + θ(µ1 − µ2);

notice that µ1 and µ2, the expectations of the densities f1 and f2, respec-

tively, are known numbers. Since µ1 6= µ2, it follows that

θ =
µ′1(θ)− µ2

µ1 − µ2

and then, when a random sample X1, X2, . . . , Xn of the density f(x; θ) is

available, the method of moments prescribes the estimator

θ̂n =
m′1n − µ2

µ1 − µ2
=
Xn − µ2

µ1 − µ2
,

which is unbiased. tu



Chapter 5

Limit Behavior of Moments Estimators

The objective of this chapter is to study the limit distribution of the

sequence {ĝn} of moments estimators of a parametric function g(θ). The

main result in this direction establishes that, after multiplying the difference

[ĝn − g(θ)] by the square root of the sample size n, the resulting random

quantity converges in distribution to a normal variable. This result is ob-

tained using the central limit theorem together with an invariance result on

convergence to normality, which can be described as follows: if a sequence

of random vectors {Wn}
√
n[Wn−µ] converges in distribution to normality,

then a transformed sequence {G(Wn)} has a similar behavior whenever the

function G is continuously differentiable.

5.1. Asymptotic Normality

In this section the basic notion on the limit behavior of a sequence of random

variables (or vectors) is introduced. The formal statement of this idea in-

volves the concept of convergence in distribution which is carefully analyzed,

for instance, in Deudewicz y Mishra (1988), Mood et al. (1984), or Wackerly

et al. (2009). Briefly, if F (·) is a distribution function in IRk, a sequence

57
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{Wn} of k-dimensional random vectors converges in distribution to F if

lim
n→∞

P [Wn ≤ x] = F (x)

at each point point x at which F is continuous, a property that is indicated

by writing

Wn
d−→F.

A common instance of convergence in distribution corresponds to the case

in which F is the distribution function of a normal probability measure with

mean µ and covariance matrix M , and in the notation

Wn
d−→N (µ,M)

is used.

Definition 5.1.1. Consider a parametric function g: Θ → IRd defined on

the parameter space Θ and taking values in IRd and, for each positive in-

teger n, let ĝn be an estimator of g(θ) based on the first n observations

X1, X2, . . . , Xn. In this case, the sequence {ĝn} of estimators is consistent

and asymptotically normal if, and only,

√
n [ĝn − g(θ)]

d−→N (0, J(θ)
2
);

where J(θ)2 is square nonnegative matrix of order d× d. In this case, J(θ)2

is referred to as the asymptotic variance of
√
n [ĝn − g(θ)].

Remark 5.1.1. The matrix J(θ)2 in the above definition is also referred to

as the (asymptotic) information matrix of the sequence {ĝn} since, when the

sample size is ‘large’, J(θ)2 determines the length of the confidence intervals

for linear combinations of the components of g(θ) that can be obtained from

the estimator ĝn. tu

5.2. Invariance Principle

As already mentioned, the main objective of this chapter is to show that

the moments estimators of a parametric quantity g(θ) are consistent and
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asymptotically normal. The main tool to establish this result are the multi-

variate central limit theorem, and an invariance property of the convergence

to normality, which can be roughly stated as follows: If a sequence of ran-

dom vectors {Wn} converges to a (multivariate) normal distribution, and if

g is a smooth function, then under mild conditions the transformed sequence

{g(Wn)} also converges to a normal distribution. These two fundamental

results are formally stated below:

Theorem 5.2.1. [Multivariate Central Limit Theorem.] Consider a random

vector X = (X(1), X(2), . . . , X(k))′ with mean µ and variance matrix M , that

is,

µ = (µ(1), µ(2), . . . , µ(k))′ = (E[X(1)], E[X(2)], . . . , E[X(k)])′

M = [mi j ] = Cov
(
X(i), X(j)

)
.

Suppose that X1, X2, X3, . . . , is a sequence of independent and identically

distributed random vectors with the same distribution as X. In this case

√
n [Xn − µ]

d−→Nk(0,M).

The following result shows that convergence to normality is not altered

under the application of differentiable transformations.

Theorem 5.2.2. Suppose that {Wn} is a sequence of k-dimensional random

vectors such that
√
n [Wn − µ]

d−→Nk(0,M)

for some nonnegative matrix M of order k×k and µ ∈ IRk. In this case, let g

be a function defined on an open set of IRk containing the vector µ, suppose

that g takes value in IRd and that g is differentiable at µ. In this case

√
n [g(Wn)− g(µ)]

d−→Nd(0, Dg(µ)MDg(µ)′),

where Dg(µ) is the (matrix) derivative of g at µ and has order d× k.

A discussion and proof of these fundamental results can be found, for in-

stance, in Dudewicz y Mishra (1988), Wackerly et al. (2007) or Lehmann

and Casella (1999). The proof of the central limit theorem involves the idea

of characteristic function and the so called ‘continuty theorem‘, that relates
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the notions of convergence in distribution and uniform convergence of char-

acteristic functions. The invariance principle is derived, essentially, using

the idea of derivative of a function as a linear transformation, and applying

Slutsky’s theorem, as presented in the aforementioned books.

5.3. The Invariance Property in Specific Cases

Before going any further, the application of Theorem 5.2.2 is illustrated in

some particular cases.

Example 5.3.1. Suppose that X1, X2, . . . is a sequence of independent and

identically distributed random variables with mean µ and variance σ2 <∞.

The central limit theorem yields that

√
n [Xn − µ]

d−→N
(
0, σ2

)
. (5.3.1)

Now, the asymptotic distribution of some transformations {g(Xn)} will be

obtained by an application of Theorem 5.2.2.

(i) g(x) = ex. In this case, g(Xn) = eXn , and observing that Dg(x) =

g′(x) = ex, it follows that Dg(µ) = eµ. Hence, starting from (5.3.1), an

application of Theorem 5.2.2 leads to

√
n [eXn − eµ]

d−→N
(
0, eµσ2eµ

)
= N

(
0, e2µσ2

)
(ii) g(x) = sin(x). For this function, g(Xn) = sin(Xn), and Dg(x) = g′(x) =

cos(x), so that Dg(µ) = cos(µ). Thus, (5.3.1), and Theorem 5.2.2 together

imply that

√
n [sin(Xn)− sin(µ))

d−→N (0, cos(µ)σ2 cos(µ)) = N (0, cos(µ)
2
σ2)

(iii) Consider now that transformation g(x) = (ex, sin(x))′. This function

transforms IR = IR1 into IR2, and its derivative Dg is the following matrix

of order 2× 1:

Dg(x) =

 d

dx
ex

d

dx
sin(x)

 =

[
ex

cos(x)

]
.
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Therefore,

√
n [g(Xn)− g(µ))

d−→N2(0, Dg(µ)σ2Dg(µ)′);

more explicitly,

√
n

[(
eXn

sin(Xn)

)
−
(

eµ

sin(µ)

)]
d−→N

([
0
0

]
,

[
eµ

cos(µ)

]
σ2[eµ cos(µ)]

)
= N

([
0
0

]
,

[
e2µ eµ cos(µ)

eµ cos(µ) cos2(µ)

])
.

tu

The next example concerns the estimation of the variation coefficient

for a normal population.

Example 5.3.2. Suppose that X1, X2, X3, . . . are independent and identically

distributed random variables with N
(
µ, σ2

)
distribution.

(i) The asymptotic distribution of the sample standard deviation can be

determined as follows: Recall that the sample variance S2
n =

∑n
i=1(Xi −

Xn)2/(n− 1) has the χ2
n−1 distribution, and then the central limit theorem

yields that √
n− 1 [S2

n − σ2]
d−→N

(
0, 2σ4

)
a statement that, because to the convergence

√
n/
√
n− 1→ 1 as n→∞, is

equivalent to
√
n [S2

n − σ2]
d−→N

(
0, 2σ4

)
.

Consider now the function g(x) =
√
x, so that Dg(x) = g′(x) = 1/[2

√
x].

The above convergence and Theorem 5.2.2 together yield that

√
n [Sn − σ] =

√
n [g(S2

n)− g(σ2)]

d−→N
(
0, g′(σ2

)
(2σ4))g′(σ2)) = N

(
0, σ2/2

)
.

(5.3.2)

(ii) The variation coefficient

CV =
µ

σ

is naturally estimated by

ĈVn =
Xn

Sn
,
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which is the maximum likelihood estimator as well as the moments estimator.

The present objective is to determine its asymptotic distribution. To achieve

this goal, recall the well-known fact that for the normal model Xn and Sn

are independent random variables; combining this fact with (5.3.2) and the

convergence
√
n [Xn − µ]

d−→N
(
0, σ2

)
, it follows that

√
n

[(
Xn

Sn

)
−
(
µ
σ

)]
d−→N

([
0
0

]
,

[
σ2 0
0 σ2/2

])
(5.3.3)

Next, consider the function transforming a vector in IR2 with no-null second

component into the a real number specified as follows:

g

(
x1

x2

)
=
x1

x2
.

The derivative of g is the matrix of order 1× 2 given by

Dg

(
x1

x2

)
= [∂x1g, ∂x2g] = [1/x2, −x1/x

2
2],

and it follows that

g

(
µ
σ

)
=
µ

σ
= CV, g

(
Xn

Sn

)
=
Xn

Sn
= ĈVn, Dg

(
µ
σ

)
= [1/σ, −µ/σ2],

and then

Dg

(
µ
σ

)[
σ2 0
0 σ2/2

]
Dg

(
µ
σ

)′
= 1 +

µ2

2σ2
= 1 +

CV2

2

Thus, starting with (5.3.3), and application of Theorem 5.2.2 with the func-

tion g specified above yields that

√
n
[
ĈVn − CV

]
=
√
n

[
g

(
Xn

Sn

)
− g

(
µ
σ

)]
d−→N

(
0, 1 +

CV2

2

)
.

tu

5.4. Limit Distribution of Moment Estimators

In this section it will be shown that Theorems 5.2.1 and 5.2.2 together imply

that, generally, the moments estimators are asymptotically normal.
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Theorem 5.4.1. Suppose that X is a random variable whose distribution Pθ

depends on an unknown parameter θ ∈ Θ, and that the moment of order 2k

of Pθ is finite for every θ ∈ Θ, i.e.,

Eθ[X
2k] = µ′2k(θ) <∞, θ ∈ Θ.

Let the k-dimensional vector µ(θ) and the matrix M(θ) of order k×k be the

mean and covariance of the vector X,X2, . . . Xk), that is,

µ(θ) = (µ′1(θ), µ′2(θ), . . . , µ′k(θ)′ = (Eθ[X], Eθ[X
2], . . . , Eθ[X

k])′ (5.4.1)

and

M(θ) = [Mi j(θ)] = [Covθ(X
i, Xj)] = [µ′i+j(θ)− µ′i(θ)µ′j(θ))] (5.4.2)

Consider now a sequence X1, X2, X3, . . . , of independent and identically dis-

tributed random variables from the same distribution as X, and let mr n be

the sample moment of order r based on the first n observations:

mr n =
1

n

n∑
i=1

Xr
i . (5.4.3)

Finally, for each positive integer n define the k-dimensional vector Wn by

Wn = (m1n,m2n, . . . ,mk n)′. (5.4.4)

In this case,

(i) The sequence {Wn} is asymptotically normal with mean µ(θ) and covari-

ance matrix M(θ). More explicitly,

√
n [Wn − µ(θ)]

d−→Nk (0,M(θ)) .

(ii) Let g:O → IRp be a continuously differentiable function defined on an

open set O ⊂ IRk, and suppose that O contains the vector µ(θ) for each

θ ∈ Θ. Consider the parametric function

g(µ(θ)) = g(µ′1(θ), µ′2(θ) . . . , µ′k(θ)),

and let ĝn be the moment estimator of g(µ(θ)) based on the first n observa-

tions, that is,

ĝm = g(m1n,m2n, . . . ,mk n) = g(Wn).
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In this case, the sequence {ĝn} is asymptotically normal with mean g(µ(θ))

and covariance matrix

Mg(θ) = Dµg(µ(θ))M(θ)Dµg(µ(θ))′.

that is,
√
n [g(Wn)− g(µ(θ))]

d−→Np (0,Mg(θ)) . (5.4.5)

Proof. When X ∼ Pθ, the mean and covariance matrix of the random

vector X = (X,X2, . . . , Xk) are µ(θ) and M(θ), respectively, as specified in

(5.4.1) and (5.4.2), and the vectors Xi = (Xi, X
2
i , . . . , X

k
i ), i = 1, 2, 3, . . .

are independent with the same distribution as X. Moreover, the vector Wn

defined in (5.4.4) and (5.4.3) is the sample mean of (X1,X2, . . . ,Xn):

Wn =
1

n

n∑
i=1

Xi.

Thus, the multivariate central limit theorem leads to

√
n [Wn − µ(θ)]

d−→Nk(0,M(θ)),

and the relation (5.4.5) follows combining this convergence with Theorem

5.2.2. tu

Remark 5.4.1. In words, the above theorem establishes that the asymptotic

normality is a ‘generic’ property of moments estimators. Indeed, the inter-

esting parametric functions g that arise in practice and can be expressed in

terms of population moments are generally smooth (continuously differen-

tiable) functions of the moments. In this case, if the moments of sufficiently

high order of the underlying population are finite, Theorem 5.4.1 ensures the

asymptotic normality of the moments estimators ĝn. tu

5.5. Arcsine and Risk Ratio Examples
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The application of the above theorem is illustrated in the following ex-

amples. The first one concerns a transformation that is frequently used in

experimental design to study the problem of comparing proportions, whereas

the second one refers to the limit distribution of the risk ratio as studied in

categorical data analysis.

Example 5.5.1. Let X1, X2, X3, . . . be independent random variables from a

Bernoulli (p) population, where the parameter p ∈ (0, 1) is unknown. The

first population moment is p, so that the moments estimator of p is p̂n = Xn.

Since the population variance is σ2 = p(1−p), the central limit theorem yields

that
√
n [Xn − p]

d−→N (0, p(1− p))

Consider now the smooth function

g(p) = arcsin(
√
p),

so that

Dpg(p) = g′(p) =
d

dp
arcsin(

√
p) =

1√
1− (

√
p)2

1

2
√
p

=
1

2

1√
1− p

.

An application of Theorem 5.4.1 yields that
√
n [arcsin(Xn)− arcsin(p)] =

√
n [g(Xn)− g(p)]

d−→N (0, Dg(p)p(1− p)Dg(p)) = N
(

0,
1

4

)
notice that the (asymptotic) variance of the transformed mean, that is,

arcsin(Xn), does not depend on the value of p; this stabilizing transfor-

mation is frequently used when comparing proportions, since an essential

assumption in the analysis of variance is that the standard deviations of the

different populations being compared is the same. tu

.

Example 5.5.2. Consider two samples X1, X2, . . . , Xn and Y1, Y2, . . . , Yn of

the Binomial (p1) and Binomial (p2) populations, respectively. In health

studies, pi is interpreted as the probability if acquiring some illness and

is ‘samall’, and the ratio

r =
p1

p2
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is referred as the risk ratio. The moments estimator of r based on the two

samples of size n is

r̂n =
Xn

Y n
,

and obtaining an approximation for the distribution of r̂n for large samples

is an interesting and important problem. Notice that

√
n [Xn − p1]

d−→N (0, p1(1− p1))

and
√
n [Y n − p2]

d−→N (0, p2(1− p2)), by the central limit theorem, and

that the independence of the samples implies that

√
n

[[
Xn

Y n

]
−
[
p1

p2

]]
d−→N

([
0
0

]
,

[
p1(1− p1) 0

0 p2(1− p2)

])
. (5.5.1)

Now, consider the function

g(p1, p2) = log(p2/p1) = log(p2)− log(p1),

and notice that

Dg(p1, p2) = (∂p1g(p1, p2), ∂p2g(p1, p2)) =

(
− 1

p1
,

1

p2

)
,

as well as

Dg(p1, p2)

[
p1(1− p1) 0

0 p2(1− p2)

]
Dg(p1, p2)′ = (1− p1)/p1 + (1− p2)/p2.

and, starting with (5.5.1), an application of Theorem 5.2.2 yields that

√
n [log(Xn/Y n)− log(p1/p2)] =

√
n

[
g

[
Xn

Y n

]
− g

[
p1

p2

]]
d−→N

(
0,

1− p1

p1
+

1− p2

p2

)
.

tu
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